Skip to main content

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

Highly specular reflection (HSR) curved surfaces and their inspection in most manufacturing processes mainly depends on human inspectors whose performance is generally subjective, variable, and therefore inadequate. An automatic vision inspection system offers objectivity, better reliability, and repeatability and is able to carry out defect measurement to evaluate the industrial part’s quality. Thus, it is vital to develop an automatic vision system to monitor surface quality online. The main purpose of this chapter is to introduce a new defect inspection method capable of detecting defects on HSR curved surfaces, in particular, to create a complete vision inspection system for HSR curved surfaces (e.g., chrome-plated surfaces) . In the first part of this chapter, reflection analysis of HSR curved surface is performed. And a new method is introduced to measure reflection properties of our inspection object. Then, a method is introduced to avoid the loss of defects and solve these challenges which result from various defects and complex surface topography on HSR curved surface. A set of images are captured under different illumination directions. A synthetic image is reconstructed from the set of images. The synthetic image appears more uniform intensity compared with the original image because those specular areas have been completely removed. Furthermore, all defects are integrated in the synthetic image. In particular, for more complicate curved surface, an improvement method is proposed and experiments also validate the method. Finally, a complete vision defect inspection system has been created. The lighting system with side and diffuse illumination is selected for our inspection system and it succeeds in reducing the specular reflection from a curved surface, although some brightness appears at the edge. System parameters and object pose are determined by comparing defect expressivity and specular ratio in the image. Moreover, all defects can be quickly extracted by combining template matching and morphology techniques. The presented automatic vision defect inspection system has been implemented and tested on a number of simulation images and actual parts consist of HSR curved surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newman T, Jain A (1995) A survey of automated visual inspection. Comput Vis Image Underst 61:231–262

    Article  Google Scholar 

  2. Sanderson C, Weiss LE, Nayar SK (1988) Structured highlight inspection of specular surfaces. IEEE Trans Pattern Anal Mach Intell 10(1):44–55

    Article  Google Scholar 

  3. Bakolias C, Forrest AK (1997) Dark field scheimflug imaging for surface inspection. SPIE Proc Mach Vis Appl Ind Inspection V 3029:57–68

    Google Scholar 

  4. Malamas E, Petrakis E, Zervakis M, Petit L, Legat JD (2003) A survey on industrial vision systems, applications and tools. Image Vis Comput 21:171–188

    Article  Google Scholar 

  5. Kim CW, Koivo AJ (1994) Hierarchical classification of surface defects on dusty wood boards. Pattern Recog Lett 15(7):713–721

    Google Scholar 

  6. Piironen T (1990) Automated visual inspection of rolled metal surfaces. Mach Vision Appl 3(4):247–254

    Google Scholar 

  7. Fernandez C, Platero C, Campoy P, Aracil R (1993) Vision system for on-line surface inspection in aluminum casting process. In: Proceedings of the IEEE International Conference on Industrial Electronics, Control, Instrumentation and Automation, Maui, HA, pp 1854–1859

    Google Scholar 

  8. Rohrmus D (1999) Invariant texture features for web defect detection and classification. In: SPIE Proceeding of machine vision systems for inspection and metrology VIII, vol. 3836, Boston, MA, 144–155

    Google Scholar 

  9. Boukouvalas C, Kittler J, Marik R, Petrou M (1994) Automatic grading of ceramic tiles using machine vision, In: Proceedings of the IEEE international symposium on industrial electronics, pp 13–18

    Google Scholar 

  10. Nayar SK, Sanderson AC, Weiss LE, Simon DA (1990) Specular surface inspection using structured highlight and Gaussian images. IEEE Trans Robot Autom 6(2):208–218

    Article  Google Scholar 

  11. Caulier Y, Bourennane S (2008) An image content description technique for the inspection of specular objects. EURASIP J Adv Signal Process vol. 2008, Article ID 195263

    Google Scholar 

  12. Caulier Y, Spinnler K Arnold M (2009) Automatic detection of surface and structural defects on reflection workpieces. Photonink Int online

    Google Scholar 

  13. Caulier Y, Spinnler K, Bourennane S, Wittenberg T (2008) New structured illumination technique for the inspection of high-reflective surfaces: application for the detection of structural defects without any calibration procedures, EURASIP J Image Video Process vol. 2008, Article ID 237459

    Google Scholar 

  14. Petz M, Tutsch R (2002) Optical 3D measurement of reflecting free formed surfaces. Technical report, Institut fur Produktions-messtechnik-iprom, Technische Universit at Braunschweig, Braunschweig, Germany

    Google Scholar 

  15. Jordan A, Kahmann F, Luecking F (2003) Dual solution for high-end stripe inspection. Mater Test 26(4):66–71

    Google Scholar 

  16. Leon FP, Beyerer J (1997) Active vision and sensor fusion for inspection of metallic surfaces. In: Proceedings of the SPIE intelligent robots and computer vision XVI: Algorithms, Techniques, Active Vision, and Materials Handling, vol. 3208, Pittsburg, Pa, USA, 394–405

    Google Scholar 

  17. Aluze D, Merienne F, Dumont C, Gorria P (2002) Vision system for defect imaging, detection, and characterization on a specular surface of a 3D object. Image Vis Comput 20:569–580

    Article  Google Scholar 

  18. Qu XH, Hu Y, Han F (2003) An automatic inspection system for random defects on strongly reflective and complex surface. Opto-Electron Eng 30(2):32–35

    Google Scholar 

  19. Badger JC, Enright ST (1996) Auomatic surface defect inspection system. Iron Steel Eng 3:48–51

    Google Scholar 

  20. Zhang Z, Ren SQ, Miyake T, Fujiwara H, Imamura T (2008) Processing reflections on metallic surfaces using a special random sampling method. Int J Innovative Comput Inf Control 4(7):1595–1606

    Google Scholar 

  21. Ren SQ, Zhang Z, Miyake T, Fujiwara H, Imamura T (2008) Edge detection of highly specular surface using special random sampling method. Proceedings of international conference on innovative computing, information and control (ICICIC2009), pp 1–4

    Google Scholar 

  22. Torrance K, Sparrow E (1967) Theory for off-specular reflection from roughened surfaces. J Opt Soc Am 57:1105–1114

    Article  Google Scholar 

  23. Ward GJ (1992) Measuring and modeling anisotropic reflection. Proceedings of the 19th annual conference on computer graphics and interactive techniques, SIGGRAPH’92, pp 265–272

    Google Scholar 

  24. Horn BKP (1970) Shape from shading: a method for obtaining the shape of a smooth opaque object from one view. MIT Project MAC Int. Rep. TR-79 and MIT AI Lab. Technical Report p 232

    Google Scholar 

  25. Horn BKP (1981) Hill shading and the reflectance map. Proc IEEE 69(11):14–47

    Article  Google Scholar 

  26. Woodham RJ (1978) Photometric stereo: a reflectance map technique for determining surface orientation from image intensity. Proc SPIE 155:136–143

    Article  Google Scholar 

  27. Lambert JH (1960) Photometria sive de mensura de gratibus luminis, colorum et umbrae, Augsberg. Eberhard Klett, Germany

    Google Scholar 

  28. Phong B (1975) Illumination for computer generated pictures. Communication ACM 18:311–317

    Article  Google Scholar 

  29. Ikeuchi K (1981) Determining surface orientations of specular surfaces by using the photometric stereo method. IEEE Trans Pattern Anal Mach Intell 3(6):661–669

    Article  Google Scholar 

  30. Sanderson AC, Weiss LE, Nayar SK (1988) Structured highlight inspection of specular surfaces. IEEE Trans Pattern Anal Mach Intell 10(1):44–55

    Article  Google Scholar 

  31. Healey G, Binford T (1988) Local shape from specularity. Comput Vis Graph Image Process pp 62–86

    Google Scholar 

  32. Nayar SK, Ikeuchi K, Kanade T (1991) Surface reflection: physics and geometrical perspectives. IEEE Trans Pattern Anal Mach Intell 13(7):611–634

    Article  Google Scholar 

  33. Pentland A (1984) Local shading analysis. PAMI 6:170–187

    Article  Google Scholar 

  34. Tsai Y, Roger A (1987) Versatile camera calibration technique for high-accuracy 3-D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J Robot Auto, RA-3(4)

    Google Scholar 

  35. Barsky S, Petrou M (2003) The 4-source photometric stereo technique for three dimensional surfaces in the presence of highlights and shadows. IEEE Trans Pattern Anal Mach Intell 25(10):1239–1252

    Article  Google Scholar 

  36. Zang Z, Ren SQ, Miyake T, Fujiwara H, Imamura T, Hara K, Nishino K, Ikeuchi K (2003) Determining reflectance and light position from a single image without distant illumination assumption. Process Ninth IEEE Int Conf Comput Vis 2003:100–107

    Google Scholar 

  37. Woodham RJ (1994) Gradient and curvature from the photometric-stereo method, including local confidence estimation. J Opt Soc Am 11(11):3050–3068

    Article  Google Scholar 

  38. Wolff LB, Boult T (1991) Constraining object features using polarization reflectance model. IEEE Trans Pattern Anal Mach Intell 13(7):635–657

    Article  Google Scholar 

  39. Nayar SK, Fang XS, Boult T (1996) Separation of reflection components using color and polarization. Int J Comput Vis 21(3):163–186

    Article  Google Scholar 

  40. Sato Y, Ikeuchi K (1994) Temporal-color space analysis of reflection. J Opt Soc Am A 11(11):2990–3002

    Article  Google Scholar 

  41. Robby TT, Ikeuchi K (2005) Separating reflection components of textured surfaces using a single image. IEEE Trans Pattern Anal Mach Intell 27(2):178–193

    Google Scholar 

  42. Mukaigawa Y, Miyaki H (2001) Photometric image-based rendering for image generation in arbitrary illumination. Proc Int Conf Comput Vis pp 643–649 (2001)

    Google Scholar 

  43. Lischinski FD (2002) Gradient domain high dynamic range compression. Proc SIGGRAPH 2002:249–256

    Google Scholar 

  44. Daubechies I (1988) Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math 41(7):909–996

    Article  MathSciNet  Google Scholar 

  45. Coe S (2000) Automatic tile inspection, Surface Inspection Limited, International Ceramics, Bristol, U.K., Issue 1

    Google Scholar 

  46. Glazer A, Sipper M (2008) Evolving an automatic defect classification tool. Lecture notes in computer science, in Proc. Applications. Evolutionary Computing- EvoWorkshops 2008, 194–203

    Google Scholar 

  47. Wang CH, Kuo W, Bensmail H (2006) Detection and classification of defect patterns on semiconductor wafers. IEEE Trans 38:1059–1068

    Article  Google Scholar 

  48. Lee SH et al (2005) Automatic defect classification using boosting. Proc IEEE Comput Soc Mach Learn Appl pp 15–17

    Google Scholar 

  49. Kameyama K, Kosugi Y (1999) Semiconductor defect classification using hyperellipsoid clustering neural networks and model switching. Proceedings of IEEE international joint conference neural networks, pp 3505–3510

    Google Scholar 

  50. Jeong YS, Kim SJ, Jeong MK (2008) Automatic identification of defect patterns in semiconductor wafer maps using spatial correlogram and dynamic time warping. IEEE Trans Semicond Manuf 21(4):625–637

    Article  Google Scholar 

  51. Liu HX, Zhou W, Kuang QW (2010) Defect detection of ic wafer based on spectral subtraction. IEEE Trans Semicond Manuf 23(1)

    Google Scholar 

  52. Alin H et al (2008) Study on defect detection of IC wafer based on morphology. Proc SPIE-Int Soc Opt Eng, Electron Imaging Mult Technol V:334–337

    Google Scholar 

  53. Tsai DM, Yang CH (2005) A quantile-quantile plot based pattern matching for defect detection. Pattern Recogn Lett 26:1948–1962

    Article  Google Scholar 

  54. http://www.aegis-elec.com/products/Teli-CSFV90BC3.html

  55. Telljohann A (2008) Introduction to building a machine vision inspection, handbook of machine vision. Wiley-VCH Verlag GmbH, Hornberg

    Google Scholar 

  56. Jahr I (2008) Lighting in machine vision handbook of machine vision. Wiley-VCH Verlag GmbH, Hornberg

    Google Scholar 

  57. Rump M, Muller G, Sarlette R, Koch D, Klein R (2008) Photo-realistic rendering of metallic car paint from image-based measurements. Eurographics 27(2):2008

    Google Scholar 

  58. Gunther J, Chen TB, Goesele M, Wald I, Seidel HP (2005) Efficient acquisition and realistic rendering of car paint. Proceedings of VMV 2005, Erlangen, Germany

    Google Scholar 

  59. Li CJ, Zhang Z (2001) A new illumination system for defect inspection on highly specular surface Proceedings of the 2011 international conference on signal and information processing (ICSIP2011), pp 569–576

    Google Scholar 

  60. Besl PJ, Jain RC (1988) Segmentation through variable-order surface fitting. IEEE Trans Pattern Anal Mach Intell 10(2):167–192

    Article  Google Scholar 

  61. Cohen EH, Singh M (2007) Geometric determinants of shape segmentation: tests using segment identification. Vision Res 47:2825–2840

    Article  Google Scholar 

  62. Yamazaki I, Natarajan V, Bai ZJ, Hamann B (2010) Segmenting point-sampled surfaces. Vis Comput 2010(26):1421–1433

    Article  Google Scholar 

  63. Pernkopf F, Leary Paul O (2002) Visual inspection of machined metallic high-pecision surfaces. EURASIP J Appl Signal Process 2002(7):667–678

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London (outside the USA)

About this chapter

Cite this chapter

Zhang, Z., Li, C. (2015). Defect Inspection for Curved Surface with Highly Specular Reflection. In: Liu, Z., Ukida, H., Ramuhalli, P., Niel, K. (eds) Integrated Imaging and Vision Techniques for Industrial Inspection. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-6741-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6741-9_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6740-2

  • Online ISBN: 978-1-4471-6741-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics