Abstract
Machine vision systems have evolved significantly with the technology advances to tackle the challenges from modern manufacturing industry. A wide range of industrial inspection applications for quality control are benefiting from visual information captured by different types of cameras variously configured in a machine vision system. This chapter screens the state of the art in machine vision technologies in the light of hardware, software tools, and major algorithm advances for industrial inspection. The inspection beyond visual spectrum offers a significant complementary to the visual inspection. The combination with multiple technologies makes it possible for the inspection to achieve a better performance and efficiency in varied applications. The diversity of the applications demonstrates the great potential of machine vision systems for industry.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dowling KJ, Mueller GG, Lys IA (2003) Systems and methods for providing illumination in machine vision systems. Patent: US 6624597B2. United States, Boston, MA, US: Assignee: Color Kinetics, Inc
Newman TS, Jain AK (1995) A survey of automated visual inspection. Comput Vis Image Underst 61(2):231–262. doi:10.1006/cviu.1995.1017
Batchelor BG (1999) Coming to terms with machine vision and computer vision. Advanced imaging, pp. 22–26
Labudzki R, Legutko S (2011) Applications of machine vision. Manufact Ind Eng 2:27–29
Malamas EN, Petrakis EG, Zervakis M, Petit L, Legat JD (2003) A survey on industrial vision systems, applications and tools. Image Vis Comput 21(2):171–188. doi:10.1016/S0262-8856(02)00152-X
Thomas A, Rodd M, Holt J, Neill C (1995) Real-time industrial visual inspection: a review. Real-Time Imaging 1(2):139–158. doi:10.1006/rtim.1995.1014
Gregory R Planning a pc-based machine vision system. Online white paper. URL http://archives.sensorsmag.com/articles/0498/vis0498/index.htm. Accessed in March 2015
Bier J (2011) Implementing vision capabilities in embedded systems. Online white paper (2011). URL http://www.embedded-vision.com. Accessed in March 2015
Gardner JS Challenges to embedding computer vision. Online. URL http://www.embedded-vision.com. Accessed in March 2015
Berkeley Design Technology Inc (2011) Implementing vision capabilities in embedded systems. Presentation at 2011 Embedded Systems Conference Silicon Valley
Dipert B, Khan K (2013) The embedded vision revolution. Online article (2013). URL http://www.mddionline.com/article/embedded-vision-revolution. Accessed in March 2015
Wolf W, Ozer B, Lv T (2002) Smart cameras as embedded systems. Computer 35(9):48–53. doi:10.1109/MC.2002.1033027
Shi D, Lichman S (2005) Smart cameras: a review. In: Proceedings of 2005 Asia-Pacific workshop on visual information processing. Hong Kong, China, pp 11–13
de Sousa A (2003) Smart cameras as embedded systems. In: Proceedings first international conference on computer applications, pp. 105–112. Session 4: Embedded Systems
Shi Y, Real F (2010) Smart cameras: fundamentals and classification. In: Belbachir AN (ed) Smart cameras. Springer, US, pp 19–34. doi:10.1007/978-1-4419-0953-4-2
Wilson A (2013) Time-of-flight camera captures VGA images at high speed. Vis Syst Des 18(1):11–12
Malik AW, Thoornberg B, Kumar P (2013) Comparison of three smart camera architectures for real-time machine vision system. Int J Adv Rob Syst 10:1–12. doi:10.5772/57135 10:402
Elouardi A, Bouaziz S, Dupret A, Lacassagne L, Klein J, Reynaud R (2006) A smart sensor for image processing: towards a system on chip. In: IEEE International Symposium on Industrial Electronics, vol 4, pp. 2857–2862. doi 10.1109/ISIE.2006.296069
Rodriguez-Vazquez A, Dominguez-Castro R, Jimenez-Garrido F, Morillas S (2010) A CMOS vision system on-chip with multicore sensory processing architecture for image analysis above 1000 f/s. In: Bodegom E, Nguyen V (eds) Proceedings of SPIE, sensors, cameras, and systems for industrial/scientific applications XI, vol 7536, pp. 75,3600–75,3600–11. San Jose, California, USA. doi:10.1117/12.839183
Martin DÂ (2007) A practical guide to machine vision lighting. Online white paper. URL http://www.graftek.com/. Accessed in March 2015
Hecht K (2005) Integrating LED illumination system for machine vision systems. Patent: US6871993B2, Hatfield, PA, US. Assignee: Accu-Sort Systems, Inc. 2006
Gardasoft The practical use of LED light controllers within machine vision systems. Online white paper. URL http://www.gardasoft.com. Accessed in March 2015
Wang W, Li W (2009) Design of reconfigurable LED illumination control system based on fpga. In: Image and Signal Processing, CISP ’09. 2nd International Congress on, pp. 1–4. doi:10.1109/CISP.2009.5304361
MICROSCAN Eight tips for optimal machine vision lighting. Online technology white paper. URL http://www.microscan.com. Accessed in March 2015
Dowling KJ, Mueller GG, Lys IA (2006) Systems and methods for providing illumination in machine vision systems. Patent: US7042172B2, United States, Boston, MA, US. Assignee: Color Kinetics Inc
Dechow D (2013) Explore the fundamentals of machine vision: part I. Vision Sys Des 18(2):14–15
Teledyne Dalsa: Application notes and technology primer: CCD versus CMOS. Online article. URL https://www.teledynedalsa.com. Accessed in March 2015
Apler G (2011) CCD versus CMOS image sensors: the lines are blurring. Online article (2011). URL http://info.adimec.com/. Accessed in March 2015
Bosiers JT, Peters IM, Draijer C, Theuwissen A (2006) Technical challenges and recent progress in (CCD) imagers. Nucl Instrum Methods Phys Res Sect. A Accelerators, Spectrometers, Detectors and Associated Equipment 565(1):148–156. doi http://dx.doi.org/10.1016/j.nima.2006.05.033. Proceedings of the International Workshop on Semiconductor Pixel Detectors for Particles and Imaging (PIXEL) 2005 International Workshop on Semiconductor Pixel Detectors for Particles and Imaging
Teledyna Dalsa: X-ray imaging: emerging digital technology—CMOS detectors. Online white paper. URL https://www.teledynedalsa.com/imaging/products/x-ray/. Accessed in March 2015
Korthout L, Verbugt D, Timpert J, Mierop A, de Haan W, Maes W, de Meulmeester J, Muhammad W, Dillen B, Stoldt H et al (2009) A wafer-scale CMOS APS imager for medical X-ray applications. In: International Image Sensor Workshop. Bergen, Norway
Princeton Instruments Imaging Group: Introduction to scientific InGaAs FPA cameras. Oneline technical note (2012). URL http://www.princetoninstruments.com/. Accessed in March 2013
Barton JB, Cannata RF, Petronio SM (2002) InGaAs NIR focal plane arrays for imaging and DWDM applications. In: AeroSense 2002, International society for optics and photonics, pp. 37–47
Hamamatsu Photonics High sensitivity cameras: principle and technology. Online technical note. URL http://www.hamamatsu.com. Accessed in March 2015
Matsumoto M, Mitani K, Sugimoto M, Hashimoto K, Miller R (2012) Innovative bridge assessment methods using image processing and infrared thermography technology. IABSE congress report 18(13):1181–1188. URL http://www.ingentaconnect.com/content/iabse/congr/2012/00000018/00000013/art00004
Munro JF (2008) Systems for capturing three-dimensional images and methods thereof. Patent: US20080050013A1, United States, Rochester, NY, USA
von Fintel R Comparison of the most common digital interface technologies in vision technology: camera link, USB3 vision, GigE vision, FireWire. Online white paper. URL http://www.baslerweb.com. Accessed in March 2015
Edmund Optics Imaging electronics 101: camera types and interfaces for machine vision applications. Online white paper. URL http://www.edmundoptics.com/technical-resources-center/imaging/camera-types-and-interfaces-for-machine-vision-applications. Accessed in March 2015
Automated Imaging Association Gige vision—true plug and play connectivity. Online article. URL http://www.visiononline.org. Accessed in March 2015
Automated Imaging Association Camera link the only real-time machine vision protocol. Online article. URL http://www.visiononline.org. Accessed in March 2015
Association U.I.V CoaXPress high speed camera interface. Online white paper. URL www.ukiva.org. Accessed in March 2015
Adimec (2013) Multi-camera vision system with CoaXPress. Online white paper (2013). Accessed in March 2015
Matrox GPU processing using MIL. Online white paper. URL http://www.matrox.com. Accessed in March 2015
Tweddle B (2009) Graphics processing unit (GPU) acceleration of machine vision software for space flight applications. Workshop on space flight software. URL http://flightsoftware.jhuapl.edu. Presentation Slide
MVTec (2011) MVTec improves factory throughput and quality using NVIDIA GPU-accelerated inspection automation. Online Article. URL http://www.mvtec.com. Accessed in March 2015
Larson B (2015) GPU-accelerated machine vision. Camera and photos 21. URL http://www.objc.io/issue-21/gpu-accelerated-machine-vision.html
Dipert B, Alvarez J, Touriguian M (2012) Embedded vision: FPGAs’ next notable technology opportunity. Xcell J 78:14–19
Chen YC, Wang YT (2008) Development of a low-cost machine vision system and its application on inspection processes. Tamkang J Sci Eng 11(4):425–431
Besiris D, Tsagaris V, Fragoulis N, Theoharatos C (2012) An FPGA-based hardware implementation of configurable pixel-level color image fusion. IEEE Trans Geosci Remote Sens 50(2):362–373. doi:10.1109/TGRS.2011.2163723
Baumgartner D, Roessler P, Kubinger W, Zinner C, Ambrosch K (2009) Benchmarks of low-level vision algorithms for DSP, FPGA, and mobile PC processors. In: Kisacanin B, Bhattacharyya S, Chai S (eds) Embedded computer vision, advances in pattern recognition. Springer, London, pp. 101–120. doi:10.1007/978-1-84800-304-0-5
Dechow D (2013) Explore the fundamentals of machine vision: part II. Vision Sys Des 18(4):16–18
Hornberg A (ed) (2006) Handbook of machine vision. 978-3-527-40584-8. Wiley-VCH, Favoritenstrasse 9/4th Floor/1863
Batchelor BG, Whelan PF (1997) Intelligent vision systems for industry. 3540199691. Springer, London
Jain R, Kasturi R, Schunck BG (1995) Machine vision. No. 0-07-032018-7 in McGraw-Hill Series in computer science. McGraw-Hill, Inc., New York, USA
Pernkopf F (2005) 3D surface acquisition and reconstruction for inspection of raw steel products. Comput Ind 56(89):876–885. doi:http://dx.doi.org/10.1016/j.compind.2005.05.025. (Machine Vision Special Issue)
Pernkopf F (2004) Detection of surface defects on raw steel blocks using bayesian network classifiers. Pattern Anal Appl 7(3):333–342. doi:10.1007/BF02683998
Liu Z, Genest M, Marincak A, Forsyth D (2008) Characterization of surface deformation with the edge of lighttm technique. Mach Vis Appl 19(1):35–42. doi:10.1007/s00138-007-0075-1
Liu Z, Genest M, Forsyth D, Marincak A (2009) Quantifying surface deformation with the Edge of Light enhanced visual inspection. Instrum Measur IEEE Transactions on 58(2):416–422. doi:10.1109/TIM.2008.2003312
Lillywhite K, Lee DJ, Tippetts B, Archibald J (2013) A feature construction method for general object recognition. Pattern Recogn 46(12):3300–3314. doi:10.1016/j.patcog.2013.06.002
Motoda H, Liu H (2002) Feature selection, extraction and construction. Commun Inst Inf Comput Mach 5:67–72
Wikipedia: Convolutional neural network. URL http://en.wikipedia.org/wiki/Convolutional_neural_network. Accessed in March 2015
Theano Development Team: Deeplearning 0.1 document: Convolutional neural networks (lenet). Online document. URL http://deeplearning.net/tutorial/lenet.html. Accessed in March 2015
Ciresan D, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3642–3649
Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: NIPS Proceedings of advances in neural information processing systems, pp. 1097–1105
OpenCV: Open source computer vision. Website: URL http://opencv.org/
SimpleCV (2013) Computer vision platform using Python. Website: URL http://simplecv.org/. Accessed in March 2015
Kitware Inc. (2014) Visualization toolkit. URL http://www.vtk.org/
Gould S (2012) Darwin: A framework for machine learning and computer vision research and development. J Mach Learn Res 13:3533–3537
Grigorescu SM, Ristic-Durrant D, Graser A. (2009) ROVIS: Robust machine vision for service robotic system FRIEND. In: Intelligent robots and systems IROS 2009. IEEE/RSJ International Conference on pp. 3574–3581. doi:10.1109/IROS.2009.5354596
Kaehler A, Bradski G (2013) Learning OpenCV: computer vision in C++ with the OpenCV Library, 1st edn. 978-0-596-51613-0. O’Reilly Media, Sebastopol, CA, USA
Demaagd K, Oliver A, Oostendorp N, Scott K (2012) Practical computer vision with SimpleCV, 1st edn. 978-1-449-32036-2. O’Reilly Media, Sebastopol, CA, USA
Schroeder WJ, Martin K, Lorensen W (2003) The visualization toolkit: an object-oriented approach to 3D graphics, 3rd edn. Kitware, Inc. (formerly Prentice-Hall), USA
Schroeder WJ, Martin K, Lorensen WE (1996) The design and implementation of an object-oriented toolkit for 3D graphics and visualization. In: Proceedings of the 7th conference on visualization ’96, VIS ’96. IEEE Computer Society Press, Los Alamitos, CA, USA, pp 93–111. URL http://dl.acm.org/citation.cfm?id=244979.245018
Eledath J (2013) Tools for democratizing computer vision: automated performance characterization. Embedded Vision Summit East Presentations. Westford, MA, USA
Solid State Division Characteristics and use of infrared detectors. Online. URL http://www.hamamatsu.com. Retrieved in March 2015
Maldague XPV (2001) Theory and practice of infrared technology for nondestructive testing. wiley series in microwave and optical engineering. Wiley, USA
Rybicki GB, Lightman AP (1979) Radiative Processes in Astrophysics. Wiley, New York
Blum RS, Liu Z (eds) (2005) Multi-sensor image fusion and its applications. signal processing and communications. Taylor and Francis, UK
Rogalski A (2002) Infrared detectors: an overview. Infrared Phys Technol 43(35):187–210. doi:10.1016/S1350-4495(02)00140-8
Tech note (2015) IR lighting (NIR—near infrared). Online (2015). URL http://smartvisionlights.com
Vadivambal R, Jayas D (2011) Applications of thermal imaging in agriculture and food industrya review. Food Bioprocess Technol 4(2):186–199. doi:10.1007/s11947-010-0333-5
Bagavathiappan S, Lahiri B, Saravanan T, Philip J, Jayakumar T (2013) Infrared thermography for condition monitoring a review. Infrared Phys Technol 60:35–55. doi:10.1016/j.infrared.2013.03.006
Pinter M (2015) Advance in UV light for machine vision applications. Online (2015). URL http://smartvisionlights.com
Richards A (2006) UV imaging opens new applications. Vision Systems Design
Wilson A (2012) Enhanced cameras detect targets in the UV spectrum. Vis Syst Des 17(10):13–14
Slaughter D, Obenland D, Thompson J, Arpaia M, Margosan D (2008) Non-destructive freeze damage detection in oranges using machine vision and ultraviolet fluorescence. Postharvest Biol Technol 48(3):341–346. doi:10.1016/j.postharvbio.2007.09.012
Kondo N, Kuramoto M, Shimizu H, Ogawa Y, Kurita M, Nishizu T, Chong VK, Yamamoto K (2009) Identification of fluorescent substance in mandarin orange skin for machine vision system to detect rotten citrus fruits. Eng Agric Environ Food 2(2):54–59. doi:10.1016/S1881-8366(09)80016-5
Adams T (2000) What happened here: diagnosis of internal defects from acoustic images. Online white paper (2000). URL http://www.satech8.com. Accessed in March 2015
Adams T (2002) Acoustic micro imaging finds hidden defects. Online article (2002). URL http://www.sonoscan.com. Accessed in March 2015
Liu Z, Kleiner Y, Rajjani B, Wang L, Condit W (2012) Condition assessment of water transmission and distribution systems. Tech. Rep. EPA/600/R-12/017, United States Environmental Protection Agency, National Risk Management Research Laboratory, Ottawa, Ontario, Canada. (Institute for Research in Construction, National Research Council Canada)
Gan T, Hutchins D, Billson D (2002) Preliminary studies of a novel air-coupled ultrasonic inspection system for food containers. J Food Eng 53(4):315–323. doi:10.1016/S0260-8774(01)00172-8
Zhu Z, Hu YC, Zhao L (2010) Gamma/x-ray linear pushbroom stereo for 3D cargo inspection. Mach Vis Appl 21(4):413–425. doi:10.1007/s00138-008-0173-8
Zhu Z, Zhao L, Lei J (2005) 3D measurements in cargo inspection with a gamma-ray linear pushbroom stereo system. In: Computer Vision and Pattern Recognition—Workshops, 2005. CVPR Workshops. IEEE Computer Society Conference on, pp 126–126. doi:10.1109/CVPR.2005.380
Amtower RÂ (2000) X-ray enhanced AOI. Online white paper. URL http://www.satech8.com/. Accessed in March 2015
OPTO-Semiconductor HandbooK, chap. X-ray detectors, pp. 1–21. Hamamatsu. Accessed in March 2015
Pieringer C, Mery D (2010) Flaw detection in aluminum die castings using simultaneous combination of multiple views. Insight 52(10):548–552
Backscatter computed tomography (2015) Website: URL http://www.inversasystems.com. Accessed in March 2015
Khan M, Liu Z (2013) Backscatter computed tomography technique for the detection of damage in pipes. Technical report LTR-SMPL-2013-0071, National Research Council Canada. Ottawa, Ontario, Canada
Jansen C, Scherger B, Jordens C, Al-Naib IAI, Koch M Terahertz imaging spectroscopy for quality inspection in the food industry. Online article. URL http://www.labint-online.com. Accessed in March 2015
Jördens C, Rutz F, Koch M (2006) Quality assurance of chocolate products with terahertz imaging. In: European Conference on NDT. Berlin, German, pp. 25–29
Blasch E, Liu Z, Petkie D, Ewing R, Pomrenke G, Reinhardt K (2012) Image fusion of the terahertz-visual naecon grand challenge data. In: Aerospace and Electronics Conference (NAECON), 2012 IEEE National, pp. 220–227. doi 10.1109/NAECON.2012.6531058
Oka S, Mochizuki S, Togo H, Kukutsu N (2009) Inspection of concrete structures using millimeter-wave imaging technology. NTT Tech Rev 7(3):1–6
Oka S, Togo H, Kukutsu N, Nagatsuma T (2008) Latest trends in millimeter-wave imaging technology. Prog Electromagnet Res Lett 1:197–204
Sheen DM, McMakin DL, Collins HD, Hall TE, Severtsen RH (1996) Concealed explosive detection on personnel using a wideband holographic millimeter-wave imaging system. In: Kadar I, Libby V (eds) Proceedings of SPIE: signal processing, sensor fusion, and target recognition, vol 2755. Orlando, FL, USA, pp. 503–513. doi:10.1117/12.243191. URL http://dx.doi.org/10.1117/12.243191
adn Takafumi Kojima HT, Mochizuki S, Kukutsu N (2012) Millimeter-wave imaging for detecting surface cracks on concrete pole covered with bill-posting prevention sheet. NTT Technical Review 10(2):1–6
Mizuno M (2008) Broadband millimeter wave imaging system. J Natl Inst Inf Commun Technol 55(1):53–59
He X (2015) Multispectral imaging extends vision technology capability. Photonics Spectra, USA, pp 1–4
Hart J, Resendiz E, Freid B, Sawadisavi S, Barkan C, Ahuja N (2008) Machine vision using multi-spectral imaging for undercarriage inspection of railroad equipment. In: Proceedings of the 8th world congress on railway research. Seoul, Korea
Falkenstein P (2012) Multispectral imaging plants roots in quality control. Vision Sys Des 17(11):23–25
Aleixos N, Blasco J, Navarrn F, Molt E (2002) Multispectral inspection of citrus in real-time using machine vision and digital signal processors. Comput Electron Agric 33(2):121–137. doi:10.1016/S0168-1699(02)00002-9
Liu Z, Forsyth DS, Komorroski JP, Hanasaki K, Kiruba K (2007) Survey: State of the art of NDE data fusion. IEEE Trans Instrum Meas 56(6):2435–2451
Xiao X (1998) A multiple sensors approach to wood defect detection. Doctor dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
ibea Hamburg GmbH: Surface anomaly inspection system. Online white paper. URL http://www.ibea.de/. Accessed in March 2015
Wilson A (2014) Roof tiles inspected with sound and vision. Vis Syst Des 19(3):16–17
ibea Hamburg GmbH Acoustic crack inspection for clay tiles. Online white paper. URL http://www.ibea.de/. Accessed in March 2015
Luk B, Liu K, Jiang Z, Tong F (2009) Robotic impact-acoustics system for tile-wall bonding integrity inspection. Mechatronics 19(8):1251–1260. doi:http://dx.doi.org/10.1016/j.mechatronics.2009.07.006. URL http://www.sciencedirect.com/science/article/pii/S0957415809001329
Tong F, Tso S, Hung M (2006) Impact-acoustics-based health monitoring of tile-wall bonding integrity using principal component analysis. J Sound Vib 294(12):329–340. doi:10.1016/j.jsv.2005.11.017
Amtower R X-ray enhanced AOI. Online white paper. URL http://www.satech8.com. Accessed in March 2015
LeBlond C Combining AOI and AXI: the best of both worlds. Online white paper. URL http://www.satech8.com. Accessed in March 2015
Wedowski RD, Atkinson GA, Smith ML, Smith LN (2012) A system for the dynamic industrial inspection of specular freeform surfaces. Opt Lasers Eng 50(5):632–644. doi:10.1016/j.optlaseng.2011.11.007
Zhang X, Ding Y, Lv Y, Shi A, Liang R (2011) A vision inspection system for the surface defects of strongly reflected metal based on multi-class SVM. Expert Syst Appl 38(5):5930–5939. doi:10.1016/j.eswa.2010.11.030
Zheng H, Kong L, Nahavandi S (2002) Automatic inspection of metallic surface defects using genetic algorithms. J Mater Process Technol 125126:427–433. doi:10.1016/S0924-0136(02)00294-7
Li CJ, Zhang Z, Nakamura I, Imamura T, Miyake T, Fujiwara H (2012) Developing a new automatic vision defect inspection system for curved ssurface with hihigh specular reflection. Int J Innovative Comput Inf Control 8(7):5121–5136
Sansoni G, Trebeschi M, Docchio F (2009) State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation. Sensors 9(1):568–601. doi:10.3390/s90100568
Habel R, Laurent J, Hebert JF, Talbot M, Fox-Ivey R (2013) Use of 3D scanning technology for automated inspection of multi-modal transportation infrastructure. In: 17th IRF world meeting and exhibition. Riyadh, Saudi Arabia, pp. 1–20
Basler Making tunnels safer—basler pilot gige cameras reliably detect cracks in tunnels. Online white paper. URL http://www.baslerweb.com/. Accessed in March 2015
Gavilan M, Sanchez F, Ramos JA, Marcos O (2013) Mobile inspection system for high-resolution assessment of tunnels. In: The 6th international conference on structural health monitoring of intelligent infrastructure. Hong Kong, China, pp. 1–10
Laurent J, Fox-Ivey R, Dominguez FS, Garcia JAR (2014) Use of 3D scanning technology for automated inspection of tunnels. In: Proceedings of the world tunnel congress 2014. Foz do Iguau, Brazil
Tsai Y, Li F (2012) Critical assessment of detecting asphalt pavement cracks under different lighting and low intensity contrast conditions using emerging 3d laser technology. J Trans Eng 138(5):649–656. doi:10.1061/(ASCE)TE.1943-5436.0000353
Boden F, Stasicki B (2015) Stereo camera visualize propeller. Vis Sys Des 20(2):21–25
Brosnan T, Sun DW (2004) Improving quality inspection of food products by computer visiona review. J Food Eng 61(1):3–16. doi:10.1016/S0260-8774(03)00183-3 Applications of computer vision in the food industry
Cubero S, Aleixos N, Molt E, Gmez-Sanchis J, Blasco J (2011) Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food Bioprocess Technol 4(4):487–504. doi:10.1007/s11947-010-0411-8
Fermum L (2015) Solutions for industrial machine vision. Online article. URL http://www.vision-doctor.co.uk. Accessed in March 2015
Matrox Vision library or vision-specific IDE (2012) which is right for you? matrox imaging white paper. Retrieved in March 2015
National Instruments, Austin, Texas USA (2009) NI Vision: NI Vision Builder for Automated Inspection Tutorial. Accessed in March 2015
MVTec Software GmbH, Munchen, Germany: HALCON the power of machine vision: quick guide
MVTec Software GmbH: MERLIC—a new generation of vision software. Website. URL http://www.mvtec.com/products/merlic/. Accessed in March 2015
Tordivel, Oslo, Norway: scorpion vision software version X product overview. Product brochure
Teledyne Dalsa, Boston, USA: Sapera Vision Software: Sapera Essential. Accessed in March 2015
Ruiz-Altisent M, Ruiz-Garcia L, Moreda G, Lu R, Hernandez-Sanchez N, Correa E, Diezma B, Nicola B, Garc-a-Ramos J (2010) Sensors for product characterization and quality of specialty cropsa review. Comput Electron Agric 74(2):176–194. doi:10.1016/j.compag.2010.07.002
Mahalik NP, Nambiar AN (2010) Trends in food packaging and manufacturing systems and technology. Trends Food Sci Technol 21(3):117–128. doi:10.1016/j.tifs.2009.12.006 Advances in Food Processing and Packaging Automation
Flood N, Bailey B (2013) Vision helps dairy spot slack cheese bags. Vision Sys Des 18(9):17–22
Walker C (2014) Filters reduce glare in automotive canister inspection. Vis Syst Des 19(5):17–19
Wilson A (2015) Robotic vision system checks car fenders. Vis Syst Des 20(1):9–11
Zhou J, Lee I, Thomas B, Menassa R, Farrant A, Sansome A (2011) Applying spatial augmented reality to facilitate in-situ support for automotive spot welding inspection. In: Proceedings of the 10th international conference on virtual reality continuum and its applications in industry, VRCAI ’11. ACM, New York, NY, USA, pp 195–200. doi:10.1145/2087756.2087784
Andersson A (2009) Evaluation and visualisation of surface defects on auto-body panels. J Mater Process Technol 209(2):821–837. doi:10.1016/j.jmatprotec.2008.02.078
Lu Y, Tie-Qi YL, Chen J, Tisler A, Zhang J (2000) An advanced machine vision system for VFD inspection. In: PCM 2000, pp. 1–6
Yardley E (2015) Vision system inspects automotive sub-assemblies. Vis Syst Des 20(2):14–19
Duan Y, Servais P, Genest M, Ibarra-Castanedo C, Maldague X (2012) ThermoPoD: a reliability study on active infrared thermography for the inspection of composite materials. J Mech Sci Technol 26(7):1985–1991. doi:10.1007/s12206-012-0510-8
Berry A, Nejikovsky B, Gibert X, Tajaddini A (2008) High speed video inspection of joint bars using advanced image collection and processing techniques. In: Proceedings of world congress on railway research. Seoul, Korea, pp. 1–13
Gibert-Serra X, Berry A, Diaz C, Jordan W, Nejikovsky B, Tajaddini A (2007) A machine vision system for automated joint bar inspection from a moving rail vehicle. In: ASME/IEEE joint rail conference and internal combustion engine spring technical conference. Pueblo, Colorado, USA
Resendiz E, Hart J, Ahuja N (2013) Automated visual inspection of railroad tracks. Intell Transp Syst IEEE Trans on 14(2):751–760. doi:10.1109/TITS.2012.2236555
Resendiz E, Molina L, Hart J, Edwards R, Sawadisavi S, Ahuja N, Barkan C (2010) Development of a machine vision system for inspection of railway track components. In: 12th world conference on transport research. Lisbon, Portugal, pp. 1–22
Zhang H, Yang J, Tao W, Zhao H (2011) Vision method of inspecting missing fastening components in high-speed railway. Appl Opt 50(20):3658–3665. doi:10.1364/AO.50.003658
Hart JM, Ahuja N, Barkan C, Davis DD (2004) A machine vision system for monitoring railcar health: Preliminary results. Technology Digest (TD-04-008), pp 1–4
Schlake BW, Todorovic S, Edwards JR, Hart JM, Ahuja N, Barkan CP (2010) Machine vision condition monitoring of heavy-axle load railcar structural underframe components. Proc Inst Mech Eng Part F J Rail Rapid Transit 224(5):499–511
Chen TQ, Zhang J, Zhou Y, Murphey YL (2001) A smart machine vision system for PCB inspection. In: Proceedings of engineering of intelligent systems, 14th international conference on industrial and engineering applications of artificial intelligence and expert systems, IEA/AIE. Budapest, Hungary, pp. 513–518. doi 10.1007/3-540-45517-5-57
Ruuska H (2009) Method for monitoring a rapidly-moving paper web and corresponding system
Qiu Z (1996) A simple machine vision system for improving the edging and trimming operations performed in hardwood sawmills. Master thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag London (outside the USA)
About this chapter
Cite this chapter
Liu, Z., Ukida, H., Niel, K., Ramuhalli, P. (2015). Industrial Inspection with Open Eyes: Advance with Machine Vision Technology. In: Liu, Z., Ukida, H., Ramuhalli, P., Niel, K. (eds) Integrated Imaging and Vision Techniques for Industrial Inspection. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-6741-9_1
Download citation
DOI: https://doi.org/10.1007/978-1-4471-6741-9_1
Publisher Name: Springer, London
Print ISBN: 978-1-4471-6740-2
Online ISBN: 978-1-4471-6741-9
eBook Packages: Computer ScienceComputer Science (R0)