Microstructural Characterization

Chapter
Part of the Engineering Materials and Processes book series (EMP)

Abstract

An accurate quantitative analysis of the microstructure including immiscible polymer phases (if any) and dispersion/distribution of nanoparticles in the matrix is essential to understand the relation between processing and ultimate properties of nanocomposites. Here, we have reviewed the problems associated with proper microstructural characterization of nanocomposites and their influence on precisely concluding the effect on different properties.

Keywords

Clay Surfactant Sulfide Iodine Epoxy 

List of Abbreviations

Polymers and Other Organic Compounds

ABS

Acrylonitrile–butadiene–styrene copolymer

BA

Benzyl alcohol

E-MA-GMA

Ethylene/methyl acrylate/glycidyl methacrylate terpolymer

EPDM

Ethylene propylene diene terpolymer

HIPS

High-impact polystyrene

HOPG

Highly ordered pyrolytic graphite

PA

Polyamide

PBT

Polybutylene terephthalate

PC

Polycarbonate

PE

Polyethylene

PEO

Polyethylene glycol

PET

Poly(ethylene terephalate)

PMMA

Poly(methyl methacrylate)

PP

Polypropylene

PPO

Polyphenylene oxide

PS

Polystyrene

PTA

Phosphotungstic acid

PVC

Polyvinyl chloride

SAN

Acrylonitrile styrene

SEBS

Styrene-ethylene-butylene-styrene triblock copolymer

THF

Tetrahydrofuran

Reinforcements

CB

Carbon black

CNTs

Carbon nanotubes

MMT

Montmorillonite

SWCNT

Single-walled carbon nanotube

ZB

Zinc borate

Characterization Techniques

AES

Auger electron spectroscopy

AFM

Atomic force microscopy

XANES

X-ray absorption near-edge spectroscopy

EELS

Electron energy loss spectroscopy

EPMS

Electron probe microanalysis

FIB

Focused ion beam

FIM

Field ion microscopy

FTIR

Fourier transform infrared spectroscopy

OM

Optical microscopy

SEM

Scanning electron microscopy

SPM

Scanning probe microscopy

TEM

Transmission electron microscopy

ToF-SIMS

Time-of-flight secondary ion mass spectroscopy

XPS

X-ray photoelectron spectroscopy

XRD

X-ray diffraction

References

  1. 1.
    Ohmae N, Martin JM, Mori S (2005) Micro and nanotribology. ASME Press, New York, p 10CrossRefGoogle Scholar
  2. 2.
    Eckel DF, Balogh MP, Fasulo PD, Rodgers WR (2004) Assessing organoclay dispersion in polymer nanocomposites. J Appl Polym Sci 93:1110–1117CrossRefGoogle Scholar
  3. 3.
    Lee H, Fasulo P, Rodgers W, Paul D (2005) TPO based nanocomposites: part 1. Morphology and mechanical properties. Polymer 46:11673–11689CrossRefGoogle Scholar
  4. 4.
    Keller DJ, Chih-Chung C (1992) Imaging steep, high structures by scanning force microscopy with electron beam deposited tips. Surf Sci 268:333–339CrossRefGoogle Scholar
  5. 5.
    Weisenhorn AL, Hansma PK, Albrecht TR, Quate CF (1989) Forces in atomic force microscopy in air and water. Appl Phys Lett 54:2651–2653CrossRefGoogle Scholar
  6. 6.
    Garton A, Batchelder DN, Cheng C (1993) Raman microscopy of polymer blends. Appl Spectrosc 47:922–927CrossRefGoogle Scholar
  7. 7.
    Ivleva N, Wagner M, Horn H, Niessner R, Haisch C (2009) Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy. Anal Bioanal Chem 393:197–206CrossRefGoogle Scholar
  8. 8.
    Tentschert J, Jungnickel H, Reichardt P, Leube P, Kretzschmar B, Taubert A, Luch A (2014) Identification of nano clay in composite polymers. Surf Interface Anal 46:334–336CrossRefGoogle Scholar
  9. 9.
    Wood AR, Abel M-L, Smith PA, Watts JF (2009) Chemical characterization of the fracture surfaces of polyester resin and polyester-based nanocomposite. J Adhes Sci Technol 23:689–708CrossRefGoogle Scholar
  10. 10.
    Wang Y, Chan C-M, Ng K-M, Li L (2008) What controls the lamellar orientation at the surface of polymer films during crystallization? Macromolecules 41:2548–2553CrossRefGoogle Scholar
  11. 11.
    Lau YTR, Weng L-T, Ng K-M, Chan C-M (2008) Lamellar orientation on the surface of a polymer determined by ToF-SIMS and AFM. Appl Surf Sci 255:1001–1005CrossRefGoogle Scholar
  12. 12.
    Weng L-T, Smith TL, Feng JY, Chan C-M (1998) Morphology and miscibility of blends of ethylene-tetrafluoroethylene copolymer/poly(methyl methacrylate) studied by ToF-SIMS imaging. Macromolecules 31:928–932CrossRefGoogle Scholar
  13. 13.
    Chan C-M, Weng L-T, Lau YTR (2008) Polymer surface structures determined using ToF-SIMS. Rev Anal Chem 33:11–30Google Scholar
  14. 14.
    Inoue T (2003) Morphology of polymer blends. In: Utracki LA (ed) Polymer blends handbook. Springer, The Netherlands, pp 547–576CrossRefGoogle Scholar
  15. 15.
    Hobbs SY, Dekkers MEJ, Watkins VH (1988) Toughened blends of poly(butylene terephthalate) and BPA polycarbonate. J Mater Sci 23:1219–1224CrossRefGoogle Scholar
  16. 16.
    Bucknall CB, Drinkwater IC, Keast WE (1972) An etch method for microscopy of rubber-toughened plastics. Polymer 13:115–118CrossRefGoogle Scholar
  17. 17.
    Dekkers MEJ, Hobbs SY, Watkins VH (1991) Morphology and deformation behaviour of toughened blends of poly(butylene terephthalate), polycarbonate and poly(phenylene ether). Polymer 32:2150–2154CrossRefGoogle Scholar
  18. 18.
    Hassander H (1985) Electron microscopy methods for studying polymer blends—comparison of scanning electron microscopy and transmission electron microscopy. Polym Test 5:27–36CrossRefGoogle Scholar
  19. 19.
    Yu Z-Z, Yan C, Dasari A, Dai S, Mai Y-W, Yang M (2004) On toughness and stiffness of poly(butylene terephthalate) with epoxide-containing elastomer by reactive extrusion. Macromol Mater Eng 289:763–770CrossRefGoogle Scholar
  20. 20.
    Hobbs SY, Watkins VH (2000) Morphology characterization by microscopy techniques. In: Paul DR, Bucknall CB (eds) Polymer blends: formulation, vol I. Wiley Interscience, New York, pp 239–289Google Scholar
  21. 21.
    Mijovic JS, Koutsky JA (1977) Etching of polymeric surfaces: a review. Polym-Plast Technol 9:139–179CrossRefGoogle Scholar
  22. 22.
    Dasari A, Yu Z-Z, Yang M, Zhang QX, Xie XL, Mai Y-W (2006) Micro- and nano-scale deformation behavior of nylon 66-based binary and ternary nanocomposites. Compos Sci Technol 66:3097–3114CrossRefGoogle Scholar
  23. 23.
    Sawyer LC, Grubb DT, Meyers GF (2008) Polymer microscopy. Springer, New York, pp 130–247Google Scholar
  24. 24.
    Mortazavi S, Ghasemi I, Oromiehie A (2013) Effect of phase inversion on the physical and mechanical properties of low density polyethylene/thermoplastic starch. Polym Test 32:482–491CrossRefGoogle Scholar
  25. 25.
    Simmons S, Thomas EL (1995) Structural characteristics of biodegradable thermoplastic starch/poly(ethylene-vinyl alcohol) blends. J Appl Polym Sci 58:2259–2285CrossRefGoogle Scholar
  26. 26.
    Peck V, Kaye W (1954) Solvent etching of cellulose acetate specimens for electron microscopy. Text Res J 24:295–300CrossRefGoogle Scholar
  27. 27.
    Bu HS, Cheng SZD, Wunderlich B (1988) New etching method for poly(ethylene oxide). Polymer 29:1603–1607CrossRefGoogle Scholar
  28. 28.
    Hock CW (1965) Selective oxidation with nitric acid reveals the microstructure of polypropylene. J Polym Sci B: Polym Lett 3:573–576CrossRefGoogle Scholar
  29. 29.
    Palmer RP, Cobbold AJ (1964) The texture of melt crystallised polythene as revealed by selective oxidation. Makromol Chem 74:174–189CrossRefGoogle Scholar
  30. 30.
    Ide F, Hasegawa A (1974) Studies on polymer blend of nylon 6 and polypropylene or nylon 6 and polystyrene using the reaction of polymer. J Appl Polym Sci 18:963–974CrossRefGoogle Scholar
  31. 31.
    Egitto FD, Vukanovic V, Taylor GN (1990) Plasma etching of organic polymers. In: D’Agostino R (ed) Plasma deposition, treatment, and etching of polymers. Academic Press, Inc., Boston, pp 321–422CrossRefGoogle Scholar
  32. 32.
    Flamm DL, Herb GK (1989) Plasma etching technology—an overview. In: Manos DM, Flamm DL (eds) Plasma etching: an introduction. Academic Press, Inc., Boston, pp 1–89CrossRefGoogle Scholar
  33. 33.
    Egitto FD (1990) Plasma etching and modification of organic polymers. Pure Appl Chem 62:1699–1708CrossRefGoogle Scholar
  34. 34.
    Riekerink MBO (2001) Structural and chemical modification of polymer surfaces by gas plasma etching. PhD thesis, Universiteit Twente. http://doc.utwente.nl/36628/
  35. 35.
    Hansen RH, Pascale JV, De Benedictis T, Rentzepis PM (1965) Effect of atomic oxygen on polymers. J Polym Sci A 3:2205–2214Google Scholar
  36. 36.
    Martinez-Salazar J, Cannon CG (1984) Transmission electron microscopy of polyamides. J Mater Sci Lett 3:693–694CrossRefGoogle Scholar
  37. 37.
    Oshinski AJ, Keskkula H, Paul DR (1996) The role of matrix molecular weight in rubber toughened nylon 6 blends: 1. Morphology. Polymer 37:4891–4907CrossRefGoogle Scholar
  38. 38.
    Mirabella FM (1994) Phase separation and the kinetics of phase coarsening in commercial impact polypropylene copolymers. J Polym Sci B: Polym Phys 32:1205–1216CrossRefGoogle Scholar
  39. 39.
    Li H, Chiba T, Higashida N, Yang Y, Inoue T (1997) Polymer-polymer interface in polypropylene/polyamide blends by reactive processing. Polymer 38:3921–3925CrossRefGoogle Scholar
  40. 40.
    Auschra C, Stadler R, Voigt-Martin IG (1993) Poly(styrene-b-methyl methacrylate) block copolymers as compatibilizing agents in blends of poly(styrene-co-acrylonitrile) and poly(2,6-dimethyl-1,4-phenylene ether): 1. Location of block copolymers in ternary blends—compatibilization versus micelle formation. Polymer 34:2081–2093CrossRefGoogle Scholar
  41. 41.
    Macosko CW, Guegan P, Khandpur AK, Nakayama A, Marechal P, Inoue T (1996) Compatibilizers for melt blending: premade block copolymers. Macromolecules 29:5590–5598CrossRefGoogle Scholar
  42. 42.
    Watkins NC, Hansen D (1968) Morphology of melt-crystallized polyethyleneterephthalate. Text Res J 38:388–394CrossRefGoogle Scholar
  43. 43.
    Sarada T, Sawyer LC, Ostler MI (1983) Three dimensional structure of celgard® microporous membranes. J Membr Sci 15:97–113CrossRefGoogle Scholar
  44. 44.
    Grubb DT, Keller A (1980) Lamellar morphology of polyethylene: electron microscopy of a melt-crystallized sharp fraction. J Polym Sci Polym Phys Ed 18:207–216CrossRefGoogle Scholar
  45. 45.
    Sue HJ, Garcia-Meitin EI, Burton BL, Garrison CC (1991) A novel staining technique for studying toughening mechanisms in saturated acrylic rubber-modified polymers. J Polym Sci B: Polym Phys 29:1623–1631CrossRefGoogle Scholar
  46. 46.
    Wejrzanowski T, Kurzydlowski KJ (2003) Stereology of grains in nano-crystals. Solid State Phenom 94:221CrossRefGoogle Scholar
  47. 47.
    Weibel ER (1979) Stereological methods. In: Practical methods for biological morphometry, vol 1. Academic Press, New YorkGoogle Scholar
  48. 48.
    Wejrzanowski T, Pielaszek R, Opalinska A, Matysiak H, Lojkowski W, Kurzydlowski K (2006) Quantitative methods for nanopowders characterization. Appl Surf Sci 253:204–208CrossRefGoogle Scholar
  49. 49.
    Khare HS, Burris DL (2010) A quantitative method for measuring nanocomposite dispersion. Polymer 51:719–729CrossRefGoogle Scholar
  50. 50.
    Basu SK, Tewari A, Fasulo PD, Rodgers WR (2007) Transmission electron microscopy based direct mathematical quantifiers for dispersion in nanocomposites. Appl Phys Lett 91:053105CrossRefGoogle Scholar
  51. 51.
    Hamming LM, Qiao R, Messersmith PB, Catherine Brinson L (2009) Effects of dispersion and interfacial modification on the macroscale properties of TiO2 polymer-matrix nanocomposites. Compos Sci Technol 69:1880–1886CrossRefGoogle Scholar
  52. 52.
    Konishi Y, Cakmak M (2006) Nanoparticle induced network self-assembly in polymer–carbon black composites. Polymer 47:5371–5391CrossRefGoogle Scholar
  53. 53.
    Fornes TD, Paul DR (2003) Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44:4993–5013CrossRefGoogle Scholar
  54. 54.
    Luo ZP, Koo JH (2008) Quantification of the layer dispersion degree in polymer layered silicate nanocomposites by transmission electron microscopy. Polymer 49:1841–1852CrossRefGoogle Scholar
  55. 55.
    Dasari A, Yu Z-Z, Mai Y-W, Yang M (2008) The location and extent of exfoliation of clay on the fracture mechanisms in nylon 66-based ternary nanocomposites. J Nanosci Nanotechnol 8:1901–1912CrossRefGoogle Scholar
  56. 56.
    Dasari A, Yu Z-Z, Mai Y-W (2005) Effect of blending sequence on microstructure of ternary nanocomposites. Polymer 46:5986–5991CrossRefGoogle Scholar
  57. 57.
    Mohiuddin TMG, Lombardo A, Nair RR, Bonetti A, Savini G, Jalil R (2009) Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys Rev B 79:205433CrossRefGoogle Scholar
  58. 58.
    Li Z, Young RJ, Kinloch IA, Wilson NR, Marsden AJ, Raju APA (2015) Quantitative determination of the spatial orientation of graphene by polarized Raman spectroscopy. Carbon 88:215–224CrossRefGoogle Scholar
  59. 59.
    Cipiriano BH, Kashiwagi T, Raghavan SR, Yang Y, Grulke EA, Yamamoto K, Shields JR, Douglas JF (2007) Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites. Polymer 48:6086–6096CrossRefGoogle Scholar
  60. 60.
    Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17:3207–3215CrossRefGoogle Scholar
  61. 61.
    Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37:9048–9055CrossRefGoogle Scholar
  62. 62.
    Fagan JA, Landi BJ, Mandelbaum I, Simpson JR, Bajpai V, Bauer BJ (2006) Comparative measures of single-wall carbon nanotube dispersion. J Phys Chem B 110:23801–23805CrossRefGoogle Scholar
  63. 63.
    Kashiwagi T, Fagan J, Douglas J, Yamamoto K, Heckert A, Leigh S, Obrzut J, Du F, Gibson SL, Mu M, Winey KI, Haggenmueller R (2007) Relationship between dispersion metric and properties of PMMA/SWNT nanocomposites. Polymer 48:4855–4866CrossRefGoogle Scholar
  64. 64.
    Pegel S, Pötschke P, Villmow T, Stoyan D, Heinrich G (2009) Spatial statistics of carbon nanotube polymer composites. Polymer 50:2123–2132CrossRefGoogle Scholar
  65. 65.
    Fan Z, Advani SG (2005) Characterization of orientation state of carbon nanotubes in shear flow. Polymer 46:5232–5240CrossRefGoogle Scholar
  66. 66.
    Schaefer DW, Zhao J, Brown JM, Anderson DP, Tomlin DW (2003) Morphology of dispersed carbon single-walled nanotubes. Chem Phys Lett 375:369–375CrossRefGoogle Scholar
  67. 67.
    Blighe FM, Young K, Vilatela JJ, Windle AH, Kinloch IA, Deng L, Young RJ, Coleman JN (2011) The effect of nanotube content and orientation on the mechanical properties of polymer-nanotube composite fibers: separating intrinsic reinforcement from orientational effects. Adv Funct Mater 21:364–371CrossRefGoogle Scholar
  68. 68.
    Loos J, Alexeev A, Grossiord N, Koning CE, Regev O (2005) Visualization of single-wall carbon nanotube (SWNT) networks in conductive polystyrene nanocomposites by charge contrast imaging. Ultramicroscopy 104:160–167CrossRefGoogle Scholar
  69. 69.
    Cormack AC (1963) Representation of a function by its line integrals, with some radiological applications. J Appl Phys 34:2722–2727CrossRefGoogle Scholar
  70. 70.
    Ohser J, Schladitz K (2009) 3D images of materials structures: processing and analysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 79–148CrossRefGoogle Scholar
  71. 71.
    Banhart J (ed) (2008) Advanced tomographic methods in materials research and engineering. Oxford University Press, Oxford, pp 3–440CrossRefGoogle Scholar
  72. 72.
    Masenelli-Varlot K, Bogner A, Gauthier C, Chazeau L, Cavaillé JY (2010) New microscopy techniques for a better understanding of the polymer/nanotube composite properties. In: Mittal V (ed) Polymer nanotube nanocomposites: synthesis, properties, and applications. Scrivener Publishing LLC, Salem, pp 45–82Google Scholar
  73. 73.
    Gass MH, Koziol KKK, Windle AH, Midgley PA (2006) Four-dimensional spectral tomography of carbonaceous nanocomposites. Nano Lett 6:376–379CrossRefGoogle Scholar
  74. 74.
    Inkson BJ, Mulvihill M, Mobus G (2001) 3D determination of grain shape in a FeAl-based nanocomposite by 3D FIB tomography. Scripta Mater 45:753–758CrossRefGoogle Scholar
  75. 75.
    Inkson BJ, Steer T, Mobus G, Wagner T (2001) Subsurface nanoindentation deformation of Cu-Al multilayers mapped in 3D by focused ion beam microscopy. J Microsc 201:256–269CrossRefGoogle Scholar
  76. 76.
    Cairney JM, Tsukano R, Hoffman MJ, Yang M (2004) Degradation of TiN coatings under cyclic loading. Acta Mater 52:3229–3237CrossRefGoogle Scholar
  77. 77.
    Steer TJ, Mobus G, Kraft O, Wagner T, Inkson BJ (2002) 3-D focused ion beam mapping of nanoindentation zones in a Cu-Ti multilayered coating. Thin Solid Films 413:147–154CrossRefGoogle Scholar
  78. 78.
    Xie ZH, Singh R, Bendavid A, Martin PJ, Munroe PR, Hoffman M (2007) Contact damage evolution in a diamond-like carbon (DLC) coating on a stainless steel substrate. Thin Solid Films 515:3196–3201CrossRefGoogle Scholar
  79. 79.
    Wu HZ, Roberts SG, Mobus G, Inkson BJ (2003) Subsurface damage analysis by TEM and 3D FIB crack mapping in alumina and alumina/5vol.%SiC nanocomposites. Acta Mater 51:149–163CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
  3. 3.Centre for Advanced Materials TechnologyThe University of SydneySydneyAustralia

Personalised recommendations