Skip to main content

Abstract

What the reader should know to understand this chapter \(\bullet \) Basic notions of calculus and linear algebra. \(\bullet \) Basic notions of machine learning. \(\bullet \) Programming skills to implement some computer projects proposed in the Problems section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Independent identically distributed.

  2. 2.

    In mathematics, polytope is the generalization to any dimension of polygon in two dimensions, polyhedron in three dimensions and polychoron in four dimensions.

  3. 3.

    The intrinsic dimensionality of a data set is the minimum number of free variables needed to represent the data without information loss.

  4. 4.

    We assume, for the sake of simplicity that the definition of a manifold coincides with the one of subspace. The manifold is formally defined in Chap. 11.

  5. 5.

    The Kronecker delta function \(\delta (x)\) is 1 when \(x=0\) and 0 otherwise.

References

  1. A. Baraldi and P. Blonda. A survey of fuzzy clustering algorithms for pattern recognition. IEEE Transactions on System, Man and Cybernetics-B, 29(6):778–801, 1999.

    Google Scholar 

  2. J. C. Bedzek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, 1981.

    Google Scholar 

  3. C. M. Bishop. Neural Networks for Pattern Recognition. Cambridge University Press, 1995.

    Google Scholar 

  4. C. M. Bishop, M. Svensen, and C. K. I. Williams. GTM: the generative topographic mapping. Neural Computation, 10(1):215–234, 1998.

    Google Scholar 

  5. F. Camastra. Data dimensionality estimation methods: A survey. Pattern Recognition, 36(12):215–234, 2003.

    Google Scholar 

  6. F.L. Chung and T. Lee. Fuzzy competitive learning. Neural Networks, 7(3):539–551, 1994.

    Google Scholar 

  7. P. Demartines and J. Herault. Curvilinear component analysis: A self-organizing neural network for nonlinear mapping in cluster analysis. IEEE Transactions on Neural Networks, 8(1):148–154, 1997.

    Google Scholar 

  8. A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via the em algorithm. Journal Royal Statistical Society, 39(1):1–38, 1977.

    Google Scholar 

  9. R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley, 2001.

    Google Scholar 

  10. E. Erwin, K. Obermayer, and K. Schulten. Self-organizing maps: ordering, convergence properties and energy functions. Biological Cybernetics, 67(1):47–55, 1992.

    Google Scholar 

  11. R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2):179–188, 1936.

    Google Scholar 

  12. E. Forgy. Cluster analysis of multivariate data; efficiency vs. interpretability of classifications. Biometrics, 21(1):768, 1965.

    Google Scholar 

  13. B. Fritzke. Growing cell structures- a self organizing network for unsupervised and supervised learning. Neural Networks, 7(9):1441–1460, 1994.

    Google Scholar 

  14. B. Fritzke. A growing neural gas learns topologies. In Advances in Neural Information Processing Systems 7, pages 625–632. MIT Press, 1995.

    Google Scholar 

  15. R. Gray. Vector quantization. IEEE Transactions on Acoustics, Speech and Signal Processing Magazine, 1(2):4–29, 1984.

    Google Scholar 

  16. R. M. Gray. Vector Quantization and Signal Compression. Kluwer, 1992.

    Google Scholar 

  17. P. J. Huber. Robust Statistics. John Wiley, 1981.

    Google Scholar 

  18. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Comput. Surveys, 31(3):264–323, 1999.

    Google Scholar 

  19. I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, 1986.

    Google Scholar 

  20. T. Kohonen. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1):59–69, 1982.

    Google Scholar 

  21. T. Kohonen. Self-Organizing Map. Springer-Verlag, 1997.

    Google Scholar 

  22. T. Kohonen, J. Hynninen, J. Kangas, and J. Laaksonen. Som-pak: The self-organizing map program package. Technical report, Laboratory of Computer and Information Science, Helsinki University of Technology, 1996.

    Google Scholar 

  23. Y. Linde, A. Buzo, and R. Gray. Least square quantization in pcm. IEEE Transaction on Information Theory, 28(2):129–137, 1982.

    Google Scholar 

  24. S. P. Lloyd. An algorithm for vector quantizer design. IEEE Transaction on Communications, 28(1):84–95, 1982.

    Google Scholar 

  25. J. Mac Queen. Some methods for classifications and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical statistics and probability, pages 281–297. University of California Press, 1967.

    Google Scholar 

  26. J. Makhoul, S. Roucos, and H. Gish. Vector Quantization in speech coding. Proceedings of IEEE, 73(11):1551–1588, 1985.

    Google Scholar 

  27. T. E. Martinetz and K. J. Schulten. A “neural gas” network learns topologies. In Artificial Neural Networks, pages 397–402. North-Holland, 1991.

    Google Scholar 

  28. T. E. Martinetz and K. J. Schulten. Neural-gas network for vector quantization and its application to time-series prediction. IEEE Transaction on Neural Networks, 4(4):558–569, 1993.

    Google Scholar 

  29. T. E. Martinetz and K. J. Schulten. Topology representing networks. Neural Networks, 7(3):507–522, 1994.

    Google Scholar 

  30. S. M. Omohundro. The delaunay triangulation and function learning. Technical report, International Computer Science Institute, 1990.

    Google Scholar 

  31. N. R. Pal, K. Pal, and J. C. Bedzek. A mixed c-means clustering model. In Proceedings of IEEE International Conference on Fuzzy Systems, pages 11–21. IEEE Press, 1997.

    Google Scholar 

  32. F. P. Preparata and M. I. Shamos. Computational geometry. Springer-Verlag, 1990.

    Google Scholar 

  33. R. Redner and H. Walker. Mixture densities, maximum likelihood and the em algorithm. SIAM Review, 26(2), 1984.

    Google Scholar 

  34. H. J. Ritter, T. M. Martinetz, and K. J. Schulten. Neuronale Netze. Addison-Wesley, 1991.

    Google Scholar 

  35. D. J. Willshaw and C. von der Malsburg. How patterned neural connections can be set up by self-organization. Proceedings of the Royal Society London, B194(1117):431–445, 1976.

    Google Scholar 

  36. W. H. Wolberg and O. Mangasarian. Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proceedings of the National Academy of Sciences, U.S.A., 87(1):9193–9196, 1990.

    Google Scholar 

  37. C. F. J. Wu. On the convergence properties of the em algorithm. The Annals of Statistics, 11(1):95–103, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Camastra .

Problems

Problems

6.1

Implement batch K-Means and test it on Iris Data  [11] that can be downloaded at ftp.ics.uci.edu/pub/machine-learning-databases/iris. Plot the quantization error versus the number of iterations.

6.2

Can K-Means separate clusters nonlinearly separated using only two codevectors? And neural gas and SOM? Explain your answers.

6.3

Study experimentally (e.g., on Iris Data) how the initialization affects K-Means performances.

6.4

Suppose that the empirical quantization error \(E(\mathcal {X})\) of a data set \(\mathcal {X}=(\mathbf{x }_1,\dots ,\mathbf{x }_{\ell })\) assumes the following form:

$$ E(\mathcal {X}) = \frac{1}{2 \ell } \sum _{c=1}^K \sum _{x \in V_c } \left( G(\mathbf{x },\mathbf{x })-2G(\mathbf{x },\mathbf{w }_c)+G(\mathbf{w }_c,\mathbf{w }_c)\right) $$

where the function \(G(\cdot )\) is \(G(x,y)=\exp \left( -\frac{\Vert \mathbf{x }-\mathbf{y }\Vert ^2}{\sigma ^2}\right) \). Find the online K-Means learning rule, in this case.

6.5

Suppose that the empirical quantization error \(E(\mathcal {X})\) of a data set \(\mathcal {X}\) assumes the form of Exercise 4. Find the neural gas learning rule.

6.6

Implement K-Means online and test it on Wisconsin Breast Cancer Database [36] which can be dowloaded at ftp.ics.uci.edu/pub/machine-learning-databases/breast-cancer-wisconsin. Compare its performances with Batch K-Means’s ones. Use in both cases only two codevectors.

6.7

Use SOM-PAK on Wisconsin Breast Cancer Database. Divide the data in three parts. Train SOM on the first part of data (training set) changing number of codevectors and other neural network parameters (e.g. learning rate). Select the neural network configuration (best SOM) that has the best performance on the second part of data (validation set). Finally measure the best SOM performances on the third part of data (test set).

6.8

Using the function sammon of SOM-PAK visualize the codebook produced by best SOM (see Exercise 7).

6.9

Permute randomly Wisconsin Breast Cancer Database and repeat again the Exercise 7. Compare and discuss the results.

6.10

Implement neural gas and test it on Spam Data which can be dowloaded at ftp.ics.uci.edu/pub/machine-learning-databases/spam. Use only two codevectors.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Camastra, F., Vinciarelli, A. (2015). Clustering Methods. In: Machine Learning for Audio, Image and Video Analysis. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/978-1-4471-6735-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6735-8_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6734-1

  • Online ISBN: 978-1-4471-6735-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics