Real-Time Hand Pose Recognition

  • Francesco CamastraEmail author
  • Alessandro Vinciarelli
Part of the Advanced Information and Knowledge Processing book series (AI&KP)


What the reader should know to understand this chapter \(\bullet \) Color Models (Chap.  3). \(\bullet \) Learning Vector Quantization (Chap.  8).


Learn Vector Quantization Hand Shape Hand Region Hand Model Data Glove 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    O. Al-Jarrah and A. Halawani. Recognition of gesture in arabic sign language using neuro-fuzzy systems. Artificial Intelligence, 133(1–2):117–138, 2001.Google Scholar
  2. 2.
    M. Al-Roussan, K. Assaleh, and A. Talaa. Video-based signer independent arabic sign language recognition using hidden-markov models. Applied Soft Computing, 9:990–999, 2009.Google Scholar
  3. 3.
    O. Aran, T. Burger, A. Caplier, and L. Akarun. A belief-based sequential fusion approach for fusing manual signs and non-manual signals. Pattern Recognition, 42:812–822, 2009.Google Scholar
  4. 4.
    R.T. Azuma. A survey of augmented reality. Presence, 6(4):355–385, 1997.Google Scholar
  5. 5.
    R.T. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre. Recent advances in augmented reality. IEEE Computer Graphics and Applications, 21(6):34–47, 2001.Google Scholar
  6. 6.
    B. Bauer and K.F. Kraiss. Video-based sign recognition using self-organizing subunits. In Proceedings of the 16th International Conference on Pattern Recognition, pages 434–437, 2002.Google Scholar
  7. 7.
    K. Bhuyan, D.R. Neog, and K.M. Kar. Fingertip detection for handpose recognition. International Journal on Computer Science and Engineering, 4(3):501–511, 2012.Google Scholar
  8. 8.
    M. Billinghurst. Put that where? voice and gesture at the graphics interface. SIGGRAPH Computer Graphics, 32(4):60–63, 1998.Google Scholar
  9. 9.
    G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly, Cambridge (USA), 2008.Google Scholar
  10. 10.
    G.C. Burdea and P. Coiffet. Virtual Reality Technology. John-Wiley & Sons, New York, 2003.Google Scholar
  11. 11.
    F. Camastra and D. De Felice. A lvq-based hand gesture recognizer using a data glove. In Neural Nets and Surroundings, pages 159–168. Springer, 2012.Google Scholar
  12. 12.
    H.D. Cheng, X.H. Jiang, Y. Sun, and J. Wang. Color image segmentation: advances and prospects. Pattern Recognition, 34(12):2259–2281, 2001.Google Scholar
  13. 13.
    A. DelBimbo. Visual Information Processing. Morgan Kaufmann Publishers, San Francisco, 1999.Google Scholar
  14. 14.
    L. Dipietro, A.M. Sabatini, and P. Dario. A survey of glove-based systems and their applications. IEEE Transactions on Systems, Man and Cybernetics, 38(4):461–482, 2008.Google Scholar
  15. 15.
    G. Drew Kessler, L.F. Hodges, and N. Walker. Evaluation of the cyberglove as a whole-hand input device. ACM Transactions on Computer-Human Interaction, 2(4):263–283, 1995.Google Scholar
  16. 16.
    T. Drummond and R. Cipolla. Real-time visual tracking of complex structures. IEEE Transaction on Pattern Analysis and Machine Intelligence, 24(7):932–946, 2002.Google Scholar
  17. 17.
    A. Erol, G. Bebis, M. Nicolescu, R.D. Boyle, and X. Twombly. Vision-based hand pose estimation: A review. Computer Vision and Image Understanding, 108:52–73, 1998.Google Scholar
  18. 18.
    W. Gao, G.L. Fang, D.B. Zhao, and Y.Q.A. Chen. A chinese sign language recognition system based on sofm/srn/hmm. Pattern Recognition, 37:2389–2402, 2004.Google Scholar
  19. 19.
    R.C. Gonzales and R.E. Woods. Digital Image Processing. Prentice-Hall, Upper Saddle River, 2002.Google Scholar
  20. 20.
    M.-K. Hu. Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, 8(2):179–187, 1962.Google Scholar
  21. 21.
    S.-I. Joo, S.-H. Weon, and H.-I. Choi. Real-time depth-based hand detection and tracking. The Scientific World Journal, pages 1–13, 2014.Google Scholar
  22. 22.
    A Kendon. How gestures can become like words. In Crosscultural perspectives in nonverbal communication, pages 131–141, Toronto, Hogrefe, 1988.Google Scholar
  23. 23.
    J.S. Kim, W. Jang, and Z. Bien. A dynamic gesture recognition system for the korean sign language (ksl). IEEE Transactions on Systems, Man and Cybernetics, Part B, 26:354–359, 1996.Google Scholar
  24. 24.
    T. Kohonen, J. Hynninen, J. Kangas, J. Laaksonen, and K. Torkkola. Lvq-pak: The learning vector quantization program package. Technical Report A30, Helsinki University of Technology, Laboratory of Computer and Information Science, 1996.Google Scholar
  25. 25.
    L. Lamberti and F. Camastra. Real-time hand gesture recognition using a color glove. In Image Analysis and Processing - ICIAP 2011, pages 365–373. Springer, 2011.Google Scholar
  26. 26.
    L. Lamberti and F. Camastra. Handy: A real-time three color glove-based gesture recognizer with learning vector quantization. Expert Systems with Applications, 39:10489–10494, 2012.Google Scholar
  27. 27.
    X. Liu and K. Fujimura. Hand gesture recognition using depth data. In Proceedings of the 6th International Conference on Automatic Face and Gesture Recognition, pages 529–534, 2004.Google Scholar
  28. 28.
    D.G. Lowe. Fitting parameterized three-dimensional models to images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(5):441–450, 1991.Google Scholar
  29. 29.
    S. Malassiotis and M.G. Strintzis. Real-time hand posture recognition using range data. Image and Vision Computing, 26(7):1027–1037, 2008.Google Scholar
  30. 30.
    Z. Mo and U. Neumann. Real-time hand pose recognition using low-resolution depth images. In Proceedings of the 2006 IEEE Computer Society on Computer Vision and Pattern Recognition (CVPR’06), pages 1499–1505, 2006.Google Scholar
  31. 31.
    J. O’ Rourke and N.I. Badler. Model-based image analysis of human motion using constraint propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(6):522–536, 1980.Google Scholar
  32. 32.
    I. Oikonomidis, N. Kyriazis, and A.A. Argyros. Efficient model-based 3d tracking of hand articulations using kinect. In British Machine Vision Conference on Pattern Recognition, pages 101.1–101.11, 2011.Google Scholar
  33. 33.
    N. Otsu. A threshold selection method from gray-level histogram. IEEE Transactions on Systems, Man and Cybernetics, SMC-9(1):62–66, 2007.Google Scholar
  34. 34.
    M.S. Park, Md.M. Hasan, J.M. Kim, and O.S. Chae. Hand detection and tracking using depth and color information. In Proceedings of ICPV’12, pages 779–785, 2012.Google Scholar
  35. 35.
    D.L. Quam. Gesture recognition with a data glove. In IEEE National Aerospace and Electronic Conference, pages 755–760. IEEE, 1990.Google Scholar
  36. 36.
    F. Quek, D. McNeill, R. Bryll, S. Duncan, X.-F. Ma, C. Kirbas, K.E. McCullogh, and R. Ansari. Multimodal human discourse: gesture and speech. ACM Transactions on Computer-Human Interaction, 9(3):171–193, 2002.Google Scholar
  37. 37.
    F.K.H. Quek. Unencumbered gestural interaction. IEEE Multimedia, 3(4):36–47, 2007.Google Scholar
  38. 38.
    Y. Ren and C. Gu. Real-time hand gesture recognition based on vision. In Entertainment for Education, Digital Techniques and Systems, pages 468–475. Springer, 2010.Google Scholar
  39. 39.
    T. Starner, J. Weaver, and A. Pentland. Real-time american sign language recognition using desk and wearable computer based video. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12):1371–1375, 1998.Google Scholar
  40. 40.
    H.I. Suk and B.H. Sin. Dynamic bayesian network based two-hand gesture recognition. Journal of KIISE: Software and Applications, 35(4), 2008.Google Scholar
  41. 41.
    P. Suryanarayan. Dynamic hand pose recognition using depth data. In 2010 International Conference on Pattern Recognition, pages 3105–3108, 2010.Google Scholar
  42. 42.
    P. Trinindade, J. Lobo, and J.P. Barreto. Hand gesture recognition using color and depth images enhanced with hand angular pose data. In Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pages 71–76, 2012.Google Scholar
  43. 43.
    M. Van der Bergh and L. Van Gool. Combining rgb and tof cameras for real-time 3d hand gesture interaction. In Proceedings of 2011 IEEE Workshop on Application of Computer Vision (WACV), pages 66–72, 2011.Google Scholar
  44. 44.
    R.Y. Wang and J. Popovic. Real-time hand-tracking with a color glove. ACM Transactions on Graphics, 28(3):461–482, 2009.Google Scholar
  45. 45.
    A. Wexelblat. An approach to natural gesture in virtual environments. ACM Transactions on Computer-Human Interaction, 2(3):179–200, 1995.Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Department of Science and TechnologyParthenope University of NaplesNaplesItaly
  2. 2.School of Computing Science and the Institute of Neuroscience and PsychologyUniversity of GlasgowGlasgowUK

Personalised recommendations