Advertisement

Clustering Methods

  • Francesco Camastra
  • Alessandro Vinciarelli
Chapter
Part of the Advanced Information and Knowledge Processing book series (AI&KP)

Abstract

What the reader should know to understand this chapter \(\bullet \) Basic notions of calculus and linear algebra. \(\bullet \) Basic notions of machine learning. \(\bullet \) Programming skills to implement some computer projects proposed in the Problems section.

Keywords

Quantization Error Voronoi Region Fuzzy Cluster Algorithm General Topographic Mapping Complete Data Likelihood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Baraldi and P. Blonda. A survey of fuzzy clustering algorithms for pattern recognition. IEEE Transactions on System, Man and Cybernetics-B, 29(6):778–801, 1999.Google Scholar
  2. 2.
    J. C. Bedzek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, 1981.Google Scholar
  3. 3.
    C. M. Bishop. Neural Networks for Pattern Recognition. Cambridge University Press, 1995.Google Scholar
  4. 4.
    C. M. Bishop, M. Svensen, and C. K. I. Williams. GTM: the generative topographic mapping. Neural Computation, 10(1):215–234, 1998.Google Scholar
  5. 5.
    F. Camastra. Data dimensionality estimation methods: A survey. Pattern Recognition, 36(12):215–234, 2003.Google Scholar
  6. 6.
    F.L. Chung and T. Lee. Fuzzy competitive learning. Neural Networks, 7(3):539–551, 1994.Google Scholar
  7. 7.
    P. Demartines and J. Herault. Curvilinear component analysis: A self-organizing neural network for nonlinear mapping in cluster analysis. IEEE Transactions on Neural Networks, 8(1):148–154, 1997.Google Scholar
  8. 8.
    A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via the em algorithm. Journal Royal Statistical Society, 39(1):1–38, 1977.Google Scholar
  9. 9.
    R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley, 2001.Google Scholar
  10. 10.
    E. Erwin, K. Obermayer, and K. Schulten. Self-organizing maps: ordering, convergence properties and energy functions. Biological Cybernetics, 67(1):47–55, 1992.Google Scholar
  11. 11.
    R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2):179–188, 1936.Google Scholar
  12. 12.
    E. Forgy. Cluster analysis of multivariate data; efficiency vs. interpretability of classifications. Biometrics, 21(1):768, 1965.Google Scholar
  13. 13.
    B. Fritzke. Growing cell structures- a self organizing network for unsupervised and supervised learning. Neural Networks, 7(9):1441–1460, 1994.Google Scholar
  14. 14.
    B. Fritzke. A growing neural gas learns topologies. In Advances in Neural Information Processing Systems 7, pages 625–632. MIT Press, 1995.Google Scholar
  15. 15.
    R. Gray. Vector quantization. IEEE Transactions on Acoustics, Speech and Signal Processing Magazine, 1(2):4–29, 1984.Google Scholar
  16. 16.
    R. M. Gray. Vector Quantization and Signal Compression. Kluwer, 1992.Google Scholar
  17. 17.
    P. J. Huber. Robust Statistics. John Wiley, 1981.Google Scholar
  18. 18.
    A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Comput. Surveys, 31(3):264–323, 1999.Google Scholar
  19. 19.
    I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, 1986.Google Scholar
  20. 20.
    T. Kohonen. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1):59–69, 1982.Google Scholar
  21. 21.
    T. Kohonen. Self-Organizing Map. Springer-Verlag, 1997.Google Scholar
  22. 22.
    T. Kohonen, J. Hynninen, J. Kangas, and J. Laaksonen. Som-pak: The self-organizing map program package. Technical report, Laboratory of Computer and Information Science, Helsinki University of Technology, 1996.Google Scholar
  23. 23.
    Y. Linde, A. Buzo, and R. Gray. Least square quantization in pcm. IEEE Transaction on Information Theory, 28(2):129–137, 1982.Google Scholar
  24. 24.
    S. P. Lloyd. An algorithm for vector quantizer design. IEEE Transaction on Communications, 28(1):84–95, 1982.Google Scholar
  25. 25.
    J. Mac Queen. Some methods for classifications and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical statistics and probability, pages 281–297. University of California Press, 1967.Google Scholar
  26. 26.
    J. Makhoul, S. Roucos, and H. Gish. Vector Quantization in speech coding. Proceedings of IEEE, 73(11):1551–1588, 1985.Google Scholar
  27. 27.
    T. E. Martinetz and K. J. Schulten. A “neural gas” network learns topologies. In Artificial Neural Networks, pages 397–402. North-Holland, 1991.Google Scholar
  28. 28.
    T. E. Martinetz and K. J. Schulten. Neural-gas network for vector quantization and its application to time-series prediction. IEEE Transaction on Neural Networks, 4(4):558–569, 1993.Google Scholar
  29. 29.
    T. E. Martinetz and K. J. Schulten. Topology representing networks. Neural Networks, 7(3):507–522, 1994.Google Scholar
  30. 30.
    S. M. Omohundro. The delaunay triangulation and function learning. Technical report, International Computer Science Institute, 1990.Google Scholar
  31. 31.
    N. R. Pal, K. Pal, and J. C. Bedzek. A mixed c-means clustering model. In Proceedings of IEEE International Conference on Fuzzy Systems, pages 11–21. IEEE Press, 1997.Google Scholar
  32. 32.
    F. P. Preparata and M. I. Shamos. Computational geometry. Springer-Verlag, 1990.Google Scholar
  33. 33.
    R. Redner and H. Walker. Mixture densities, maximum likelihood and the em algorithm. SIAM Review, 26(2), 1984.Google Scholar
  34. 34.
    H. J. Ritter, T. M. Martinetz, and K. J. Schulten. Neuronale Netze. Addison-Wesley, 1991.Google Scholar
  35. 35.
    D. J. Willshaw and C. von der Malsburg. How patterned neural connections can be set up by self-organization. Proceedings of the Royal Society London, B194(1117):431–445, 1976.Google Scholar
  36. 36.
    W. H. Wolberg and O. Mangasarian. Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proceedings of the National Academy of Sciences, U.S.A., 87(1):9193–9196, 1990.Google Scholar
  37. 37.
    C. F. J. Wu. On the convergence properties of the em algorithm. The Annals of Statistics, 11(1):95–103, 1983.Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Department of Science and TechnologyParthenope University of NaplesNaplesItaly
  2. 2.School of Computing Science and the Institute of Neuroscience and PsychologyUniversity of GlasgowGlasgowUK

Personalised recommendations