Skip to main content

Functional Properties

  • Chapter
  • First Online:
  • 1088 Accesses

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

In earlier chapters, the potential (and associated issues) of nanoparticles in influencing mechanical and thermal properties of polymers is discussed. To further exploit their functionality and achieve combinatorial properties, ‘tailoring’ or ‘tuning’ holds the key. In this chapter, some of the important functional properties of these materials will be briefly reviewed in order to understand the advantages and disadvantages of considering multi-functionality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ATBC:

Acetyl tributyl citrate

HDPE:

High-density polyethylene

LMWPE:

Low molecular weight polyethylene

PA:

Polyamide

PC:

Polycarbonate

PCL:

Polycaprolactone

PEGPA:

(2-[2-(2-methoxyethoxy)ethoxy]ethyl)phosphonic acid

PET:

Poly(ethylene terephalate)

PFBPA:

Pentafluorobenzyl phosphonic acid

PI:

Polyimide

PLA:

Poly(lactic acid)

PMEA:

Poly(2-methoxyethyl acrylate)

PMMA:

Poly(methyl methacrylate)

POE-g-MA:

Maleic anhydride-grafted polyethylene–octene copolymer

PP:

Polypropylene

PPS:

Poly(phenylene sulfide)

PVA:

Poly(vinyl alcohol)

PVDF:

Poly(vinylidene fluoride)

P(VDF-HFP):

Poly(vinylidenefluoride-co-hexafluoropropylene)

PU:

Polyurethane

UHMWPE:

Ultrahigh molecular weight polyethylene

SSEBS:

Sulfonated [styrene-b-(ethylene-ran-butylene)-b-styrene]

ATO:

Antimony-doped tin oxide

CB:

Carbon black

CNF:

Carbon nanofiber

CNT:

Carbon nanotube

ITO:

Tin-doped indium oxide

MMT:

Montmorillonite

MWNT:

Multi-walled nanotube

SWNT:

Single-walled nanotube

ZB:

Zinc borate

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

XRD:

X-ray diffraction

References

  1. Althues H, Henle J, Kaskel S (2007) Functional inorganic nanofillers for transparent polymers. Chem Soc Rev 36:1454–1465

    Article  Google Scholar 

  2. Tetsuka H, Ebina T, Tsunoda T, Nanjo H, Mizukami F (2007) Flexible organic electroluminescent devices based on transparent clay films. Nanotechnology 18:355701

    Article  Google Scholar 

  3. Caseri W (2000) Nanocomposites of polymers and metals or semiconductors: historical background and optical properties. Macromol Rapid Commun 21:705–722

    Article  Google Scholar 

  4. Kuila BK, Nandi AK (2006) Structural hierarchy in melt-processed poly(3-hexyl thiophene)-montmorillonite clay nanocomposites: novel physical, mechanical, optical, and conductivity properties. J Phys Chem B 110:1621–1631

    Article  Google Scholar 

  5. Kaya E, Tanoglu M, Okur S (2008) Layered clay/epoxy nanocomposites: thermomechanical, flame retardancy, and optical properties. J Appl Polym Sci 109:834–840

    Article  Google Scholar 

  6. Choudhury A, Bhowmick AK, Ong C (2009) Novel role of polymer-solvent and clay-solvent interaction parameters on the thermal, mechanical and optical properties of polymer nanocomposites. Polymer 50:201–210

    Article  Google Scholar 

  7. Rowan CK, Paci I (2011) Optical properties of Ag/polyvinylidene fluoride nanocomposites: A theoretical study. J Phys Chem C 115:8316–8324

    Article  Google Scholar 

  8. Zhang H, Tang LC, Zhou LY, Eger C, Zhang Z (2011) Comparative study on the optical, surface mechanical and wear resistant properties of transparent coatings filled with pyrogenic and colloidal silica nanoparticles. Compos Sci Technol 71:471–479

    Article  Google Scholar 

  9. Wagener P, Faramarzi S, Schwenke A, Rosenfeld R, Barcikowski S (2011) Photoluminescent zinc oxide polymer nanocomposites fabricated using picosecond laser ablation in an organic solvent. Appl Surf Sci 257:7231–7237

    Article  Google Scholar 

  10. Zou JP, Le Rendu P, Musa I, Yang SH, Dan Y, That CT et al (2011) Investigation of the optical properties of polyfluorene/ZnO nanocomposites. Thin Solid Films 519:3997–4003

    Article  Google Scholar 

  11. Haraguchi K, Ebato M, Takehisa T (2006) Polymer-clay nanocomposites exhibiting abnormal necking phenomena accompanied by extremely large reversible elongations and excellent transparency. Adv Mater 18:2250–2254

    Article  Google Scholar 

  12. Tetsuka H, Ebina T, Nanjo H, Mizukami F (2007) Highly transparent flexible clay films modified with organic polymer: structural characterization and intercalation properties. J Mater Chem 17:3545–3550

    Article  Google Scholar 

  13. Nicolais L, Carotenuto G (2015) Nanocomposites with tailored optical properties. In: Friedrich K, Breuer U (eds) Multifunctionality of polymer composites: challenges and new solutions. Elsevier, William Andrew imprint, pp 842–857

    Chapter  Google Scholar 

  14. Sun D, Sue H-J (2015) Multifunctional polymer/ZnO nanocomposites: controlled dispersion and physical properties. In: Friedrich K, Breuer U (eds) Multifunctionality of polymer composites: challenges and new solutions. Elsevier, William Andrew imprint, pp 858–874

    Chapter  Google Scholar 

  15. Hong RJ, Huang JB, He HB, Fan ZX, Shao JD (2005) Influence of different post-treatments on the structure and optical properties of zinc oxide thin films. Appl Surf Sci 242:346–352

    Article  Google Scholar 

  16. Li YQ, Fu S-Y, Mai Y-W (2006) Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency. Polymer 47:2127–2132

    Article  Google Scholar 

  17. Ammala A, Hill AJ, Meakin P, Pas SJ, Turney TW (2002) Degradation studies of polyolefins incorporating transparent nanoparticulate zinc oxide UV stabilizers. J Nanopart Res 4:167–174

    Article  Google Scholar 

  18. Dietsche F, Thomann Y, Thomann R, Mulhaupt R (2000) Translucent acrylic nanocomposites containing anisotropic laminated nanoparticles derived from intercalated layered silicates. J Appl Polym Sci 75:396–405

    Article  Google Scholar 

  19. Jin HS, Chang JH (2008) Colorless polyimide nanocomposite films: thermomechanical properties, morphology, and optical transparency. J Appl Polym Sci 107:109–117

    Article  Google Scholar 

  20. Strawhecker KE, Manias E (2000) Structure and properties of poly(vinyl alcohol)/Na+ montmorillonite nanocomposites. Chem Mater 12:2943–2949

    Article  Google Scholar 

  21. Xu RJ, Manias E, Snyder AJ, Runt J (2001) New biomedical poly(urethane urea)—layered silicate nanocomposites. Macromolecules 34:337–339

    Article  Google Scholar 

  22. Ahmadi SJ, Huang YD, Li W (2004) Synthetic routes, properties and future applications of polymer-layered silicate nanocomposites. J Mater Sci 39:1919–1925

    Article  Google Scholar 

  23. Haraguchi K, Li HJ, Song LY, Murata K (2007) Tunable optical and swelling/deswelling properties associated with control of the coil-to-globule transition of poly(N-isopropylacrylamide) in polymer-clay nanocomposite gels. Macromolecules 40:6973–6980

    Article  Google Scholar 

  24. Kelarakis A, Yoon K (2008) Optical transparency in a polymer blend induced by clay nanofillers. Eur Polymer J 44:3941–3945

    Article  Google Scholar 

  25. Kim S, Wilkie CA (2008) Transparent and flame retardant PMMA nanocomposites. Polym Adv Technol 19:496–506

    Article  Google Scholar 

  26. Kawasumi M, Usuki A, Okada A, Kurauchi T (1996) Liquid crystalline composite based on a clay mineral. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst 281:91–103

    Article  Google Scholar 

  27. Schadler LS (2004) Polymer-based and polymer-filled nanocomposites. In: Ajayan PM (ed) Nanocomposite science and technology. Wiley, New York, pp 77–153

    Google Scholar 

  28. Zimmermann L, Weibel M, Caseri W, Suter UW (1993) High refractive index films of polymer nanocomposites. J Mater Res 8:1742–1748

    Article  Google Scholar 

  29. Kyprianidou-Leodidou T, Caseri W, Suter UW (1994) Size variation of PBS particles in high-refractive index nanocomposites. J Phys Chem 98:8992–8997

    Article  Google Scholar 

  30. Kyprianidou-Leodidou T, Althaus HJ, Wyser Y, Vetter D, Buchler M, Caseri W et al (1997) High refractive index materials of iron sulfides and poly(ethylene oxide). J Mater Res 12:2198–2206

    Article  Google Scholar 

  31. Messersmith PB, Giannelis EP (1995) Synthesis and barrier properties of poly(e-caprolactone)-layered silicate nanocomposites. J Polym Sci Part A Polym Chem 33:1047–1057

    Article  Google Scholar 

  32. Osman MA, Mittal V, Morbidelli M, Suter UW (2003) Polyurethane adhesive nanocomposites as gas permeation barrier. Macromolecules 36:9851–9858

    Article  Google Scholar 

  33. Gorrasi G, Tortora M, Vittoria V, Galli G, Chiellini E (2002) Transport and mechanical properties of blends of poly(e-caprolactone) and a modified montmorillonite-poly(epsilon-caprolactone) nanocomposite. J Polym Sci Part B Polym Phys 40:1118–1124

    Article  Google Scholar 

  34. Doppers LM, Breen C, Sammon C (2004) Diffusion of water and acetone into poly(vinyl alcohol)-clay nanocomposites using ATR-FTIR. Vib Spectrosc 35:27–32

    Article  Google Scholar 

  35. Xu B, Zheng Q, Song YH, Shangguan Y (2006) Calculating barrier properties of polymer/clay nanocomposites: effects of clay layers. Polymer 47:2904–2910

    Article  Google Scholar 

  36. Frounchi M, Dadbin S, Salehpour Z, Noferesti M (2006) Gas barrier properties of PP/EPDM blend nanocomposites. J Membr Sci 282:142–148

    Article  Google Scholar 

  37. Nazarenko S, Meneghetti P, Julmon P, Olson BG, Qutubuddin S (2007) Gas barrier of polystyrene montmorillonite clay nanocomposites: effect of mineral layer aggregation. J Polym Sci Part B Polym Phys 45:1733–1753

    Article  Google Scholar 

  38. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  Google Scholar 

  39. Nielsen LE (1967) Models for the permeability of filled polymer systems. J Macromol Sci Part A1:929–942

    Article  Google Scholar 

  40. Bharadwaj RK (2001) Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34:9189–9192

    Article  Google Scholar 

  41. Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O (1993) Synthesis and properties of polyimide-clay hybrid. J Polym Sci Part A Polym Chem 31:2493–2498

    Article  Google Scholar 

  42. Kim SH, Kim SC (2007) Synthesis and properties of poly(ethylene terephthalate)/clay nanocomposites by in situ polymerization. J Appl Polym Sci 103:1262–1271

    Article  Google Scholar 

  43. Yano K, Usuki A, Okada A (1997) Synthesis and properties of polyimide-clay hybrid films. J Polym Sci Part A Polym Chem 35:2289–2294

    Article  Google Scholar 

  44. Choi WJ, Kim HJ, Yoon KH, Kwon OH, Hwang CI (2006) Preparation and barrier property of poly(ethylene terephthalate)/clay nanocomposite using clay-supported catalyst. J Appl Polym Sci 100:4875–4879

    Article  Google Scholar 

  45. Ray SS, Okamoto K, Okamoto M (2003) Structure-property relationship in biodegradable poly(butylene succinate)/layered silicate nanocomposites. Macromolecules 36:2355–2367

    Article  Google Scholar 

  46. Koo CM, Kim SO, Chung IJ (2003) Study on morphology evolution, orientational behavior, and anisotropic phase formation of highly filled polymer-layered silicate nanocomposites. Macromolecules 36:2748–2757

    Article  Google Scholar 

  47. Bharadwaj RK, Mehrabi AR, Hamilton C, Trujillo C, Murga M, Fan R et al (2002) Structure-property relationships in cross-linked polyester-clay nanocomposites. Polymer 43:3699–3705

    Article  Google Scholar 

  48. Lu CS, Mai Y-W (2005) Influence of aspect ratio on barrier properties of polymer-clay nanocomposites. Phys Rev Lett 95:088303

    Article  Google Scholar 

  49. Cussler EL, Hughes SE, Ward WJ, Aris R (1988) Barrier membranes. J Membr Sci 38:161–174

    Article  Google Scholar 

  50. Fukuda M, Kuwajima S (1997) Molecular-dynamics simulation of moisture diffusion in polyethylene beyond 10 ns duration. J Chem Phys 107:2149–2159

    Article  Google Scholar 

  51. Xie XL, Mai Y-W, Zhou XP (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R Rep 49:89–112

    Article  Google Scholar 

  52. Colbert DT, Smalley RE (1999) Fullerene nanobutes for molecular electronics. Trends Biotechnol 17:46–50

    Article  Google Scholar 

  53. Sachdev VK, Patel K, Bhattacharya S, Tandon RP (2011) Electromagnetic interference shielding of graphite/acrylonitrile butadiene styrene composites. J Appl Polym Sci 120:1100–1105

    Article  Google Scholar 

  54. Li QF, Xu YH, Yoon JS, Chen GX (2011) Dispersions of carbon nanotubes/polyhedral oligomeric silsesquioxanes hybrids in polymer: the mechanical, electrical and EMI shielding properties. J Mater Sci 46:2324–2330

    Article  Google Scholar 

  55. Baur J, Silverman E (2007) Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications. MRS Bull 32:328–334

    Article  Google Scholar 

  56. Lu X, Zhang W, Wang C, Wen T-C, Wei Y (2011) One-dimensional conducting polymer nanocomposites: synthesis, properties and applications. Prog Polym Sci 36:671–712

    Article  Google Scholar 

  57. Kim BR, Lee HK, Park SH, Kim HK (2011) Electromagnetic interference shielding characteristics and shielding effectiveness of polyaniline-coated films. Thin Solid Films 519:3492–3496

    Article  Google Scholar 

  58. Kyrylyuk AV, van der Schoot P (2008) Continuum percolation of carbon nanotubes in polymeric and colloidal media. Proc Natl Acad Sci 105:8221–8226

    Article  Google Scholar 

  59. Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574–588

    Article  Google Scholar 

  60. Deng H, Barber AH, Peijs T (2011) Carbon nanotube/polymer composites. In: Sattler KD (ed) Handbook of nanophysics. CRC Press, Taylor & Francis Group, Boca Raton, pp 1–16

    Google Scholar 

  61. Regev O, ElKati PNB, Loos J, Koning CE (2004) Preparation of conductive nanotube-polymer composites using latex technology. Adv Mater 16:248–251

    Article  Google Scholar 

  62. Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites. Adv Mater 17:1186–1191

    Article  Google Scholar 

  63. Pötschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45:8863–8870

    Article  Google Scholar 

  64. Seo M-K, Park S-J (2004) Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites. Chem Phys Lett 395:44–48

    Article  Google Scholar 

  65. Dalmas F, Dendievel R, Chazeau L, Cavaille J, Gauthier C (2006) Carbon nanotube-filled polymer composites. Numerical simulation of electrical conductivity in three-dimensional entangled fibrous networks. Acta Mater 54:2923–2931

    Article  Google Scholar 

  66. Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44:5893–5899

    Article  Google Scholar 

  67. Shaffer MSP, Windle AH (1999) Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mater 11:937–941

    Article  Google Scholar 

  68. Bai JB, Allaoui A (2003) Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites–experimental investigation. Compos A Appl Sci Manuf 34:689–694

    Article  Google Scholar 

  69. Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40:5967–5971

    Article  Google Scholar 

  70. Kim YJ, Shin TS, Choi HD, Kwon JH, Chung Y-C, Yoon HG (2005) Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43:23–30

    Article  Google Scholar 

  71. Spitalsky Z, Tasis D, Papagelis K, Galioti C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  Google Scholar 

  72. Kim HM, Kim K, Lee SJ, Joo J, Yoon HS, Cho SJ (2004) Charge transport properties of composites of multiwalled carbon nanotube with metal catalyst and polymer: application to electromagnetic interference shielding. Curr Appl Phys 4:577–580

    Article  Google Scholar 

  73. Koerner H, Liu W, Alexander M, Mirau P, Dowty H, Vaia RH (2005) Deformation-morphology correlations in electrically conductive CNT-thermoplastic polyurethane nanocomposites. Polymer 46:4405–4420

    Article  Google Scholar 

  74. Allaoui A, Bai S, Cheng HM, Bai JB (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol 62:1993–1998

    Article  Google Scholar 

  75. Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17:3207–3215

    Article  Google Scholar 

  76. Barrau S, Demont P, Perez E, Peigney A, Laurent C, Lacabanne C (2003) Effect of palmitic acid on the electrical conductivity of carbon nanotubes-epoxy resin composites. Macromolecules 36:9678–9680

    Article  Google Scholar 

  77. Ramasubramaniam R, Chen J, Liu H (2003) Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 83:2928–2930

    Article  Google Scholar 

  78. Ma PC, Kim J-K, Tang BZ (2007) Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos Sci Technol 67:2965–2972

    Article  Google Scholar 

  79. Hu G, Zhao C, Zhang S, Yang M, Wang Z (2006) Low percolation thresholds of electrical conductivity and rheology in poly(ethylene terephthalate) through the networks of multi-walled carbon nanotubes. Polymer 47:480–488

    Article  Google Scholar 

  80. Yu J, Wang N, Ma X (2008) Fabrication and characterization of poly(lactic acid)/acetyl tributyl citrate/carbon black as conductive polymer composites. Biomacromolecules 9:1050–1057

    Article  Google Scholar 

  81. Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37:9048–9055

    Article  Google Scholar 

  82. Du F, Fischer JE, Winey KI (2005) Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys Rev B 72:121404

    Article  Google Scholar 

  83. Dasari A, Yu Z-Z, Mai Y-W (2009) Electrically conductive and super-tough polyamide-based nanocomposites. Polymer 50:4112–4121

    Article  Google Scholar 

  84. Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43:3247–3255

    Article  Google Scholar 

  85. Pötschke P, Bhattacharyya AR, Janke A, Goering H (2003) Melt mixing of polycarbonate/multi-wall carbon nanotube composites. Compos Interfaces 10:389–404

    Article  Google Scholar 

  86. Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004) Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45:739–748

    Article  Google Scholar 

  87. Xu X-B, Li Z-M, Yang M-B, Jiang S, Huang R (2005) The role of the surface microstructure of the microfibrils in an electrically conductive microfibrillar carbon black/poly(ethylene terephthalate)/polyethylene composite. Carbon 43:1479–1487

    Article  Google Scholar 

  88. Gubbels F, Blacher S, Vanlathem E, Jerome R, Deltour R, Brouers F et al (1995) Design of electrical composites: determining the role of the morphology on the electrical properties of carbon black filled polymer blends. Macromolecules 28:1559–1566

    Article  Google Scholar 

  89. Asai S, Hayakawa Y, Suzuki K, Sumita M (1991) Heterogeneous distribution of carbon black in polymer blends: effect on crystallization and temperature dependence of electrical conductivity. Kobunshi Ronbunshu 48:635–640

    Article  Google Scholar 

  90. Thongruang W, Balik CM, Spontak RJ (2002) Volume-exclusion effects in polyethylene blends filled with carbon black, graphite, or carbon fiber. J Polym Sci Part B Polym Phys 40:1013–1025

    Article  Google Scholar 

  91. Feng J, Chan C-M (1998) Carbon black–filled immiscible blends of poly(vinylidene fluoride) and high density polyethylene: electrical properties and morphology. Polym Eng Sci 38:1649–1657

    Article  Google Scholar 

  92. Bin Y, Xu C, Agari Y, Matsuo M (1999) Morphology and electrical conductivity of ultrahigh-molecular-weight polyethylene-low-molecular-weight polyethylene-carbon black composites prepared by gelation/crystallization from solutions. Colloid Polym Sci 277:452–461

    Article  Google Scholar 

  93. Sun Y, Bao H-D, Guo Z-X, Yu J (2008) Modeling of the electrical percolation of mixed carbon fillers in polymer-based composites. Macromolecules 42:459–463

    Article  Google Scholar 

  94. Bao H-D, Guo Z-X, Yu J (2008) Effect of electrically inert particulate filler on electrical resistivity of polymer/multi-walled carbon nanotube composites. Polymer 49:3826–3831

    Article  Google Scholar 

  95. Ma P-C, Liu M-Y, Zhang H, Wang S-Q, Wang R, Wang K (2009) Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl Mater Interfaces 1:1090–1096

    Article  Google Scholar 

  96. Liu L, Grunlan JC (2007) Clay assisted dispersion of carbon nanotubes in conductive epoxy nanocomposites. Adv Funct Mater 17:2343–2348

    Article  Google Scholar 

  97. Maurizio R, Guido P (2002) Status quo and future prospects for metallized polypropylene energy storage. Plasma Sci IEEE Trans 30:1939–1942

    Article  Google Scholar 

  98. Zhang Z, Chung TCM (2007) The structure-property relationship of poly(vinylidene difluoride)-based polymers with energy storage and loss under applied electric fields. Macromolecules 40:9391–9397

    Article  Google Scholar 

  99. Fan L, Dang Z, Nan C-W, Li M (2002) Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P(VDF-HFP) blends. Electrochim Acta 48:205–209

    Article  Google Scholar 

  100. Cho S-D, Lee J-Y, Hyun J-G, Paik K-W (2004) Study on epoxy/BaTiO3 composite embedded capacitor films (ECFs) for organic substrate applications. Mater Sci Eng B 110:233–239

    Article  Google Scholar 

  101. Dang ZM, Fan LZ, Shen Y, Nan CW (2003) Study on dielectric behavior of a three-phase CF/(PVDF + BaTiO3) composite. Chem Phys Lett 369:95–100

    Article  Google Scholar 

  102. Bai Y, Cheng Z-Y, Bharti V, Xu HS, Zhang QM (2000) High-dielectric-constant ceramic-powder polymer composites. Appl Phys Lett 76:3804–3806

    Article  Google Scholar 

  103. Xie S-H, Zhu B-K, Wei X-Z, Xu Z-K, Xu Y-Y (2005) Polyimide/BaTiO3 composites with controllable dielectric properties. Compos A Appl Sci Manuf 36:1152–1157

    Article  Google Scholar 

  104. Cho S-D, Paik K-W (2001) Relationships between suspension formations and properties of BaTiO3/epoxy composite films for integral capacitors. In Proceedings of IEEE 51st electronic component technology conference. May 2001, pp 1418–1422

    Google Scholar 

  105. Kim P, Jones SC, Hotchkiss PJ, Haddock JN, Kippelen B, Marder SR (2007) Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength. Adv Mater 19:1001–1005

    Article  Google Scholar 

  106. Chang SJ, Liao WS, Ciou CJ, Lee JT, Li CC (2009) An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability. J Colloid Interface Sci 329:300–305

    Article  Google Scholar 

  107. Logakis E, Pollatos E, Pandis C, Peoglos V, Zuburtikudis I, Delides CG (2010) Structure-property relationships in isotactic polypropylene/multi-walled carbon nanotubes nanocomposites. Compos Sci Technol 70:328–335

    Article  Google Scholar 

  108. Dang Z-M, Yao S-H, Yuan J-K, Bai J (2010) Tailored dielectric properties based on microstructure change in BaTiO3-carbon nanotube/polyvinylidene fluoride three-phase nanocomposites. J Phys Chem C 114:13204–13209

    Article  Google Scholar 

  109. Yang T-I, Kofinas P (2007) Dielectric properties of polymer nanoparticle composites. Polymer 48:791–798

    Article  Google Scholar 

  110. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807

    Article  Google Scholar 

  111. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079

    Article  Google Scholar 

  112. Fukushima K, Abbate C, Tabuani D, Gennari M, Camino G (2009) Biodegradation of poly(lactic acid) and its nanocomposites. Polym Degrad Stab 94:1646–1655

    Article  Google Scholar 

  113. González A, Dasari A, Herrero B, Plancher E, Santarén J, Esteban A, Lim S-H (2012) Fire retardancy behavior of PLA based nanocomposites. Polym Degrad Stab 97:248–256

    Article  Google Scholar 

  114. Lefebvre F, David C, Vander Wauven C (1994) Biodegradation of polycaprolactone by micro-organisms from an industrial compost of household refuse. Polym Degrad Stab 45:347–353

    Article  Google Scholar 

  115. Nishida H, Tokiwa Y (1992) Effects of higher-order structure of poly(3-hydroxybutyrate) on its biodegradation. I. Effects of heat treatment on microbial degradation. J Appl Polym Sci 46:1467–1476

    Article  Google Scholar 

  116. Tokiwa Y, Jarerat A (2004) Biodegradation of poly(l-lactide). Biotechnol Lett 26:771–777

    Article  Google Scholar 

  117. MacDonald RT, McCarthy SP, Gross RA (1996) Enzymatic degradability of poly(lactide): effects of chain stereochemistry and material crystallinity. Macromolecules 29:7356–7361

    Article  Google Scholar 

  118. Reeve MS, McCarthy SP, Downey MJ, Gross RA (1994) Polylactide stereochemistry: effect on enzymic degradability. Macromolecules 27:825–831

    Article  Google Scholar 

  119. Leenslag JW, Pennings AJ, Bos RRM, Rozema FR, Boering G (1987) Resorbable materials of poly(l-lactide): VII. In vivo and in vitro degradation. Biomaterials 8:311–314

    Article  Google Scholar 

  120. Tsuji H, Ishizaka T (2001) Porous biodegradable polyesters, 3. Preparation of porous poly(ε-caprolactone) films from blends by selective enzymatic removal of poly(L-lactide). Macromol Biosci 1:59–65

    Article  Google Scholar 

  121. Williams DF (1981) Enzymatic hydrolysis of polylactic acid. Eng Med 10:5–7

    Article  Google Scholar 

  122. Oda Y, Yonetsu A, Urakami T, Tonomura K (2000) Degradation of polylactide by commercial proteases. J Polym Environ 8:29–32

    Article  Google Scholar 

  123. Iwata T, Doi Y (1998) Morphology and enzymatic degradation of poly(l-lactic acid) single crystals. Macromolecules 31:2461–2467

    Article  Google Scholar 

  124. Ohkita T, Lee S-H (2006) Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites. J Appl Polym Sci 100:3009–3017

    Article  Google Scholar 

  125. Tokiwa Y, Suzuki T (1981) Hydrolysis of copolyesters containing aromatic and aliphatic ester blocks by lipase. J Appl Polym Sci 26:441–448

    Article  Google Scholar 

  126. Ray SS, Yamada K, Okamoto M, Ogami A, Ueda K (2003) New polylactide/layered silicate nanocomposites. 3. High-performance biodegradable materials. Chem Mater 15:1456–1465

    Article  Google Scholar 

  127. Pranamuda H, Tsuchii A, Tokiwa Y (2001) Poly (L-lactide)-degrading enzyme produced by Amycolatopsis sp. Macromol Biosci 1:25–29

    Article  Google Scholar 

  128. Suzuki T, Ichihara Y, Yamada M, Tonomura K (1973) Some characteristics of Pseudomonas O-3 which utilizes polyvinyl alcohol. Agric Biol Chem 37:747–756

    Article  Google Scholar 

  129. Matsumura S (2000) Mechanism of biodegradation. In: Smith R (ed) Biodegradable polymers for industrial applications. CRC Press LLC, Boca Raton, Florida, pp 357–410

    Google Scholar 

  130. Ray SS, Yamada K, Okamoto M, Ueda K (2003) Control of biodegradability of polylactide via nanocomposite technology. Macromol Mater Eng 288:203–208

    Article  Google Scholar 

  131. Thellen C, Orroth C, Froio D, Ziegler D, Lucciarini J, Farrell R et al (2005) Influence of montmorillonite layered silicate on plasticized poly(l-lactide) blown films. Polymer 46:11716–11727

    Article  Google Scholar 

  132. Paul MA, Delcourt C, Alexandre M, Degée P, Monteverde F, Dubois P (2005) Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polym Degrad Stab 87:535–542

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravind Dasari .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Dasari, A., Yu, ZZ., Mai, YW. (2016). Functional Properties. In: Polymer Nanocomposites. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-4471-6809-6_10

Download citation

Publish with us

Policies and ethics