Analog Signals Conditioning and Discretization

  • Krzysztof SozańskiEmail author
Part of the Power Systems book series (POWSYS)


Chapter 2 is devoted to problems of analog signal acquisition for the digital control circuits in power electronics devices. In this chapter the problems of the measurements in power electronics circuits are highlighted. Typical systems for current and voltage measurements are discussed. Particular attention is paid to galvanic isolation and the impact of a high slew rate in common mode voltage. A discussion is presented on the selection of the sample rate and number of bits. Consideration is given to the methods and circuit design to reduce quantization noise. Included is a discussion of noise shaping circuits useful for power electronics output circuits. Also included is a section on the impact of the phenomenon of jitter on the signal to noise ratio. In this chapter a method for calculating the resultant signal to noise ratio is also shown. Finally, at the end of this chapter a presentation of selected A/D converters suitable for use in power electronics circuits is made. Special attention is paid to simultaneously sampling A/D converters.


Total Harmonic Distortion Hall Sensor Current Transformer Common Mode Voltage Active Power Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    ABB (2012) ESM1000 general informations. Technical report, ABBGoogle Scholar
  2. 2.
    Allegro (2005) Current sensor: ACS752SCA-100. Technical report, ACS752100-DS Rev. 6, Allegro MicroSystems Inc\(\text{.}\) Google Scholar
  3. 3.
    Allegro (2011) ACS756, fully integrated, hall effect-based linear current sensor IC with 3 kVRMS voltage isolation and a low-resistance current conductor. Data Sheet, Allegro MicroSystems Inc\(\text{. }\) Google Scholar
  4. 4.
    Analog Devices (1996) AD215 120 kHz bandwidth, low distortion, isolation amplifier, Analog Devices Inc\(\text{. }\) Google Scholar
  5. 5.
    Analog Devices (2012) AD8210, High voltage, bidirectional current shunt monitor, Analog Devices Inc\(\text{. }\) Google Scholar
  6. 6.
    Analog Devices (2012) AD7606/AD7606-6/AD7606-4 8-/6-/4-channel DAS with 16-bit, bipolar input, simultaneous sampling ADC. Data sheet, Analog Devices Inc\(\text{. }\) Google Scholar
  7. 7.
    Attia JO (1999) Electronics and circuit analysis using MATLAB. CRC Press, Boca RatonCrossRefGoogle Scholar
  8. 8.
    Avago (2008) HCPL-7800A/HCPL-7800 isolation amplifier. Technical report, AV02-1436EN, Avago TechnologiesGoogle Scholar
  9. 9.
    Avago (2011) HCPL-7860/HCPL-786J optically isolated sigma-delta (S-D) modulator. Technical report, AV02-0409EN, Avago TechnologiesGoogle Scholar
  10. 10.
    Avago (2013) Optoisolation products, application block diagrams. Reference Guide, AV00-0271EN, Avago TechnologiesGoogle Scholar
  11. 11.
    Avago (2014) Optocouplers. Designer’s guide, AV02-4387EN, Avago TechnologiesGoogle Scholar
  12. 12.
    Azeredo-Leme C (2011) Clock jitter effects on sampling: a tutorial. IEEE Circuits Syst Mag 3:26–37CrossRefGoogle Scholar
  13. 13.
    Baggini A (ed) (2008) Handbook of power quality. Wiley, New YorkGoogle Scholar
  14. 14.
    Baird RT, Fiez TS (1995) Linearity enhancement of multibit A/D and D/A converters using data weighted averaging. IEEE Trans Circuits Syst II Analog Digital Sig Process 42(12):753–762CrossRefGoogle Scholar
  15. 15.
    Bateman A, Paterson-Stephens I (2002) The DSP handbook: algorithms, applications and design techniques. Prentice Hall, New YorkGoogle Scholar
  16. 16.
    Baxandall PF (1959) Transistor sine-wave LC oscillators. In: ICTASD—IRE, pp 748–759Google Scholar
  17. 17.
    Bossche AV, Valchev VC (2005) Inductors and transformers for power electronics. CRC Press, Boca RatonCrossRefGoogle Scholar
  18. 18.
    Brannon B (2004) Sampled systems and the effects of clock phase noise and jitter. Application note AN-756. Technical report, Analog Devices Inc\(\text{. }\) Google Scholar
  19. 19.
    Brannon B, Barlow A (2006) Aperture uncertainty and ADC system performance. Application note AN-501. Technical report, Analog Devices Inc\(\text{. }\) Google Scholar
  20. 20.
    Bruun G (1978) Z-transform DFT filters and FFT’s. IEEE Trans Acoust Speech Signal Process 26(1):56–63CrossRefGoogle Scholar
  21. 21.
    Candy J, Temes G (eds) (1992) Oversampling delta-sigma data converters. Theory, design, and simulation. IEEE PressGoogle Scholar
  22. 22.
    Carley RL, Schreier R, Temes GC (1997) Delta-sigma ADCs with multibit internal converters. In: Norsworthy SR, Schreier R, Temes GC (eds) Delta-sigma data converters. Theory, design, and simulation. IEEE PressGoogle Scholar
  23. 23.
    Cataltepe T, Kramer AR, Larson LE, Temes GC, Walden RH (1992) Digitaly corrected multi-bit \(\Sigma \Delta \) data converters. In: Candy JC, Temes GC (eds) IEEE proceedings of oversampling delta-sigma data converters theory, design, and simulation, ISCAS’89, May 1989. IEEE PressGoogle Scholar
  24. 24.
    Chen WK (ed) (1995) The circuits and filters handbook. IEEE Press, Boca RatonzbMATHGoogle Scholar
  25. 25.
    ChenYoung (2011) Closed loop precise Hall current sensor CYHCS-SH. Technical report, ChenYoungGoogle Scholar
  26. 26.
    Crochiere RE, Rabiner LR (1983) Multirate digital signal processing. Prentice Hall Inc., Englewood CliffsGoogle Scholar
  27. 27.
    Cummings J, Doogue MC, Friedrich AP (2007) Recent trends in hall effect current sensing (Rev. 1). AN295045. Technical report, Allegro MicroSystems Inc\(\text{. }\) Google Scholar
  28. 28.
    Cutler C (1960) Transmission system employing quantization. US Patent 2927962Google Scholar
  29. 29.
    Dabrowski A (ed) (1997) Digital signal processing using digital signal processors. Wydawnictwo Politechniki Poznanskiej, Poznan (in polish)Google Scholar
  30. 30.
    Dabrowski A, Sozanski K (1998) Implementation of multirate modified wave digital filters using digital signal processors. In: XXI Krajowa Konferencja Teoria Obwodow i Uklady Elektroniczne, KKTUIE’98, PoznanGoogle Scholar
  31. 31.
    Data Translation (2008) The battle for data fidelity: understanding the SFDR spec. Technical report, Data TranslationGoogle Scholar
  32. 32.
    Data Translation (2009) Benefits of simultaneous data acquisition modules. Technical report, Data TranslationGoogle Scholar
  33. 33.
    Farhang-Boroujeny B, Lee Y, Ko C (1996) Sliding transforms for efficient implementation of transform domain adaptive filters. Signal Process 52(1):83–96CrossRefzbMATHGoogle Scholar
  34. 34.
    Friis HT (1944) Noise figures of radio receivers. Proc IRE 32(7):419–422CrossRefGoogle Scholar
  35. 35.
    Galton I (1997) Spectral shaping of circuit errors in digital-to-analog converters. IEEE Trans Circuits Syst II Analog Digit Signal Process 44(10):789–797CrossRefGoogle Scholar
  36. 36.
    Goertzel G (1958) An algorithm for the evaluation of finite trigonometric series. Am Math Monthly 65:34–35MathSciNetCrossRefGoogle Scholar
  37. 37.
    Goldberg JM, Sandler MB (1994) New high accuracy pulse width modulation based digital-to-analogue convertor/power amplifier. IEE Proc Circuits Devices Syst 141(4):315–324CrossRefGoogle Scholar
  38. 38.
    Gwee BH, Chang JS, Adrian V (2007) A micropower low-distortion digital class-d amplifier based on an algorithmic pulsewidth modulator. IEEE Trans Circuits Syst I Regul Pap 52(10):2007–2022CrossRefGoogle Scholar
  39. 39.
    Hartley RVL (1928) Transmission of information. Bell Syst Tech J 7:535–563CrossRefGoogle Scholar
  40. 40.
    Hartmann M, Biela J, Ertl H, Kolar JW (2009) Wideband current transducer for measuring ac signals with limited DC offset. IEEE Trans Power Electron 24(7):1776–1787CrossRefGoogle Scholar
  41. 41.
    Holmes DG, Lipo TA (2003) Pulse width modulation for power converters: principles and practice. Institute of Electrical and Electronics Engineers, Inc\(\text{. }\) Google Scholar
  42. 42.
    Honeywell (2008) Current sensors line guide. Technical report, Honeywell International Inc\(\text{. }\) Google Scholar
  43. 43.
    IEEE (2011) IEEE standard for terminology and test methods for analog-to-digital converters. IEEE Std. 1241-2010. Technical report, IEEEGoogle Scholar
  44. 44.
    Jacobsen E, Lyons R (2003) The sliding DFT. IEEE Signal Process Mag 20(2)Google Scholar
  45. 45.
    Jacobsen E, Lyons R (2004) An update to the sliding DFT. IEEE Signal Process Mag 21:110–111CrossRefGoogle Scholar
  46. 46.
    Kazimierkowski M, Malesani L (1998) Current control techniques for three-phase voltage-source converters: a survey. IEEE Trans Ind Electron 45(5):691–703CrossRefGoogle Scholar
  47. 47.
    Kazmierkowski MP, Kishnan R, Blaabjerg F (2002) Control in power electronics. Academic Press, San DiegoGoogle Scholar
  48. 48.
    Kester W (2004) Analog-digital conversion. Analog Devices Inc., NorwoodGoogle Scholar
  49. 49.
    Kester W (2005) The data conversion handbook. Newnes, New YorkGoogle Scholar
  50. 50.
    Kester W (2009) Understand SINAD, ENOB, SNR, THD, THD+N, and SFDR so you don’t get lost in the noise floor. Technical report, Analog Devices Inc\(\text{. }\) Google Scholar
  51. 51.
    Kotelnikov AV (1933) On the capacity of the ‘ether’ and of cables in electrical communication. In: Proceedings of the first All-Union Conference on the technological reconstruction of the communications sector and low-current engineering, MoscowGoogle Scholar
  52. 52.
    Kurosu A, Miyase S, Tomiyama S, Takebe T (2003) A technique to truncate IIR filter impulse response and its application to real-time implementation of linear-phase IIR filters. IEEE Trans Signal Process 51(5):1284–1292MathSciNetCrossRefGoogle Scholar
  53. 53.
    Larson LE, Cataltepe T, Temes G (1992) Multibit oversampled—A/D converter with digital error correction. In: Candy JC, Temes GC (eds) Oversampling delta-sigma data converters. Theory, design, and simulation, IEEE Electronics Letters, 24 August 1988. IEEE PressGoogle Scholar
  54. 54.
    Leung BH, Sutarja S (1992) Multibit—A/D converter incorporating a novel class of dynamic element matching techniques. IEEE Trans Circuits Syst II Analog Digital Signal Process 39(1):35–51CrossRefGoogle Scholar
  55. 55.
    LEM (2004) Isolated current and voltage transducer, 3rd edn. LEM ComponentsGoogle Scholar
  56. 56.
    LEM (2012) Current transducer LA 55-P. LEM ComponentsGoogle Scholar
  57. 57.
    LEM (2012) Current transducer LA 205-S. Technical report, LEM ComponentsGoogle Scholar
  58. 58.
    Lyons R (2004) Understanding digital signal processing, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  59. 59.
    Lyons R, Bell A (2004) The Swiss army knife of digital networks. IEEE Signal Process Mag 21(3):90–100CrossRefGoogle Scholar
  60. 60.
    Mitra S (2006) Digital signal processing: a computer-based approach. McGraw-Hill, New YorkGoogle Scholar
  61. 61.
    Mohan N, Undeland TM, Robbins WP (1995) Power electronics, converters, applications and design. Wiley, New YorkGoogle Scholar
  62. 62.
    Mota M (2010) Understanding clock jitter effects on data converter performance and how to minimize them. Technical report, Synopsis Inc\(\text{. }\) Google Scholar
  63. 63.
    Norsworthy SR (1997) Quantization errors and dithering in modulators. In: Norsworthy SR, Schreier R, Temes GC (eds.) Delta-sigma data converters. Theory, design, and simulation. IEEE PressGoogle Scholar
  64. 64.
    Norsworthy SR, Schreier R, Temes GC (eds) (1997) Delta-sigma data converters, theory, design, and simulation, IEEE PressGoogle Scholar
  65. 65.
    Nyquist H (1924) Certain factors affecting telegraph speed. Bell Syst Tech J 3:324–346CrossRefGoogle Scholar
  66. 66.
    Nyquist H (1928) Certain topics in telegraph transmission theory. AIEE Trans 47:617–644Google Scholar
  67. 67.
    Oppenheim AV, Schafer RW (1999) Discrete-time signal processing. Prentice Hall, New JerseyzbMATHGoogle Scholar
  68. 68.
    Orfanidis SJ (2010) Introduction to signal processing. Prentice Hall, Inc., Upper Saddle RiverGoogle Scholar
  69. 69.
    Oshana R (2005) DSP Software development techniques for embedded and real-time systems. Newnes, BostonGoogle Scholar
  70. 70.
    Owen M (2007) Practical signal processing. Cambridge University Press, CambridgeGoogle Scholar
  71. 71.
    Plassche R (2003) CMOS integrated analog-to-digital and digital-to-analog converters. Springer, New YorkCrossRefzbMATHGoogle Scholar
  72. 72.
    Powell SR, Chau PM (1991) A technique for realizing linear phase IIR filters. IEEE Trans Signal Process 39(11):2425–2435CrossRefGoogle Scholar
  73. 73.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, CambridgezbMATHGoogle Scholar
  74. 74.
    Proakis JG, Manolakis DM (1996) Digital signal processing, principles, algorithms, and application. Prentice Hall Inc., Englewood CliffsGoogle Scholar
  75. 75.
    Rabiner LR, Gold B (1975) Theory and application of digital signal processing. Prentice Hall Inc., Englewood CliffsGoogle Scholar
  76. 76.
    Ray WF, Davis RM (1993) Wide bandwidth Rogowski current transducer: part 1—the Rogowski coil. EPE J 3(2):116–122CrossRefGoogle Scholar
  77. 77.
    Ray WF, Davis RM (1993) Wide bandwidth Rogowski current transducer: part 2—the integrator. EPE J 3(1):51–59CrossRefGoogle Scholar
  78. 78.
    Ray WF, Davis RM (1997) Developments in Rogowski current transducer. In: Conference proceedings, EPE, Trondheim, vol 3, pp 308–312Google Scholar
  79. 79.
    Redmayne D, Trelewicz E, Smith A (2006) Understanding the effect of clock jitter on high speed ADCs. Design Note 1013. Technical report, Linear Technology, Inc\(\text{. }\) Google Scholar
  80. 80.
    Rollier S (2012) High accuracy, high technology: the perfect choice! ITB 300-S/IT 400-S/IT 700-S current transducers. Technical report, LEM ComponentsGoogle Scholar
  81. 81.
    Schreier R, Temes GC (2004) Understanding delta-sigma data converters. Wiley-IEEE Press, New YorkCrossRefGoogle Scholar
  82. 82.
    Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27: 379–423 and 623–656Google Scholar
  83. 83.
    Silicon Laboratories (2015) Si8920ISO-EVB, Si8920ISO-EVB user’s guide, Silicon LaboratoriesGoogle Scholar
  84. 84.
    Silicon Laboratories (2016) Si8920 Isolated amplifier for current shunt measurement. Data Sheet, Silicon LaboratoriesGoogle Scholar
  85. 85.
    Sozański K (1999) Design and research of digital filters banks using digital signal processors. PhD thesis, Technical University of Poznan (in Polish)Google Scholar
  86. 86.
    Sozański K (2002) Implementation of modified wave digital filters using digital signal processors. In: Conference proceedings of 9th international conference on electronics, circuits and systems, pp 1015–1018Google Scholar
  87. 87.
    Sozański K (2012) Realization of a digital control algorithm. In: Benysek G, Pasko M (eds) Power theories for improved power quality. Springer, London, pp 117–168Google Scholar
  88. 88.
    Sozański K, Strzelecki R, Fedyczak Z (2001) Digital control circuit for class-D audio power amplifier. In: Conference proceedings of 2001 IEEE 32nd annual power electronics specialists conference, PESC’01, pp 1245–1250Google Scholar
  89. 89.
    Sozanski K (2015) Selected problems of digital signal processing in power electronic circuits. In: Conference proceedings, SENE’15, Lodz PolandGoogle Scholar
  90. 90.
    Sozanski K (2016) Signal-to-noise ratio in power electronic digital control circuits. In: Conference proceedings of signal processing, algorithms, architectures, arrangements and applications, SPA’16. Poznan University of Technology, pp 162–171Google Scholar
  91. 91.
    Spang H, Schulthessis P (1962) Reduction of quantizing noise by use of feedback. IRE Trans Commun Syst 10:373–380CrossRefGoogle Scholar
  92. 92.
    Strzelecki R, Fedyczak Z, Sozanski K, Rusinski J (2000) Active power filter EFA1. Technical Report, Instytut Elektrotechniki Przemyslowej, Politechnika Zielonogorska (in Polish)Google Scholar
  93. 93.
    Texas Instruments (2005) ISO124 precision lowest-cost isolation amplifier. Data sheet, Texas Instruments Inc\(\text{. }\) Google Scholar
  94. 94.
    Texas Instruments (2006) ADS8364 250kSPS, 16-bit, 6-channel simultaneous sampling analog-to-digital converter, Data sheet. Texas Instruments Inc\(\text{. }\) Google Scholar
  95. 95.
    Texas Instruments (2008) TMS320F28335/28334/28332, TMS320F28235/28234/28232, digital signal controllers (DSCs). Data Manual, Texas Instruments Inc\(\text{. }\) Google Scholar
  96. 96.
    Texas Instruments (2009) ISO120, ISO121 precision low cost isolation amplifier. Technical report, iso121.pdf, Texas Instruments, Inc\(\text{. }\) Google Scholar
  97. 97.
    Texas Instruments (2010) INA270, INA271 voltage output, unidirectional measurement current-shunt monitor. Data sheet, Texas Instruments Inc\(\text{. }\) Google Scholar
  98. 98.
    Texas Instruments (2010) C2000 teaching materials, tutorials and applications. SSQC019, Texas Instruments Inc\(\text{. }\) Google Scholar
  99. 99.
    Texas Instruments (2011) ADS1274, ADS1278, quad/octal, simultaneous sampling, 24-bit analog-to-digital converters. Data sheet, Texas Instruments Inc\(\text{. }\) Google Scholar
  100. 100.
    Texas Instruments (2011) Simultaneous sampling analog-to-digital converters 12-, 14-, 16-bit, eight-channel. Data sheet, Texas Instruments Inc\(\text{. }\) Google Scholar
  101. 101.
    Texas Instruments (2016) TMS320F2837xD dual-core delfino microcontrollers. Data sheet, Texas Instruments Inc\(\text{. }\) Google Scholar
  102. 102.
    Texas Instruments (2016) The TMS320F2837xD architecture: achieving a new level of high performance. Technical Brief, Texas Instruments Inc\(\text{. }\) Google Scholar
  103. 103.
    Tewksbury S (1978) Oversampled, linear predictive and noise-shaping coders of order N> 1. IEEE Trans Circuits Syst 25(7):436–447CrossRefGoogle Scholar
  104. 104.
    Trzynadlowski A (2010) Introduction to modern power electronics. Wiley, New YorkGoogle Scholar
  105. 105.
    Vaidyanathan PP (1992) Multirate systems and filter banks. Prentice Hall Inc., Englewood CliffsGoogle Scholar
  106. 106.
    Verona J (2001) Power digital-to-analog conversion using sigma-delta and pulse width modulations, ECE1371 Analog Electronics II, ECE University of Toronto 2001, vol II, pp 1–14Google Scholar
  107. 107.
    Vishay (2011) Linear optocoupler, high gain stability, wide bandwidth. Data sheet, Vishay Semiconductor GmbHGoogle Scholar
  108. 108.
    Wanhammar L (ed) (1999) DSP integrated circuit. Academic Press, LondonGoogle Scholar
  109. 109.
    Zieliński T (2005) Digital signal processing: from theory to application. Wydawnictwo Komunikacji i Lacznosci, Warsaw (in Polish)Google Scholar
  110. 110.
    Zolzer U (ed) (2002) DAFX—digital audio effects. Wiley, New YorkGoogle Scholar
  111. 111.
    Zolzer U (ed) (2008) Digital audio signal processing. Wiley, New YorkGoogle Scholar
  112. 112.
    Zumbahlen H (ed) (2007) Basic linear design. Analog Devices Inc., NorwoodGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Electrical EngineeringUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations