Skip to main content

The Role of Angiogenesis in the Development of Psoriasis

  • Chapter
  • First Online:

Abstract

Psoriasis is an immune-mediated, inflammatory dermatosis. In susceptible patients, both environmental and genetic factors contribute to the symptom development of this chronic, debilitating disease. With many known clinical subtypes, it is characterized by the presence of erythematous plaques, covered by silvery scales. Angiogenesis plays an important role in this disease pathogenesis, with vascular alterations being the initial trigger to the autoimmune inflammatory response. In this chapter, we present the latest work on the main mechanisms through which angiogenesis interfere on the physiopathology of psoriasis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Torales-Cardeña A, Martínez-Torres I, Rodríguez-Martínez S, Gómez-Chávez, Cancino-Díaz JC, Vázquez-Sánchez E, et al. Cross talk between proliferative, angiogenic, and cellular mechanisms orchestred by HIF-1α in psoriasis. Mediators Inflamm. 2015;2015:607363.

    Google Scholar 

  2. Armstrong AW, Voyles SV, Armstrong EJ, Fuller EN, Rutledge JC. Angiogenesis and oxidative stress: common mechanisms linking psoriasis with atherosclerosis. J Dermatol Sci. 2011;63:1–9. Amsterdam: Elsevier.

    Google Scholar 

  3. Hertz A. Psoríase na infância. Revista Hospital Universitário Pedro Ernesto. Rio de Janeiro. 2014;13(Suppl 1):40–9.

    Google Scholar 

  4. Holubar K. Psoriasis – 100 years ago. Dermatology. 1900;180(1):1–4. Basel: Karger Publishers.

    Google Scholar 

  5. Holubar, K. Psoriasis and parapsoriasis: since 200 and 100 years, respectively. J Eur Acad Dermatol Venereol JEADV. 2003;17(2):126–7. England: Elsevier Science Publishers.

    Google Scholar 

  6. Romiti R, Maragno L, Arnone M, Takahashi MDF. Psoríase na infância e na adolescência. An Bras Dermatol. 2009;84(1):9–22. Rio de Janeiro: Sociedade Brasileira de Dermatologia.

    Google Scholar 

  7. Varrichi G, Granata F, Loffredo S, Genovese A, Marone G. Angiogenesis and lymphangiogenesis in inflammatory skin disorders. JAAD Case Rep. 2015;73(1):144–53. New York: Elsevier Inc.

    Google Scholar 

  8. Langley R, Krueger G, Griffiths C. Psoriasis: epidemiology, clinical features, and quality of life. Ann Rheum Dis. 2005;64(2):ii18–23. London: H.K. Lewis.

    Google Scholar 

  9. Parisi R, Symmons DP, Griffiths CE, Ashcroft DM. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Invest Dermatol. 2013:133(2):377–85. Baltimore: Williams & Wilkins.

    Google Scholar 

  10. Enamandram M, Kimball AB. Psoriasis epidemiology: the interplay of genes and the environment. J Invest Dermatol. 2013;133:287–89. Baltimore: Williams & Wilkins.

    Google Scholar 

  11. Lupi O, Belo J, Cunha PR. Rotinas de Diagnóstico e Tratamento da Sociedade Brasileira de Dermatologia - SBD - 2ª Ed. Editora Guanabara Koogan, 2012. p. 680 ISBN: 9788581140841.

    Google Scholar 

  12. Murphy M, Kerr P, Grant-Kels JM. The histopathologic spectrum os psoriasis. Clin Dermatol. 2007;25:524–8.

    Article  PubMed  Google Scholar 

  13. Heidenreich R, Rocken M, Ghoreschi K. Angiogenesis drives psoriasis pathogenesis. Int J Exp Pathol; 2009;90:232–48. Oxford: Wiley.

    Google Scholar 

  14. Yamamoto T. Angiogenic and inflammatory properties of psoriatic arthritis. ISRN Dermatol. 2013;2013:630620. Cairo: Hindawi Pub. Corp.

    Google Scholar 

  15. Weidemann AK, Crawshaw AA, Byrne E, Young H. Vascular endothelial growth factor inhibitors: investigational therapies for the treatment of psoriasis. Clin Cosmet Investig Dermatol. 2013;6:233–44.Auckland: Dove Medical Press.

    Google Scholar 

  16. Creamer D, Allen MH, Sousa A, Poston R, Barker JN. Localization of endothelial proliferation and microvascular expansion in active plaque psoriasis. Br J Dermatol. 1997;136:859–65.

    Article  CAS  PubMed  Google Scholar 

  17. Telner P, Fekete Z. The capillary responses in psoriatic skin. J Invest Dermatol. 1961;36:225–30.

    Article  CAS  PubMed  Google Scholar 

  18. Ragaz A, Ackerman AB. Evolution, maturation, and regression of lesions of psoriasis. New observations and correlation of clinical and histologic findings. Am J Dermatopathol. 1979;1:199–214.

    Article  CAS  PubMed  Google Scholar 

  19. Braverman IM, Sibley J. Role of the microcirculation in the treatment and pathogenesis of psoriasis. J Invest Dermatol. 1982;78:12–7.

    Article  CAS  PubMed  Google Scholar 

  20. Kulka JP. Microcirculatory impairment as a factor in inflammatory tissue damage. Ann N Y Acad Sci. 1964;116:1018–44.

    Article  CAS  PubMed  Google Scholar 

  21. Hull SM, Goodfield M, Wood EJ, Cunliffe WJ. Active and inactive edges of psoriatic plaques: identification by tracing and investigation by laser-Doppler flowmetry and immunocytochemical techniques. J Invest Dermatol. 1989;92:782–5.

    Article  CAS  PubMed  Google Scholar 

  22. Goodfield M, Hull SM, Holland D, et al. Investigations of the ‘active’ edge of plaque psoriasis: vascular proliferation precedes changes in epidermal keratin. Br J Dermatol. 1994;131:808–13.

    Article  CAS  PubMed  Google Scholar 

  23. Bernhard JD. Clinical Pearl: Auspitz sign in psoriasis scale. JAAD Case Rep. 1997;36(4):621.New York: Elsevier Inc.

    Google Scholar 

  24. Výbohová D, Mellová Y, Adamicová K, Adamkov M, Hesková G. Quatitative comparison of angiogenesis and lymphangiogenesis in cutaneous lichen planus and psoriasis: Immunohistochemical assessment. Acta Histochemica. 2014;117(2015):20–8. Germany: Jena Gustav Fischer Verlag.

    Google Scholar 

  25. Zgraggen S, Huggenberger R, Kerl K, Detmar M. An important role of the SDF-1/CXCR4 axis in chronic skin inflammation. PLoS One. 2014;9(4):e93665. San Francisco: Public Library of Science.

    Google Scholar 

  26. Ghoreschi K, Thomas P, Breit S, et al. Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease. Nat Med. 2003;9:40–6.

    Article  CAS  PubMed  Google Scholar 

  27. Ghoreschi K, Weigert C, Rocken M. Immunopathogenesis and role of T cells in psoriasis. Clin Dermatol. 2007;25:574–80.

    Article  PubMed  Google Scholar 

  28. Nickoloff BJ, Mitra RS, Varani J, Dixit VM, Polverini PJ. Aberrant production of interleukin-8 and thrombospondin-1 by psoriatic keratinocytes mediates angiogenesis. Am J Pathol. 1994;144:820–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jin H, Varner J. Integrins: roles in cancer development and as treatment targets. Br J Cancer. 2004;90:561–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cheresh DA. Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc Natl Acad Sci U S A. 1987;84:6471–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 1994a;264:569–71.

    Article  CAS  PubMed  Google Scholar 

  32. Brooks PC, Montgomery AM, Rosenfeld M, et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 1994b;79:1157–64.

    Article  CAS  PubMed  Google Scholar 

  33. Kneilling M, Hultner L, Pichler BJ, et al. Targeted mast cell silencing protects against joint destruction and angiogenesis in experimental arthritis in mice. Arthritis Rheum. 2007;56:1806–16.

    Article  CAS  PubMed  Google Scholar 

  34. Muller-Hermelink N, Braumuller H, Pichler B, et al. TNFR1 signaling and IFN-gamma signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell. 2008;13:507–18.

    Article  PubMed  Google Scholar 

  35. Creamer JD, Barker JN. Vascular proliferation and angiogenic factors in psoriasis. Clin Exp Dermatol. 1995;20:6–9.

    Article  CAS  PubMed  Google Scholar 

  36. Nickoloff BJ. Characterization of lymphocyte-dependent angiogenesis using a SCID mouse: human skin model of psoriasis. J Investig Dermatol Symp Proc. 2000;5:67–73.

    Article  CAS  PubMed  Google Scholar 

  37. Stinco G, Buligan C, Errichetti E, Valent F, Patrone P. Clinical and capillaroscopic modifications of the psoriatic plaque during therapy: observations with oral acitretin. Dermatol Res Pract. 2013;2013:781942. Cairo: Hindawi Pub. Corp.

    Google Scholar 

  38. Keck PJ, Hauser SD, Krivi G, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science. 1989;246:1309–12.

    Article  CAS  PubMed  Google Scholar 

  39. Harper SJ, Bates DO. VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat Rev Cancer. 2008;8:880–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Young HS, Summers AM, Read IR, et al. Interaction between genetic control of vascular endothelial growth factor production and retinoid responsiveness in psoriasis. J Invest Dermatol. 2006;126(2):453–9.

    Article  CAS  PubMed  Google Scholar 

  41. De Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Wiliams LT. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science. 1992;255:989–91.

    Article  CAS  PubMed  Google Scholar 

  42. Shibuya M. Role of VEGF-flt receptor system in normal and tumor angiogenesis. Adv Cancer Res. 1995;67:281–316.

    Article  CAS  PubMed  Google Scholar 

  43. Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res. 2006;312:549–60.

    Article  CAS  PubMed  Google Scholar 

  44. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    Article  CAS  PubMed  Google Scholar 

  45. Detmar M, Brown LF, Claffey KP, et al. Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. J Exp Med. 1994;180:1141–6.

    Article  CAS  PubMed  Google Scholar 

  46. Creamer D, Allen M, Jaggar R, Stevens R, Bicknell R, Barker J. Mediation of systemic vascular hyperpermeability in severe psoriasis by circulating vascular endothelial growth factor. Arch Dermatol. 2002;138(6):791–6.

    Article  CAS  PubMed  Google Scholar 

  47. Bhushan M, McLaughlin B, Weiss JB, Griffiths CE. Levels of endothelial cell stimulating angiogenesis factor and vascular endothelial growth factor are elevated in psoriasis. Br J Dermatol. 1999;141:1054–60.

    Article  CAS  PubMed  Google Scholar 

  48. Nielsen HJ, Christensen IJ, Svendsen MN, et al. Elevated plasma levels of vascular endothelial growth factor and plasminogen activator inhibitor-1 decrease during improvement of psoriasis. Inflamm Res. 2002;51:563–7.

    Article  CAS  PubMed  Google Scholar 

  49. Detmar M, Brown LF, Schon MP, et al. Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol. 1998;111:1–6.

    Google Scholar 

  50. Xia YP, Li B, Hylton D, Detmar M, Yancopoulos GD, Rudge JS. Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood. 2003;102:161–8.

    Article  CAS  PubMed  Google Scholar 

  51. Elias PM, Arbiser J, Brown BE, et al. Epidermal vascular endothelial growth factor production is required for permeability barrier homeostasis, dermal angiogenesis, and the development of epidermal hyperplasia: implications for the pathogenesis of psoriasis. Am J Pathol. 2008;173:689–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hon W-C, Wilson MI, Harlos K, et al. Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL. Nature. 2002;417(6892):975–8.

    Google Scholar 

  53. Min JH, Yang H, Ivan M, Gertler F, Kaelin Jr WG, Pavietich NP. Structure of an HIF-1alpha-pVHL complex: hydroxyproline recognition in signaling. Science. 2002;296(5574):1886–9.

    Article  CAS  PubMed  Google Scholar 

  54. Li Y-N, Xi M-M, Guo Y, Hai C-X, Yang W-L, Qin X-J. NADPH oxidase-mitochondria axis-derived ROS mediate arsenite-inducedHIF-1alpha stabilization by inhibiting prolyl hydroxylases activity. Toxicol Lett. 2014;224(2):165–74.

    Article  CAS  PubMed  Google Scholar 

  55. Acker T, Fandrey J, Acker H. The good, the bad and the ugly in oxygen-sensing: ROS, cytochromes and prolylhydroxylases. Cardiovasc Res. 2006;71(2):195–207.

    Article  CAS  PubMed  Google Scholar 

  56. Levy AP, Levy NS, Wegner S, Goldberg MA. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem. 1995;270:13333–40.

    Article  CAS  PubMed  Google Scholar 

  57. Liu Y, Cox SR, Morita T, Kourembanas S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ Res. 1995;77:638–43.

    Article  CAS  PubMed  Google Scholar 

  58. Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996;16:4604–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Takeda N, Maemura K, Imai Y, et al. Endothelial PAS domain protein 1 gene promotes angiogenesis through the transactivation of both vascular endothelial growth factor and its receptor, Flt-1. Circ Res. 2004;95:146–53.

    Article  CAS  PubMed  Google Scholar 

  60. Elvert G, Kappel A, Heidenreich R, et al. Cooperative interaction of hypoxia inducible factor (HIF)-2a and Ets-1 in the transcriptional activation of vascular endothelial growth factor receptor-2 (Flk-1). J Biol Chem. 2003;278:7520–30.

    Article  CAS  PubMed  Google Scholar 

  61. Kim KS, Rajagopal V, Gonsalves C, Johnson C, Kalra VK, et al. A novel role of hypoxia-inducible factor in cobalt chloride- and hypoxia-mediated expression of IL-8 chemokine in human endothelial cells. J Immunol. 2006;177:7211–24.

    Article  CAS  PubMed  Google Scholar 

  62. Tian H, McKnight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 1997;11:72–82.

    Article  CAS  PubMed  Google Scholar 

  63. Chen Y, Zhang L, Pan Y, Ren X, Hao Q, Over-expression of semaphorin4d, hypoxia-inducible factor-1α and vascular endothelial growth factor is related to poor prognosis in ovarian epithelial cancer. Int J Mol Sci, 2012;13(10):13264–74.

    Google Scholar 

  64. Nikitenko LL, Smith DM, Bicknell R, Rees MCP. Transcriptional regulation of the CRLR gene in human microvascular endothelial cells by hypoxia. FASEB J. 2003;17(11):1499–501.

    CAS  PubMed  Google Scholar 

  65. Bisht M, Dhasmana DC, Bist SS. Angiogenesis: Future of pharmacological modulation. Indian J Pharmacol. 2010;42:2–8. Mumbai: Medknow Publications.

    Google Scholar 

  66. Dumont DJ, Gradwohl G, Fong GH, et al. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev. 1994;8:1897–909.

    Article  CAS  PubMed  Google Scholar 

  67. Sato TN, Tozawa Y, Deutsch U, et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature. 1995;376:70–4.

    Article  CAS  PubMed  Google Scholar 

  68. Davis S, Aldrich TH, Jones PF, et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell. 1996;87:1161–9.

    Article  CAS  PubMed  Google Scholar 

  69. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996;87:1171–80.

    Google Scholar 

  70. Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997;277:55–60.

    Article  CAS  PubMed  Google Scholar 

  71. Wong AL, Haroon ZA, Werner S, Dewhirst MW, Greenberg CS, Peters KG. Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res. 1997;81:567–74.

    Article  CAS  PubMed  Google Scholar 

  72. Kuroda K, Sapadin A, Shoji T, Fleischmajer R, Lebwohl M. Altered expression of angiopoietins and Tie2 endothelium receptor in psoriasis. J Invest Dermatol. 2001;116:713–20.

    Article  CAS  PubMed  Google Scholar 

  73. Voskas D, Jones N, Van Slyke P, et al. A cyclosporine-sensitive psoriasis-like disease produced in Tie2 transgenic mice. Am J Pathol. 2005;166:843–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fiedler U, Reiss Y, Scharpfenecker M, et al. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med. 2006;12:235–9.

    Article  CAS  PubMed  Google Scholar 

  75. Sato K, Takaishi M, Tokuoka S, Sano S. Involvement of TNF-α converting enzyme in the development of psoriasis-like lesions in a mouse model. PLoS One. 2014;9(11):e112408. San Francisco: Public Library of Science.

    Google Scholar 

  76. Zaba LC, Cardinale I, Gilleaudeau P, Sullivan-Whalen M, Suárez-Fariñas M, Fuentes-Duculan J, et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med. 2007;204(13):3183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yost J, Gudjonsson JE. The role of TNF inhibitors in psoriasis therapy: new implications for associated comorbidities. F1000 Med Rep. 2009;1:30.

    PubMed  PubMed Central  Google Scholar 

  78. Patterson C, Perrella MA, Endege WO, Yoshizumi M, Lee ME, Haber E. Downregulation of vascular endothelial growth factor receptors by tumor necrosis factor-alpha in cultured human vascular endothelial cells. J Clin Invest. 1996;98:490–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yoshida S, Ono M, Shono T, et al. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Mol Cell Biol. 1997;17:4015–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fajardo LF, Kwan HH, Kowalski J. Dual role of tumor necrosis factor-alpha in angiogenesis. Am J Pathol. 1992;140:539–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Montrucchio G, Lupia E, Battaglia E, et al. Tumor necrosis factor alpha-induced angiogenesis depends on in situ platelet-activating factor biosynthesis. J Exp Med. 1994;180:377–82.

    Article  CAS  PubMed  Google Scholar 

  82. Qazi BS, Tang K, Qazi A. Recent advances in underlying pathologies provide insight into interleukin-8 expression-mediated inflammation and angiogenesis. Int J Inflam. 2011;2011: Article ID 908468, 13 pages.

    Google Scholar 

  83. Koch AE, Polverini PJ, Kunkel SL, et al. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science. 1992;258:1798–801.

    Article  CAS  PubMed  Google Scholar 

  84. Strieter RM, Kunkel SL, Elner VM, et al. Interleukin-8. A corneal factor that induces neovascularization. Am J Pathol. 1992;141:1279–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hu DE, Hori Y, Fan TP. Interleukin-8 stimulates angiogenesis in rats. Inflammation. 1993;17:135–43.

    Article  CAS  PubMed  Google Scholar 

  86. Man XY, Yang XH, Cai SQ, Yao YG, Zheng M. Immunolocalization and expression of vascular endothelial growth factor receptors (VEGFRs) and neuropilins (NRPs) on keratinocytes in human epidermis. Mol Med. 2006;12:127–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shono T, Ono M, Izumi H, et al. Involvement of the transcription factor NF-kappaB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Mol Cell Biol. 1996;16:4231–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li A, Dubey S, Varney ML, Dave BJ, Singh RK. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol. 2003;170:3369–76.

    Article  CAS  PubMed  Google Scholar 

  89. Ghoreschi K, Rocken M. Molecular and cellular basis for designing gene vaccines against inflammatory autoimmune disease. Trends Mol Med. 2003;9:331–8.

    Article  CAS  PubMed  Google Scholar 

  90. Raychaudhuri SP. Role of IL-17 in psoriasis and psoriatic arthritis. Clin Rev Allergy Immunol. 2013;44(2):183–93. Totowa: Humana Press.

    Google Scholar 

  91. Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity. 2004;21:467–76.

    Article  CAS  PubMed  Google Scholar 

  92. Jovanovic DV, Di Battista JA, Martel-Pelletier J, et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J Immunol. 1998;160:3513–21.

    CAS  PubMed  Google Scholar 

  93. Numasaki M, Fukushi J, Ono M, et al. Interleukin-17 promotes angiogenesis and tumor growth. Blood. 2003;101:2620–7.

    Article  CAS  PubMed  Google Scholar 

  94. Goswami R, Kaplan MH. A brief history of IL-9. J. Immunol. 2011;186(6):3283–8. Rockville: The American Association of Immunologists, Inc.

    Google Scholar 

  95. Nowak EC, Weaver CT, Turner H, Begum-Haque S, Schreiner B, Coyle AJ, et al. IL-9 as a mediator of Th17-driven inflammatory disease. J Exp Med. 2009;206(8):165360. Rockefeller: The Rockefeller University Press.

    Google Scholar 

  96. Li H, Nourbakhsh B, Ciric B, Zhang GX, Rostami A. Neutralization of IL-9 ameliorates experimental autoimmune encephalomyelitis by decreasing the effector T cell population. J Immunol. 2010;185:4095–100. Rockville: The American Association of Immunologists, Inc.

    Google Scholar 

  97. Beriou G, Bradshaw EM, Lozano E, Costantino CM, Hastings WD, Orban T, et al. TGF-beta induces IL-9 production from human Th17 cells. J Immunol. 2010;185:46–54. Rockville: The American Association of Immunologists, Inc.

    Google Scholar 

  98. Noelle RJ, Nowak EC. Cellular sources and immune functions of interleukin-9. Nat Rev Immunol. 2010;10:683–7. London: Nature Pub Group.

    Google Scholar 

  99. Elyaman W, Bradshaw EM, Uyttenhove C, Dardalhon V, Awasthi A, Imitola J, et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc Natl Acad Sci U S A 2009; vol 106: 12885–12890. doi: 10.1073/pnas.0812530106 15-27. Washington: National Academy of Sciences.

  100. Singh TP, Schön MP, Wallbrecht K, Gruber-Wackernagel A, Wang XJ, Wolf P. Involvement of IL-9 in Th17-associated inflammation and angiogenesis of psoriasis. PLoS One. 2013;8(1):e51752. San Francisco: Public Library of Science.

    Google Scholar 

  101. Heenan PJ, Skender-Kalnenas TM. Cyclosporine and angiogenesis in psoriasis. J Am Acad Dermatol. 1996. 35(6): 1019–20. St. Louis: Mosby.

    Google Scholar 

  102. Hernández GL, Volpert OV, Íñiguez MA, Lorenzo E, Martínez-Martínez S, Grau R et al. Selective inhibition of vascular endothelial growth factor–mediated angiogenesis by cyclosporin a: roles of the nuclear factor of activated T cells and cyclooxygenase 2. J Exp Med. 2001. 193(5):607–20. New York: Rockefeller University Press.

    Google Scholar 

  103. Sociedade Brasileira de Dermatologia. Consenso Brasileiro de Psoríase 2012 – Guias de avaliação e tratamento. 2 ed. Rio de Janeiro: Sociedade Brasileira de Dermatologia; 2009.

    Google Scholar 

  104. Arbiser JL. Fumarate esters as angiogenesis inhibitors: key to action in psoriasis. J Invest Dermatol. 2011;131(6):1189–91. Baltimore: Williams & Wilkins.

    Google Scholar 

  105. Martins GA, Arruda L. Tratamento sistêmico da psoríase – Parte I: metotrexato e acitretina. An Bras Dermatol. 2004. 79(3):263–78. Rio de Janeiro: Sociedade Brasileira de Dermatologia.

    Google Scholar 

  106. Shaker GO, Khairallah M, Rasheed HM, Abdel-Halim MR, Abuzeid, OM, El Tawdi HH, el al. Antiangiogenic effect of methotrexate and puva on psoriasis. Cell Biochem Biophys. 2013;67(2):735–42. Totowa: Humana Press.

    Google Scholar 

  107. Kim CY, Kim SM, Kim GD. The effect of acitretin to the expression of vascular endothelial growth factor in psoriasis. J Life Sci. 2009;19(3):327–33. Korea: Korean Society of Life Science.

    Google Scholar 

  108. Liu Y, Yang G, Zhang J, Xing K, Dai L, Cheng L et al. Anti-TNF-alpha monoclonal antibody reverses psoriasis through dual inhibition of inflammation and angiogenesis. Int Immunopharmacol. 2015;28:731–43. New York: Elsevier Science.

    Google Scholar 

  109. Raychaudhuri SP. Role of IL-17 in psoriasis and psoriatic arthritis. Clin Rev Allergy Immunol. 2013;44:183–93. Totowa: Humana Press.

    Google Scholar 

  110. Numasaki M, Fukushi J, Ono M, Narula SK, Zavodny PJ, Kudo T, et al. Interleukin-17 promotes angiogenesis and tumor growth. Blood Res. 2003;101(7):2620–7. Seoul: Korean Society of Hematology.

    Google Scholar 

  111. Golmia RP, Martins AHB, Scheinberg M. Quando anti-TNF não obtém sucesso, anti-IL-12-23 é opção alternativa na psoríase e na artrite psoriásica. Rev Bras Reumatol. 2014;54(3):247–9. Rio de Janeiro: Elsevier Editora Ltda.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Carolina Belini Bazan-Arruda MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London Ltd.

About this chapter

Cite this chapter

Bazan-Arruda, A.C.B., Siqueira, D.M., Mercadante, L.M. (2017). The Role of Angiogenesis in the Development of Psoriasis. In: Arbiser, J. (eds) Angiogenesis-Based Dermatology. Springer, London. https://doi.org/10.1007/978-1-4471-7314-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-7314-4_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-7312-0

  • Online ISBN: 978-1-4471-7314-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics