Skip to main content

Part of the book series: Health Informatics ((HI))

Abstract

As computer-based electronic patients’ records replaced paper-based charts, hospital medical records departments gave way to computer centers that stored data on magnetic disks. As computer storage became cheaper and database designs became more efficient, medical databases grew in size and variety. Federated databases could store large volumes of aggregated data in multiple partitions, or as functionally oriented databases that were logically interconnected. Directly accessible from clinical applications, they allowed users to simultaneously access and query data for patient care, clinical research, and financial reimbursement. Extended central databases collected and managed data from different databases. Known as data warehouses, they could service ever-increasing volumes of data collected from ever-changing medical technologies. Larger warehouses developed partitions and data marts for subsets of data to serve users with specific needs. The need to store and query large collections of data led to the development of online analytical processing (OLAP), distributed database systems, distributed database management systems, and translational data processing between multiple data warehouses. With more powerful computers in the 1990s, physicians began to enter data directly into the patient’s electronic health record using the keyboard, mouse, and clinical workstation. Dedicated computers became database servers to store and integrate multiple databases. In the 2000s electronic health records became more common; in the 2010s federal funding produced more widespread diffusion of electronic health records, and advances in informatics resulted in more efficient data management of expanding, multi-media, patient care databases.

Sections of this chapter are reproduced from author Collen’s earlier work Computer Medical Databases, Springer (2012).

Author Collen was deceased at the time of publication. Bleich and Slack edited this chapter on his behalf after his death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander MJ, Siegel C. Opinions and feelings: the validity of attitudes toward computers. Proc SCAMC. 1984; 540–2.

    Google Scholar 

  2. Anderson J, Jay S. The diffusion of computer applications in medicine: network locations and innovation adoption. Proc SCAMC 1984; 549–52.

    Google Scholar 

  3. Anderson J. Personal communications to M. Collen. 1986.

    Google Scholar 

  4. Anderson JG, Jay SJ, Schweer HM, Anderson MM. Teaching physicians to use a computer-based information system. Proc AAMSI. 1987a; 207–12.

    Google Scholar 

  5. Anderson JG, Jay SJ, Anderson MM, Schweer HM. What do physicians think about computers? Proc AAMSI. 1987b; 213–7.

    Google Scholar 

  6. Anderson JG, Jay SJ, Anderson M, Hunt TJ. Evaluating the potential effectiveness of using computerized information systems to prevent adverse drug events. Proc AMIA. 1997;9:228–32.

    Google Scholar 

  7. Anderson RJ, Young WW. Microcomputers as a management tool for hospital pharmacy directors. Proc SCAMC. 1984; 231–3.

    Google Scholar 

  8. Anderson JG, Jay SJ, Perry J, Anderson MM. Diffusion of computer applications among physicians. In: Salamon R, Protti D, Moehr J, editors. Proceedings international symposium on medical informatics and education. Victoria: University of Victoria; 1989. p. 339–42.

    Google Scholar 

  9. AP (Associated Press). Felony indictment in computer virus case. San Francisco Chronicle July 17, 1989; A4(col 1).

    Google Scholar 

  10. Ash SR, Mertz SL, Ulrich DK. The computerized notation system: a portable, self-contained system for entry of physicians’ and nurses’ notes. J Clin Eng. 1983;8:147–56.

    Article  CAS  PubMed  Google Scholar 

  11. Ash SR, Ulrich DK, Laxton DE. The total recall program: a relational office database interfacable with briefcase computers. Proc SCAMC. 1984; 429–32.

    Google Scholar 

  12. Ausman RK. Automated storage and retrieval of patient data. Am J Surg. 1967;114:159–66.

    Article  CAS  PubMed  Google Scholar 

  13. Bailey JE. A tested model for measuring and analyzing hospital computer users’ attitudes. Proc AAMSI. 1987; 202–6.

    Google Scholar 

  14. Baird HW, Garfunkel JM. Electronic data processing of medical records. N Engl J Med. 1965;272:1211–5.

    Article  Google Scholar 

  15. Ball MJ, Jacobs SE. Hospital information systems as we enter the decade of the 80’s. Proc SCAMC. 1980;1:646–50.

    Google Scholar 

  16. Ball M, Magnier EA, Raney WO. Thinking of automating your business system? Hosp Financ Manage. 1970;24:12–5.

    Google Scholar 

  17. Ball MJ, Collen MF. Aspects of the computer-based patient record. New York: Springer; 1992.

    Book  Google Scholar 

  18. Ball MJ. Computers: prescription for hospital ills. Datamation. 1975;21:50–1.

    Google Scholar 

  19. Ball MJ, Jacobs SE. Information systems: the status of level 1. Hospitals. 1980a;54:179–86.

    Google Scholar 

  20. Ball MJ, Jacobs SE. Hospital information systems as we enter the decade of the 80s. Proc SCAMC. 1980b:646–50.

    Google Scholar 

  21. Barnett G. Medical information systems at the Massachusetts General Hospital. Proc International Conference in Health Technology Systems. ORSA Health Applications Section. 1974a; 286–95.

    Google Scholar 

  22. Barnett GO. Massachusetts General Hospital computer system. In: Collen MF, editor. Hospital computer systems. New York: Wiley; 1974.

    Google Scholar 

  23. Barnett GO, Greenes RA. High level programming languages. Comput Biomed Res. 1970;3:488–94.

    Article  CAS  PubMed  Google Scholar 

  24. Barnett GO, Greenes RA, Grossman JH. Computer processing of medical text information. Methods Inf Med. 1969;8:177–82.

    CAS  PubMed  Google Scholar 

  25. Barret JP, Hersch PL, Cashwell RJ. Evaluation of the impact of the Technicon medical information system at El Camino Hospital. Part II. Columbus: Battelle Columbus Labs; 1979.

    Google Scholar 

  26. Barrett JP, Hersch PL, Caswell RJ. Evaluation of the impact of the implementation of the Technicon Medical Information System at El Camino Hospital. Part II: economic trend analysis. Final report 1972; 27.

    Google Scholar 

  27. Barsalou T, Wiederhold G. A cooperative hypertext interface to relational databases. Proc SCAMC. 1989; 383–7.

    Google Scholar 

  28. Bean LL, May DL, Skolnick M. The Mormon historical demography project. Hist Methods: J. 1978;11:45–53.

    Article  CAS  Google Scholar 

  29. Beaty TH, Khoury MJ. Interface of genetics and epidemiology. Epidemiol Rev. 2000;22:120–5.

    Article  CAS  PubMed  Google Scholar 

  30. Bitton A, Flier LA, Jha AK. Health information technology in the era of care delivery reform: to what end? JAMA. 2012;307:2593–4.

    Article  CAS  PubMed  Google Scholar 

  31. Bleich HL, Beckley RF, Horowitz GL, Jackson JD, Moody ES, Franklin C, et al. Clinical computing in a teaching hospital. N Engl J Med. 1985;312:756–64.

    Article  CAS  PubMed  Google Scholar 

  32. Blois MS, Henley RR. Strategies in the planning of hospital information systems. Tech Report #1. San Francisco: Office of Med Inform Systems, University of California.

    Google Scholar 

  33. Blois MS, Tuttle MS, Sherertz DD. RECONSIDER: a program for generating differential diagnoses. Proc SCAMC. 1981; 263–8.

    Google Scholar 

  34. Blois MS. Information and medicine: the nature of medical descriptions. Berkeley: University of California Press; 1984.

    Google Scholar 

  35. Blois MS, Wasserman AI. The integration of hospital information subsystems. San Francisco: Office of Medical Information Systems, University of California, San Francisco Medical Center. 1974.

    Google Scholar 

  36. Blum BI, Duncan K. A history of medical informatics. New York: Addison Wesley; 1990.

    Google Scholar 

  37. Blum BI. Information systems at the Johns Hopkins Hospital. Johns Hopkins APL Tech Rev Dig. 1983;4:104–7.

    Google Scholar 

  38. Blum B. Design methodology. Proc SCAMC. 1989; 277–95.

    Google Scholar 

  39. Blum BI. A history of computers. In: Blum B, editor. Clinical information systems. New York: Springer; 1986. p. 1–32.

    Google Scholar 

  40. Blum BI. Design methods for clinical systems. Proc SCAMC. 1986b; 309–15.

    Google Scholar 

  41. Blum BI, Tolchin SG. The impact of technology on hospital information systems. Hawaii Int Conf Syst Sci. 1981; Jan 9, 1989; 14.

    Google Scholar 

  42. Blum BI. TEDIUM and the software process. Cambridge, MA: MIT Press; 1990.

    Google Scholar 

  43. Blum BI, Johns CJ, McColligan EE, Steinwachs DM. Low cost ambulatory medical information system. J Clin Eng. 1979;4:372–7.

    Article  CAS  PubMed  Google Scholar 

  44. Blum BI. Clinical information systems. New York: Springer; 1986.

    Book  Google Scholar 

  45. Blum BI, Lenhard RE. Privacy and security in an oncology information system. Proc SCAMC 1978; 500–8.

    Google Scholar 

  46. Blum RL. Displaying clinical data from a time-oriented database. Comput Biol Med. 1981;11:197–210.

    Article  CAS  PubMed  Google Scholar 

  47. Blum RL, Wiederhold G. Inferring knowledge from clinical data banks: utilizing techniques from artificial intelligence. Proc SCAMC. 1978; 303–7.

    Google Scholar 

  48. Blumenthal D. Advancing health information exchange: a message from the Office of the National Coordinator (ONC), Health and Human Services (HHS). 2010.

    Google Scholar 

  49. Blumenthal D. Meaningful progress toward electronic health information exchange. A message from ONC, HHS. 2009.

    Google Scholar 

  50. Blumenthal D, Tavenner M. The meaningful use of a regulation for electronic health records. N Engl J Med. 2010;363:501–4.

    Article  CAS  PubMed  Google Scholar 

  51. Bokuski M. Correlating gene linkage maps with physical maps of chromosomes. Natl Libr Med News. 1989; 6.

    Google Scholar 

  52. Bond EJ. Hospital information system effectiveness. In: Bekey GA, Schwartz MD, editors. Hospital information systems. New York: Marcel Dekker; 1972. p. 131–48.

    Google Scholar 

  53. Borowitz SM, Wyatt JC. The origin, content, and workload of e-mail consultations. JAMA. 1998;280:1321–4.

    Article  CAS  PubMed  Google Scholar 

  54. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980;32:314.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Bradley F, Vermillion CO, Anderson W. Medical records on punch cards. II. Mod Hosp. 1954;82:83–4. passim.

    CAS  PubMed  Google Scholar 

  56. Brailer DJ, Blumenthal D. Guiding the health information technology agenda. Health Aff. 2010;29:586–95.

    Article  Google Scholar 

  57. Brandt CA, Morse R, Matthews K, Sun K, Deshpande AM, Gadagkar R, et al. Metadata-driven creation of data marts from an EAV-modeled clinical research database. Int J Med Inform. 2002;65:225–41.

    Article  PubMed  Google Scholar 

  58. Brannigan VM. Remote telephone access: the critical issue in patient privacy. Proc SCAMC. 1984; 575–8.

    Google Scholar 

  59. Brook RH, Harris TR, Lewis CE. Sizing up primary care needs. Patient Care. 1977 (July 15); 70–111.

    Google Scholar 

  60. Bryan M. The year of the data base. Personal Comput. 1988; Jan; 100–9.

    Google Scholar 

  61. Buhle Jr E, Goldwein JW, Benjamin I. OncoLink: a multimedia oncology information resource on the Internet. Proc AMIA. 1994; 103–7.

    Google Scholar 

  62. Burnett KK, Battle H, Cant GD. Uniform Health-Care Information Act. Chicago: National Conference of Commissioners on Uniform State Laws; 1985.

    Google Scholar 

  63. Buyse ML. Computer-based information retrieval and decision support for birth defects and genetic disorders. Pediatrics. 1984;74:557–8.

    CAS  PubMed  Google Scholar 

  64. Camp HN, Ridley ML, Walker HK. THERESA: a computerized medical consultant based on the patient record. Proc MEDINFO. 1983; 612–4.

    Google Scholar 

  65. Campbell KE, Cohn SP, Chute CG, Shortliffe EH, Rennels G. Scalable methodologies for distributed development of logic-based convergent medical terminology. Methods Inf Med. 1998;37:426–39.

    CAS  PubMed  Google Scholar 

  66. Campbell-Kelly M, Aspray W, Ensmenger N, Yost JR. Computer: a history of the information machine. Boulder: Westview Press; 2009.

    Google Scholar 

  67. Campbell-Kelly M. Origin of computing. Sci Am. 2009;301:62–9.

    Article  PubMed  Google Scholar 

  68. Carlisle RG. A concept and methodology for evaluating automated information systems for multi-facility health care systems. Proc SCAMC. 1979; 334–8.

    Google Scholar 

  69. Carlisle RG. Measures and indicators of health care system effectiveness and economy. In: Emlet H, editor. Challenges and prospects for advanced medical systems. Miami: Symposia Specialists, Inc; 1978. p. 191–7.

    Google Scholar 

  70. Carson JL, Ray WA, Strom BL. Medical databases. In: Strom BL, editor. Pharmacoepidemiology. New York: Wiley; 2000. p. 307–24.

    Chapter  Google Scholar 

  71. Chaney RJ, Shipman FM, Gorry GA. Using hypertext to facilitate information sharing in biomedical research groups. Proc SCAMC. 1989; 350–4.

    Google Scholar 

  72. Chen RS, Nadkarni P, Marenco L, Levin F, Erdos J, Miller PL. Exploring performance issues for a clinical database organized using an entity-attribute-value representation. JAMIA. 2000;7:475–87.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. CHPL. Certified Health IT Product list. 2015. Office of the National Coordinator: healthit.gov.

    Google Scholar 

  74. Chung CS. Genetic analysis of human family and population data with use of digital computers. Proc of 3rd IBM Medical Symposium Endicott: International Business Machines. 1961; 53–69

    Google Scholar 

  75. Cimino JJ, Socratous SA, Grewal R. The informatics superhighway: prototyping on the World Wide Web. Proc SCAMC. 1995; 111–5

    Google Scholar 

  76. Clayton PD, Urie PM, Marshall HW, Warner HR. A computerized system for the cardiovascular laboratory. IEEE Proceedings of Conference on Computers in Cardiology, Bethesda, Maryland 1974; 97.

    Google Scholar 

  77. Codd EF. Further normalizations of the data base relational model. In: Rustin R, editor. Data base systems. Englewood Cliffs: Prentice-Hall; 1972. p. 33–64.

    Google Scholar 

  78. Codd EF. A relational model of data for large shared data banks. Commun ACM. 1970;13:377–87.

    Article  Google Scholar 

  79. Codd EF, Codd SB, Salley CT. Providing OLAP (on-line analytical processing) to user-analysts: an IT mandate. San Jose, CA: Codd and Associates. 1993; 32.

    Google Scholar 

  80. Coffey RM. How a medical information system affects hospital costs: the El Camino hospital experience. NCHS&R, DHEW Pub No. (PHS) 80–3265; 1980.

    Google Scholar 

  81. Collen M. A guide matrix for technological system evaluation. J Med Syst. 1978;2:249–54.

    Article  Google Scholar 

  82. Collen M. Problems with presentation of computer data. In: Anderson J, editor. Information processing of medical records. Amsterdam: North-Holland; 1970. p. 407–11.

    Google Scholar 

  83. Collen MF. A history of medical informatics in the United States, 1950 to 1990. Indianapolis: American Medical Informatics Association; 1995.

    Google Scholar 

  84. Collen MF. The origins of informatics. JAMIA. 1994;1:91–107.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Collen MF. Clinical research databases – a historical review. J Med Syst. 1990;14:323–44.

    Article  CAS  PubMed  Google Scholar 

  86. Collen MF. Origins of medical informatics. West J Med. 1986;145:778–85.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Collen MF. The cost-effectiveness of health checkups – an illustrative study. West J Med. 1984;141:786–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Collen MF. Foreword. Proc AMIA. 1982.

    Google Scholar 

  89. Collen MF. General requirements of a medical information (MIS). Comput Biomed Res. 1970;3:393–406.

    Article  CAS  PubMed  Google Scholar 

  90. Collen MF. Medical bibliographic databases. In: Collen MF, editor. Computer medical databases. London: Springer; 2012.

    Chapter  Google Scholar 

  91. Collen MF. Automated multiphasic health testing. In: Collen MF, editor. Multiphasic health testing services. New York: Wiley; 1974. p. 274–94.

    Google Scholar 

  92. Collen MF, Van Brunt EE, Davis LS. Problems of computerization of large computer medical record systems. Inform Health Soc Care. 1976;1:47–53.

    Article  Google Scholar 

  93. Collins FS. Identification of disease genes: recent successes. Hosp Pract (Off Ed). 1991;26:93–8.

    CAS  Google Scholar 

  94. Coltri A. Databases in health care. In: Lehmann HP, editor. Aspects of electronic health record systems. New York: Springer; 2006. p. 225–51.

    Google Scholar 

  95. Commission for Privacy Protection. Personal privacy in an information society: the report of the Privacy Protection Study Commission. Washington, DC: The Commission; 1977.

    Google Scholar 

  96. Conn J. Commonwealth Fund names Dr. David Blumenthal as next president. Modern Healthcare.com. 2012a.

    Google Scholar 

  97. Conn J. No single winner in doc’s EHR rankings. Modern Healthcare.com. 2012b.

    Google Scholar 

  98. Connelly D. The deployment of a World Wide Web (W3) based medical information system. Proc AMIA. 1995; 771–7.

    Google Scholar 

  99. Connolly TM, Begg CE. Database management systems: a practical approach to design. New York: Addison-Wesley; 1999.

    Google Scholar 

  100. Cook M. Introduction of a user-oriented THIS into a community hospital setting-nursing. Proc MEDINFO. 1974; 303–4.

    Google Scholar 

  101. Cooper GF, Hennings-Yeomans P, Visweswaran S, Barmada M. An efficient Bayesian method for predicting clinical outcomes from genome-wide data. Proc AMIA Annu Symp. 2010; 127–31.

    Google Scholar 

  102. Corvin A, Craddock N, Sullivan PF. Genome-wide association studies: a primer. Psychol Med. 2010;40:1063–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Countie MA, Kjerulff KH, Salloway JC, Campbell BC. Implementing computerization in hospitals: a case study of the behavioral and attitudinal impacts of a medical information system. In: Anderson J, Jay SJ, editors. Use and impacts of computers in clinical medicine. New York: Springer; 1987. p. 224–37.

    Google Scholar 

  104. Curran WJ, Stearns B, Kaplan H. Privacy, confidentiality and other legal considerations in the establishment of a centralized health-data system. N Engl J Med. 1969;281:241.

    Article  CAS  PubMed  Google Scholar 

  105. Curran WJ, Kaplan H, Laska EM, Bank R. Protection of privacy and confidentiality: unique law protects patient records in a multistate psychiatric information system. Science. 1973;182:797–802.

    Article  CAS  PubMed  Google Scholar 

  106. Cutts JW, Mitchell JA. Microcomputer-based genetics offer database system. Proc AAMSI. 1985; 487–91.

    Google Scholar 

  107. Davis LS. Data processing facilities. In: Collen M, editor. Hospital computer systems. New York: Wiley; 1974. p. 32–51.

    Google Scholar 

  108. Davis LS. Prototype for future computer medical records. Comput Biomed Res. 1970;3:539–54.

    Article  CAS  PubMed  Google Scholar 

  109. Davis LS, Terdiman J. The medical data base. In: Collen MF, editor. Hospital computer systems. New York: Wiley; 1974. p. 52–79.

    Google Scholar 

  110. Davis LS. A system approach to medical information. Methods Inf Med. 1973;12:1–6.

    CAS  PubMed  Google Scholar 

  111. Davis LS, Collen MF, Rubin L, Van Brunt EE. Computer-stored medical record. Comput Biomed Res. 1968;1:452–69.

    Article  CAS  PubMed  Google Scholar 

  112. Dawson J. A family of models. Byte. 1989;14:277–86.

    Google Scholar 

  113. DeBrota D. Man/microcomputer telephone communication. MD Comput. 1986;3:24.

    CAS  PubMed  Google Scholar 

  114. Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K, et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics. 2010;26:1205–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. DesRoches CM, Campbell EG, Vogeli C, Zheng J, Rao SR, Shields AE, et al. Electronic health records’ limited successes suggest more targeted uses. Health Aff. 2010;29:639–46.

    Article  Google Scholar 

  116. Dick RS, Steen EB, Detmer DE. The computer-based patient record: an essential technology for health care. Washington, DC: National Academy Press; 1991.

    Google Scholar 

  117. DiGiulio LW, Zinn TK. Actualizing system benefits – part V. Comput Healthc. 1988;9:30–2.

    CAS  PubMed  Google Scholar 

  118. Dintleman SM, Maness AT, Skolnick M, Bean LL. In: Dyke B, Morrill WT, editors. GENISYS: a genealogical information system. New York: Academic; 1980. p. 94–114.

    Google Scholar 

  119. Dinu V, Nadkarni P. Guidelines for the effective use of entity-attribute-value modeling for biomedical databases. Int J Med Inform. 2007;76:769–79.

    Article  PubMed Central  PubMed  Google Scholar 

  120. Doherty RB. The certitudes and uncertainties of health care reform. Ann Intern Med. 2010;152:679–82.

    Article  PubMed  Google Scholar 

  121. Drazen EL, Seidel FJ. Implementation monitoring: a critical step towards realizing benefits from hospital information systems. Proc SCAMC. 1984; 148–51.

    Google Scholar 

  122. Drazen EL, Metzger J. Methods for evaluating automated hospital information systems. Proc SCAMC. 1980;1:673–8.

    Google Scholar 

  123. Drazen EL, Metzger J. Methods for evaluating costs of automated hospital information systems. NCHRS research summary series. DHHS Pub No. (PHS) 81–3283.

    Google Scholar 

  124. Duke JR, Bowers GH. Scope and sites of electronic health records systems. In: Lehmann HP, Roderer N, Abbott P, editors. Aspects of electronic health record systems. New York: Springer; 2006. p. 89–114.

    Google Scholar 

  125. Eden HS, Eden M. Changes: the technology’s effect on the health care system. In: Eden HS, Eden M, editors. Microcomputers in patient care. Park Ridge: Noyes Medical Publications; 1981. p. 47.

    Google Scholar 

  126. Emlet HE. Methodology for evaluation of medical information systems. In: Emlet H, editor. Challenges and prospects for advanced medical systems. Miami: Symposia Specialists; 1978. p. 183–90.

    Google Scholar 

  127. Emlet HE, Carlisle RG. Measures and indicators for evaluation of innovations to the health care system. Falls Church: Analytic Services; 1977.

    Google Scholar 

  128. Epstein MH, Epstein LH, Emerson RG. A low cost micro-computer based local area network for medical office and medical center automation. Proc SCAMC. 1984; 793–5.

    Google Scholar 

  129. Evans S, Lemon SJ, Deters CA, Fusaro RM, Lynch HT. Automated detection of hereditary syndromes using data mining. Comput Biomed Res. 1997;30:337–48.

    Article  CAS  PubMed  Google Scholar 

  130. Evans S, Lemon SJ, Deters C, Fusaro RM, Durham C, Snyder C, et al. Using data mining to characterize DNA mutations by patient clinical features. Proc AMIA. 1997b; 253–7.

    Google Scholar 

  131. Feinstein AR. The problem with the “problem-oriented medical record”. Ann Intern Med. 1973;78:752–62.

    Google Scholar 

  132. Feistel H. Cryptography and computer privacy. Sci Am. 1973;228:15–23.

    Article  Google Scholar 

  133. Fernandopulle R, Patel N. How the electronic health record did not measure up to the demands of our medical home practice. Health Aff. 2010;29:622–8.

    Article  Google Scholar 

  134. Flagle CD. Methodological problems in technology assessment of medical informatics. Proc AAMSI. 1985; 414–8.

    Google Scholar 

  135. Flagle CD. Evaluation of healthcare. Proc MEDINFO. 1983; 46–9.

    Google Scholar 

  136. Flagle CD. Information requirements for evaluation and planning of innovative health services. Proc MEDINFO. 1980; 615–9.

    Google Scholar 

  137. Flagle CD. An overview of evaluation methods. In: Goldman J, editor. Health care technology evaluation. Lecture notes in medical informatics. New York: Springer; 1979. p. 33–42.

    Google Scholar 

  138. Flagle CD. Evaluation and control of technology in health services. Conference on Technology and Health Care Systems in the 1980’s. DHEW Pub (HSM) 73-3016. 1972; 213–24.

    Google Scholar 

  139. Flagle CD. Evaluation techniques for medical information systems. Comput Biomed Res. 1970;3:407–14.

    Article  Google Scholar 

  140. Frawley WJ, Piatetsky-Shapiro G, Matheus CJ. Knowledge discovery in databases: an overview. AI Mag. 1992;13:57.

    Google Scholar 

  141. Freed RN. Legal aspects of computer use in medicine. In: Medical progress and the law. Durham: Duke University School of Law. 1967; 674–706.

    Google Scholar 

  142. Frieden J. Obama signs Healthcare Reconciliation Bill. MePage Today, March 30, 2010.

    Google Scholar 

  143. Friedman C, Hripcsak G, Johnson SB, Cimino JJ, Clayton PD. A generalized relational schema for an integrated clinical patient database. Proc SCAMC. 1990; 335–9.

    Google Scholar 

  144. Fries JF. The chronic disease data bank: first principles to future directions. J Med Philos. 1984;9:161–80.

    Article  CAS  PubMed  Google Scholar 

  145. Fries JF. Alternatives in medical record formats. Med Care. 1974;12:871–81.

    Article  CAS  PubMed  Google Scholar 

  146. Gabrieli ER. Interface problems between medicine and computers. Proc SCAMC. 1984; 93–5

    Google Scholar 

  147. Gall J. Computerized hospital information system cost-effectiveness: a case study. In: van Egmond J, de Vries Robbe PF, Levy AH, eds. Amsterdam: North Holland. 1976; 281–93

    Google Scholar 

  148. Gall J. Cost-benefit analysis: total hospital informatics. In: Koza RC, editor. Health information systems evaluation. Boulder: Colorado Associated University Press; 1974. p. 299–327.

    Google Scholar 

  149. Galland J, Skolnick MH. A gene mapping expert system. Comput Biomed Res. 1990;23:297–309.

    Article  CAS  PubMed  Google Scholar 

  150. Garfolo B, Keltner L. A computerized disease register. Proc MEDINFO. 1983; 909–12.

    Google Scholar 

  151. Garrett L, Stead WW, Hammond WE. Conversion of manual to total computerized medical records. J Med Syst. 1983;7:301–5.

    Article  PubMed  Google Scholar 

  152. Garrett P, Seidman J. EMR vs EHR – what is the difference? HealthITBuzz, January 2011.

    Google Scholar 

  153. Gersting J, Conneally P, Beidelman K. Huntington’s disease research Roster support with a microcomputer database management system. Proc SCAMC. 1983; 746–9.

    Google Scholar 

  154. Gersting JM. Rapid prototyping of database systems in human genetics data collection. J Med Syst. 1987;11:177–89.

    Article  PubMed  Google Scholar 

  155. Giannakopoulos S, Hammer J. Requirements for the small office practice. Proc SCAMC. 1980; 1778–81.

    Google Scholar 

  156. Glichlich RE, Dreyer NA. Registries for evaluating patient outcomes: a user’s guide AHRQ Pub. # 7-EHC001-1. Rockville: Agency for Healthcare Research and Quality; 2007. p. 1–233.

    Google Scholar 

  157. Glowniak JV. Medical resources on the Internet. Ann Intern Med. 1995;123:123–31.

    Article  CAS  PubMed  Google Scholar 

  158. Goldman J. Evaluation of technological innovations in health. In: Koza RC, editor. Health information system evaluation. Boulder: Colorado Associated University Press; 1974. p. 45–61.

    Google Scholar 

  159. Gordon BL. Terminology and content of the medical record. Comput Biomed Res. 1970;3:436–44.

    Article  CAS  PubMed  Google Scholar 

  160. Gordon BL. Regularization and stylization of medical records. JAMA. 1970;212:1502–7.

    Article  CAS  PubMed  Google Scholar 

  161. Gorman PN. Evaluation of electronic health record systems. In: Lehmann HP, Abbott P, Roderer N, editors. Aspects of electronic health record systems. New York: Springer; 2006. p. 401–15.

    Google Scholar 

  162. Grann RP. Attitudes and effective use of computers among hospital personnel. Proc SCAMC. 1984; 543–7.

    Google Scholar 

  163. Graves J. Design of a database to support intervention modeling in nursing. Proc MEDINFO. 1986;240:242.

    Google Scholar 

  164. Graves M, Bergeman ER, Lawrence CB. A graph conceptual model for developing human genome center databases. Comput Biol Med. 1996;26:183–97.

    Article  CAS  PubMed  Google Scholar 

  165. Grossman JH, Barnett GO, Koepsell TD, Nesson HR, Dorsey JL, Phillips RR. An automated medical record system. JAMA. 1973;224:1616–21.

    Article  CAS  PubMed  Google Scholar 

  166. Hafner K, Lyon M. Where wizards stay up late: the origins of the Internet. New York: Simon & Schuster; 1996.

    Google Scholar 

  167. Halamka JD. Making the most of federal health information technology regulations. Health Aff. 2010;29:596–600.

    Article  Google Scholar 

  168. Hammon GL, Drake MV. Hospital data processing presents unique security needs. Hospitals. 1976;50:103–5.

    CAS  PubMed  Google Scholar 

  169. Hammond W, Stead W, Straube M, Kelly M, Winfree R. An interface between a hospital information system and a computerized medical record. Proc SCAMC. 1980;3:1537–40.

    Google Scholar 

  170. Hammond WE, Straube MJ, Blunden PB, Stead WW. Query: the language of databases. Proc SCAMC. 1989;13:419–23.

    Google Scholar 

  171. Hammond WE, Stead WW, Straube MJ. Planned networking for medical information systems. Proc SCAMC. 1985; 727–31.

    Google Scholar 

  172. Hammond WE, Stead WW, Feagin SJ, Brantley BA, Straube MJ. Data base management system for ambulatory care. Proc SCAMC. 1977; 173–87.

    Google Scholar 

  173. Harris DK, Polli GJ. Confidentiality of computerized patient information. Am Med Assoc (Resolution 38, A-77). Comput Med (Special report). 1977;1–6.

    Google Scholar 

  174. Health Information Technology for Economic and Clinical Health (HITECH) Act. American Recovery and Reinvestment Act of 2009 (ARRA) Pub. L. No. 111-5. 2009.

    Google Scholar 

  175. Helvey W, Brdlik M, Peterkin K. Online medical databases – 1985: status and prognosis. Healthc Comput Commun. 1985;2:28.

    CAS  PubMed  Google Scholar 

  176. Henley RR, Wiederhold G. An analysis of automated ambulatory medical record systems. San Francisco: Office of Medical Information Systems, University of California, San Francisco Medical Center; 1975.

    Google Scholar 

  177. Herger W. New law can fight computer viruses. USA Today. 1988.

    Google Scholar 

  178. Hersh WR, Brown KE, Donohoe LC, Campbell EM, Horacek AE. Clini web: managing clinical information on the World Wide Web. JAMIA. 1996;3:273–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  179. HIMSS Analytics. Essentials of the U.S Hospital IT Market. Chicago: Health Information Management and Systems Society; 2011.

    Google Scholar 

  180. Hinman EJ. The patient-carried personal health record. In: Hinman EJ, editor. Advanced medical systems: the 3rd century. Miami: Symposia Specialists; 1977. p. 55–62.

    Google Scholar 

  181. Hodge MH. Medical information systems: a resource for hospitals. Germantown: Aspen Publishers, Inc; 1977.

    Google Scholar 

  182. Hoffman LJ. Computers and privacy: a survey. ACM Comput Surv (CSUR). 1969;1:85–103.

    Article  Google Scholar 

  183. Hripcsak G, Allen B, Cimino JJ, Lee R. Access to data: comparing AccessMed with query by review. JAMIA. 1996;3:288–99.

    PubMed Central  CAS  PubMed  Google Scholar 

  184. Jacobs P. Training for an MIS implementation: what does it really cost? Proc SCAMC. 1984; 156–9.

    Google Scholar 

  185. Jelovsek F, Smith R, Blackmon L, Hammond W. Computerized nursery discharge summary. Methods Inf Med. 1977;16:199–204.

    CAS  PubMed  Google Scholar 

  186. Jelovsek FR. Doctor’s office computer prep kit. New York: Springer; 1985.

    Book  Google Scholar 

  187. Jelovsek FR. The medical record: session overview. Proc SCAMC. 1983; 99–100.

    Google Scholar 

  188. Johnson RL. Economic benefits of hospital system automation. US Healthc. 1989;6:38–40. concl.

    Google Scholar 

  189. Johnson SB. Generic data modeling for clinical repositories. JAMIA. 1996;3:328–39.

    PubMed Central  CAS  PubMed  Google Scholar 

  190. Johnson SB, Chatziantoniou D. Extended SQL for manipulating clinical warehouse data. Proc AMIA. 1999; 819–23.

    Google Scholar 

  191. Jones SS, Koppel R, Ridgely MS, Palen TE, Wu S, Harrison MI. Guide to reducing unintended consequences of electronic health records. Rockville: Agency for Healthcare Research and Quality; 2011.

    Google Scholar 

  192. Juni JE, Ponto R. Computer-virus infection of a medical diagnosis computer. N Engl J Med. 1989;320:811–2.

    CAS  PubMed  Google Scholar 

  193. Jydstrup RA, Gross MJ. Cost of information handling in hospitals. Health Serv Res. 1966;1:235.

    PubMed Central  CAS  PubMed  Google Scholar 

  194. Kang K, Merritt A, Conneally P, Gersting J, Rigo T. A medical genetics data base management system. Proc SCAMC. 1978; 524–9.

    Google Scholar 

  195. Karpinski RH, Bleich HL. MISAR: a miniature information storage and retrieval system. Comput Biomed Res. 1971;4:655–60.

    Article  CAS  PubMed  Google Scholar 

  196. Kennedy OG, Colligon SJ, Protte DJ. Impact of medical information systems on health care in the U.S.A. Proc MEDINFO. 1980; 1058–62.

    Google Scholar 

  197. Khosrowpour M. Managing computer fraud/crime in healthcare organizations. Healthc Comput Commun. 1987;4:59–62. 64.

    CAS  PubMed  Google Scholar 

  198. King JL, Schrems EL. Cost-benefit analysis in information systems development and operation. ACM ACM Comput Surv(CSUR). 1978;10:19–34.

    Article  Google Scholar 

  199. Kjerulff KH, Counte MA. Measuring attitudes toward computers: two approaches. Proc SCAMC. 1984; 529–35.

    Google Scholar 

  200. Klarman HE. Application of cost-benefit analysis to health systems technology. In: Collen M, ed. Technology and health care systems in the 1980s. DHEW Pub (HSM) 73-3016. 1973; 225–50.

    Google Scholar 

  201. Kolodner RM, Cohn SP, Friedman CP. Health information technology: strategic initiatives, real progress. Health Aff. 2008;27:w391–5.

    Article  Google Scholar 

  202. Kuhn IM, Wiederhold G, Rodnick JE. Automated medical record systems in the U.S. In: Blum BI, editor. Information systems for patient care. New York: Springer; 1984. p. 199–271.

    Chapter  Google Scholar 

  203. Kuhn IM, Wiederhold G, Rodnick JE, Ransey-Klee D, Benett S, Beck DD. Automated ambulatory record systems in the US. NTIS Publication (1982, August). 1982; 178–89.

    Google Scholar 

  204. Kuhn IM, Wiederhold G. The evolution of ambulatory medical record systems in the US. Proc SCAMC. 1981; 80–5.

    Google Scholar 

  205. Kuzmak PM, Arseniev M, Tolchin SG, Bergan E. Proposal for interfacing MUMPS to an open systems interconnection network architecture. Proc MEDINFO. 1986; 853–7.

    Google Scholar 

  206. Lamson BG. A panel session. Computers in medicine: problems and perspectives. Proc AFIPS Conf. 1971; 195.

    Google Scholar 

  207. Levinson D. Information, computers, and clinical practice. JAMA. 1983;249:607–9.

    Article  CAS  PubMed  Google Scholar 

  208. Levy RP, Cammarn MR, Smith MJ. Computer handling of ambulatory clinic records. JAMA. 1964;190:1033–7.

    CAS  PubMed  Google Scholar 

  209. Liggett B. Why computerized medical records systems are not widely used. Comput Med Record News. 1968;1:1–7.

    Google Scholar 

  210. Lindberg D. The impact of automated information systems applied to health problems. In: Holland WW, editor. Oxford Oxfordshire: Oxford University Press. 1985; 55–76.

    Google Scholar 

  211. Lindberg D. The growth of medical information systems in the United States. Lexington: Lexington Books; 1979.

    Google Scholar 

  212. Lindberg D. Special aspects of medical computer records with respect to data privacy. In: Williams B, ed. Proc 2nd Illinois Conf Med Inform Syst. 1975; 35–8.

    Google Scholar 

  213. Lindberg D. The computer and medical care. Springfield: CC Thomas; 1968.

    Google Scholar 

  214. Lindberg DAB. The development and diffusion of a medical technology: medical information systems. In: Sanders CA et al., editors. Medical technology and the health care system: a study of the diffusion of equipment-embodied technology. Washington, DC: National Academy of Sciences;1979;201–39.

    Google Scholar 

  215. Linowes DF. Personal privacy in an information society: the report of the Privacy Protection Study Commission. Washington, DC: US Govt Print Office; 1977. 052-003-00395-3.

    Google Scholar 

  216. Lloyd SS, Rissing JP. Physician and coding errors in patient records. JAMA. 1985;254:1330–6.

    Article  CAS  PubMed  Google Scholar 

  217. London JW. A computer solution to clinical and research computing needs. Proc SCAMC. 1985; 722–6.

    Google Scholar 

  218. Long JM. On providing an automated health record for individuals. Proc MEDINFO. 1986; 805–9.

    Google Scholar 

  219. Lowe HJ, Lomax EC, Polonkey SE. The World Wide Web: a review of an emerging internet-based technology for the distribution of biomedical information. JAMIA. 1996;3:1–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  220. Lowe HJ, Antipov I, Walker WK, Polonkey SE, Naus GJ. WebReport: a World Wide Web based clinical multimedia reporting system. Proc AMIA. 1996b; 314.

    Google Scholar 

  221. Manos D. CMS pays out more than $5B in incentives. HealthcareIT News. 2012.

    Google Scholar 

  222. Marrs KA, Kahn MG. Extending a clinical repository to include multiple sites. Proc AMIA. 1995; 387–91.

    Google Scholar 

  223. Mathur S, Dinakarpandian D. Automated ontological gene annotation for computing disease similarity. Proc AMIA TBI. 2010; 12.

    Google Scholar 

  224. Maxson E, Jain S, Kendall M, Mostashari F, Blumenthal D. The regional extension center program: helping physicians meaningfully use health information technology. Ann Intern Med. 2010;153:666–70.

    Article  PubMed  Google Scholar 

  225. McCray AT. The nature of lexical knowledge. Methods Inf Med. 1998;37:353–60.

    CAS  PubMed  Google Scholar 

  226. McDonald CJ, Overhage JM, Dexter PR, Blevins L, Meeks-Johnson J, Suico JG, et al. Canopy computing: using the Web in clinical practice. JAMA. 1998;280:1325–9.

    Article  CAS  PubMed  Google Scholar 

  227. McDonald C, Blevins L, Glazener T, Haas J, Lemmon L, Meeks-Johnson J. Data base management, feedback control, and the Regenstrief medical record. J Med Syst. 1983;7:111–25.

    Article  CAS  PubMed  Google Scholar 

  228. McDonald CJ, Hammond WE. Standard formats for electronic transfer of clinical data. Ann Intern Med. 1989;110:333–5.

    Article  CAS  PubMed  Google Scholar 

  229. McDonald CJ, Tierney WM. Computer-stored medical records: their future role in medical practice. JAMA. 1988;259:3433–40.

    Article  CAS  PubMed  Google Scholar 

  230. McDonald CJ, Tierney WM. The Medical Gopher: a microcomputer system to help find, organize and decide about patient data. West J Med. 1986;145:823.

    PubMed Central  CAS  PubMed  Google Scholar 

  231. McDonald CJ, Blevins L, Glazener TT, Lemmon L, Martin D, Valenza M. CARE: a real world medical knowledge base. COMPCON. 1984; 187–91.

    Google Scholar 

  232. McDonald CJ, Murray R, Jeris D, Bhargava B, Seeger J, Blevins L. A computer-based record and clinical monitoring system for ambulatory care. Am J Public Health. 1977;67:240–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  233. McDonald CJ, Wilson G, Blevins L, Seeger J, Chamness D, Smith D, et al. The Regenstrief medical record system. Proceedings of the Annual Symposium on Computer Application in Medical Care 1977b; 168.

    Google Scholar 

  234. McKinney WP, Wagner JM, Bunton G, Kirk LM. A guide to Mosaic and the World Wide Web for physicians. MD Comput: Comput Med Pract. 1994;12:109–14. 141.

    Google Scholar 

  235. McKusick VA. Some computer applications to problems in human genetics. Methods Inf Med. 1964;4:183–9.

    Google Scholar 

  236. McKusick VA, Talbot SA. Analysis of genetic linkage in man with assistance of digital computer. Proc 1st IBM Medical Symp. Poughkeepsie, NY: IBM. 1959; 217–27.

    Google Scholar 

  237. McKusick VA. Forty years of medical genetics. JAMA. 1989;261:3155–8.

    Article  CAS  PubMed  Google Scholar 

  238. McKusick VA. Mendelian inheritance in man: catalogs of autosomal dominant, autosomal recessive, and X-linked phenotypes. Baltimore: Johns Hopkins University Press; 1988.

    Google Scholar 

  239. McKusick VA. Computers in research in human genetics. J Chronic Dis. 1966;19:427–41.

    Article  CAS  PubMed  Google Scholar 

  240. McNamara JJ. Legal aspects of computerized medical records. JAMA. 1968;205:153–4.

    Article  Google Scholar 

  241. Meaney FJ. Databases for genetic services. J Med Syst. 1987;11:227–32.

    Article  CAS  PubMed  Google Scholar 

  242. Merz B. 700 genes mapped at world workshop. JAMA. 1989;262:175.

    Article  CAS  PubMed  Google Scholar 

  243. Michalski RS, Baskin AB, Spackman KA. A logic-based approach to conceptual data base analysis. Inform Health Soc Care. 1983;8:187–95.

    Article  CAS  Google Scholar 

  244. Miller MC, Levkoff AH, Wong YM, Michel Y. Normal newborn nursery information system. Proc AAMSI. 1983; 154–62.

    Google Scholar 

  245. Miller PL, Nadkarni PM, Kidd KK, Cheung K, Ward DC, Banks A, et al. Internet-based support for bioscience research: a collaborative genome center for human chromosome 12. JAMIA. 1995;2:351–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  246. Miller RA, Schaffner KF, Meisel A. Ethical and legal issues related to the use of computer programs in clinical medicine. Ann Intern Med. 1985;102:529–36.

    Article  CAS  PubMed  Google Scholar 

  247. Miller RF. Computers and privacy: what price analytic power? Proc ACM. 1971; 706–16.

    Google Scholar 

  248. Mishelevich DJ, Gipe WG, Roberts JR, et al. Cost-benefit analysis in a computer-based hospital information system. Proc SCAMC. 1979:339–49.

    Google Scholar 

  249. Mishelevich DJ, MacGregor WD, Gipe WG, Granfill LD. Distribution of data processing costs for a hospital information system on a cost-per-incident-of-service basis. Proc SCAMC. 1980:658–64.

    Google Scholar 

  250. Mishelevich DJ, Kesinger G, Jasper M, Inga P, Robinson AL, Gaige W, et al. Medical record control and the computer. Top Health Rec Manage. 1981;2:47–55.

    CAS  PubMed  Google Scholar 

  251. Mitchell JA, Loughman WD, Epstein CJ. GENFILES: a computerized medical genetics information network. II. MEDGEN: the clinical genetics system. Am J Med Genet. 1980;7:251–66.

    Article  CAS  PubMed  Google Scholar 

  252. Moorman P, Schuemie M, van der Lei J. An inventory of publications on electronic medical records revisited. Methods Inf Med. 2009;48:454–8.

    Article  CAS  PubMed  Google Scholar 

  253. Mosquera M. $400 M in EHR incentives delivered. Government Heathcareitnews. 2011.

    Google Scholar 

  254. Mount SA. Annual administrative reviews: medical records. Hospitals. 1965;39:125.

    CAS  PubMed  Google Scholar 

  255. Murphy EA, Sherwin RW. Estimation of genetic linkage: an outline. Methods Inf Med. 1966;5:45–54.

    CAS  PubMed  Google Scholar 

  256. Murphy EA, Schulze J. A program for estimation of genetic linkage in man. Proceedings of 3rd IBM Medical Symposium.“ International Business Machines, New York. 1961.

    Google Scholar 

  257. Nadkarni PM, Cheung K. SQLGEN: a framework for rapid client-server database application development. Comput Biomed Res. 1995;28:479–99.

    Article  CAS  PubMed  Google Scholar 

  258. Nadkarni PM, Marenco L. Easing the transition between attribute-value databases and conventional databases for scientific data. Proc AMIA. 2001; 483–7.

    Google Scholar 

  259. Nadkarni PM, Brandt CM, Marenco L. WebEAV: automatic metadata-driven generation of web interfaces to entity-attribute-value databases. JAMIA. 2000;7:343–56.

    PubMed Central  CAS  PubMed  Google Scholar 

  260. Nadkarni PM, Marenco L, Chen R, Skoufos E, Shepherd G, Miller P. Organization of heterogeneous scientific data using the EAV/CR representation. JAMIA. 1999;6:478–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  261. Nadkarni PM, Brandt C, Frawley S, Sayward FG, Einbinder R, Zelterman D, et al. Managing attribute – value clinical trials data using the ACT/DB client-server database system. JAMIA. 1998;5:139–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  262. NCHSR&D. Summary report on hospital information systems. Springfield: National Center for Health Services and Health Care Technology Programs; 1969.

    Google Scholar 

  263. Norwood D. Introduction of user-oriented THIS into a community hospital setting: introduction and system description. Proc MEDINFO. 1974; 295–8.

    Google Scholar 

  264. ONC. The Office of the National Coordinator for Health Information Technology. HealthIT.hhs.gov.ONC 2012.

    Google Scholar 

  265. Ostrowski M, Bernes MR. The TMR data dictionary: a management tool for data base design. Proc SCAMC. 1984; 829–32.

    Google Scholar 

  266. OTA. Policy implications of medical information systems. Washington, DC: Office of Technology Assessment; 1977. p. 58–63.

    Google Scholar 

  267. OTA. The implications of cost-effectiveness analysis of medical technology. Washington, DC: Office of Technology Assessment; 1980.

    Google Scholar 

  268. Pendse N. Online analytical processing. Wikipedia. 2008; 2008.

    Google Scholar 

  269. Prokosch HU, Seuchter SA, Thompson EA, Skolnick MH. Applying expert system techniques to human genetics. Comput Biomed Res. 1989;22:234–47.

    Article  CAS  PubMed  Google Scholar 

  270. Pryor DB, Stead WW, Hammond WE, Califf RM, Rosati RA. Features of TMR for a successful clinical and research database. Proc SCAMC. 1982; 79–84.

    Google Scholar 

  271. Pryor TA, Gardner RM, Clayton PD, Warner HR. The HELP system. J Med Syst. 1983;7:87–102.

    Article  CAS  PubMed  Google Scholar 

  272. Richart RH. Evaluation of a hospital computer system. In: Collen MF, editor. Hospital computer systems. New York: Wiley; 1974. p. 341–417.

    Google Scholar 

  273. Richart RH. Evaluation of a medical data system. Comput Biomed Res. 1970;3:415–25.

    Article  CAS  PubMed  Google Scholar 

  274. Rind DM, Davis R, Safran C. Designing studies of computer-based alerts and reminders. MD Comput. 1995;12:122.

    CAS  PubMed  Google Scholar 

  275. Roach CJ. Patient data processing – the key to hospital automation. Am J Med Electron. 1962;1:51.

    CAS  PubMed  Google Scholar 

  276. Roach J, Lee S, Wilcke J, Ehrich M. An expert system for information on pharmacology and drug interactions. Comput Biol Med. 1985;15:11–23.

    Article  CAS  PubMed  Google Scholar 

  277. Robson D. Object-oriented software systems. 1981.

    Google Scholar 

  278. Rodnick JE, Wiederhold G. A review of automated ambulatory medical record systems in the United States: charting services that are of benefit to the physician. Proc.MEDINFO. 1977; 957–61.

    Google Scholar 

  279. Rogers JL, Haring OM, Phifer JF. Carry-over of medical information system influence to control patients. Eval Health Prof. 1984;7:43–51.

    Article  CAS  PubMed  Google Scholar 

  280. Romano CA. Privacy, confidentiality, and security of computerized systems: the nursing responsibility. Comput Nurs. 1987;5:99.

    CAS  PubMed  Google Scholar 

  281. Romano MJ, Stafford RS. Electronic health records and clinical decision support systems: impact on national ambulatory care quality. Arch Intern Med. 2011;171:897–903.

    PubMed Central  PubMed  Google Scholar 

  282. Rubin AD, Risley JF. The PROPHET system: an experiment in providing a computer resource to scientists. Proc MEDINFO. 1977; 77–81.

    Google Scholar 

  283. Sadock RT, Saunders SA. A security system for a computerized medical record. Proc SCAMC. 1984; 854–7

    Google Scholar 

  284. Safran C, Chute CG. Exploration and exploitation of clinical databases. Int J Biomed Comput. 1995;39:151–6.

    Article  CAS  PubMed  Google Scholar 

  285. Salmon P, Rappaport A, Bainbridge M, Hayes G, Williams J. Taking the problem oriented medical record forward. Proc AMIA. 1996; 463–7.

    Google Scholar 

  286. Schauffler HH, Koran RE. A methodology for estimating costs and benefits of medical information systems. Proc SCAMC. 1984; 152–5.

    Google Scholar 

  287. Schlager DD. A comprehensive patient care system for the family practice. J Med Syst. 1983;7:137–45.

    Article  CAS  PubMed  Google Scholar 

  288. Schmitz HH. An evaluation of the immediate financial impact of the hospital information system at Deaconess Hospital. In: Koza RC, editor. Health information systems evaluation. Boulder: Colorado Associated University Press; 1974. p. 265–82.

    Google Scholar 

  289. Schwartz SR, Stinson C, Berlant J. Computers in psychiatry. MD Comput. 1985;2:42–50.

    CAS  PubMed  Google Scholar 

  290. Seidel K, Peeples J. The evaluation and implementation of an automated medical transcription. In: Anonymous Chicago: American Hospital Association, Center for Hospital Management Engineering. 1977; 67–90.

    Google Scholar 

  291. Seuchter SA, Skolnick MH. HGDBMS: a human genetics database management system. Comput Biomed Res. 1988;21:478–87.

    Article  CAS  PubMed  Google Scholar 

  292. Shannon JA. Federal support of biomedical sciences: development and academic impact. J Med Educ. 1976;51:1–98.

    CAS  PubMed  Google Scholar 

  293. Shannon RH, Ball MJ. Patient-oriented classification of medical data-aid to systems-analysis and design. Biosci Commun. 1976;2:282–92.

    Google Scholar 

  294. Shea S, Hripcsak G. Accelerating the use of electronic health records in physician practices. N Engl J Med. 2010;362:192–5.

    Article  CAS  PubMed  Google Scholar 

  295. Shortliffe EH. Networking health: learning from others, taking the lead. Health Aff (Millwood). 2000;19:9–22.

    Article  CAS  Google Scholar 

  296. Shortliffe EH. The next generation Internet and health care: a civics lesson for the informatics community. Proc AMIA. 1998; 8–14.

    Google Scholar 

  297. Siemon JH, Kuratomi RM. Automated record tracking as a component of a management information system. In: Topics in health record management. Germantown: Aspen Systems; 1982. p. 54–65.

    Google Scholar 

  298. Simborg DW. Local area networks: why? what? what if? MD Comput. 1984;1:10–20.

    CAS  PubMed  Google Scholar 

  299. Simborg DW, Shearer M, Daniels L, Moss J. A medical records department system: a vital node in a hospital information system. Proc SCAMC. 1981; 830.

    Google Scholar 

  300. Simborg DW, Macdonald LK, Liebman JS, Musco P. Ward information-management system: an evaluation. Comput Biomed Res. 1972;5:484–97.

    Article  CAS  PubMed  Google Scholar 

  301. Simon HA. What computers mean for man and society. Science. 1977;195:1186–91.

    Article  CAS  PubMed  Google Scholar 

  302. Sittig DF, Campbell E, Guappone K, Dykstra R, Ash JS. Recommendations for monitoring and evaluation of in-patient computer-based provider order entry systems: results of a Delphi survey. Proc AMIA Annu Symp. 2007; 671–5.

    Google Scholar 

  303. Skolnick M. The Utah genealogical database: a resource for genetic epidemiology. Banbury Rep. 1980;4:285–97.

    Google Scholar 

  304. Skolnick M, Bean L, May D, Arbon V. Mormon demographic history I. Nuptiality and fertility of once-married couples. Popul Stud. 1978;32:5–19.

    Article  CAS  Google Scholar 

  305. Spencer WA. An opinion survey of computer applications in 149 hospitals in the USA, Europe and Japan. Inform Health Soc Care. 1976;1:215–34.

    Article  Google Scholar 

  306. Springer EW. Automated medical records and the law. Germantown: Aspen Publishers; 1971.

    Google Scholar 

  307. Stead WW. A quarter-century of computer-based medical records. MD Comput. 1989;6:74–81.

    CAS  PubMed  Google Scholar 

  308. Stead WW, Hammond WE. Computer-based medical records: the centerpiece of TMR. MD Comput. 1988;5:48–62.

    CAS  PubMed  Google Scholar 

  309. Stead WW, Wiederhold G, Gardner RM. Database systems for computer-based patient records. In: Ball MJ, Collen MF, editors. Aspects of the computer-based patient record. New York: Springer; 1992. p. 83–98.

    Chapter  Google Scholar 

  310. Stead WW, Hammond WE. Demand-oriented medical records: toward a physician work station. Proc SCAMC. 1987; 275–80.

    Google Scholar 

  311. Stead WW, Hammond WE, Straube MJ. A chartless record: is it adequate? J Med Syst. 1983;7:103–9.

    Article  CAS  PubMed  Google Scholar 

  312. Steinbach GL, Busch JF. Combining voice and data communication in a hospital environment. Proc SCAMC. 1985; 712–7.

    Google Scholar 

  313. Stuart RB, Bair JH. The effect of the problem-oriented medical record on comprehensiveness of care as reflected in the clinical record. Houston: Fort Sam, Health Care Studies Division, Academy of Health Sciences; 1972. p. 1–13.

    Google Scholar 

  314. Stuart RB, Rahm AE, Bair JH. Army physicians’ attitudes toward the problem-oriented medical record. Houston: Fort Sam, Health Care Studies Division, Brook Army Medical Center; 1972. p. 1–15.

    Google Scholar 

  315. Swyers JP. Genetic data base service. Research Resources Reporter. 1989 (Dec); 13–4.

    Google Scholar 

  316. Tang PC. Futurescope, the advent of electronic medical records. Decisions Imaging Econ. 1989;2:4–10.

    Google Scholar 

  317. Terdiman J. Ambulatory care computer systems in office practice: a tutorial. Proc AMIA. 1982; 195–201.

    Google Scholar 

  318. Tierney WM, McDonald CJ, Martin DK, Hui SL. Computerized display of past test results: effect on outpatient testing. Ann Intern Med. 1987;107:569–74.

    Article  CAS  PubMed  Google Scholar 

  319. Tolchin SG, Blum BI, Butterfield MA. A systems analysis methodology for a decentralized health care information system. Proc SCAMC. 1980; 1479–84.

    Google Scholar 

  320. Tolchin SG, Stewart RL, Kahn SA, Bergan ES, Gafke GP, Simborg DW, et al. A prototype generalized network technology for hospitals. J Med Syst. 1982;6:359–75.

    Article  CAS  PubMed  Google Scholar 

  321. Tolchin SG, Stewart RL, Kahn SA, Bergan ES, Gafke GP, Simborg DW, et al. Implementation of a prototype generalized network technology for hospitals. Proc SCAMC. 1981; 942–8.

    Google Scholar 

  322. Tolchin SG, Arseniev M, Barta WL, Kuzmak PM, Bergan E, Nordquist R, et al. Integrating heterogeneous systems using local network technologies and remote procedure call protocols. Proc SCAMC. 1985; 748–9.

    Google Scholar 

  323. Tuck D, O’Connell R, Gershkovich P, Cowan J. An approach to object-relational mapping in bioscience domains. Proc AMIA. 2002; 820–4.

    Google Scholar 

  324. Tufo HM, Speidel JJ. Problems with medical records. Med Care. 1971;9:509–17.

    Article  CAS  PubMed  Google Scholar 

  325. Tufo HM, Bouchard RE, Rubin AS, Twitchell JC, VanBuren HC, Weed LB, et al. Problem-oriented approach to practice: I. Economic impact. JAMA. 1977;238:414–7.

    Article  CAS  PubMed  Google Scholar 

  326. Vallbona C, Spencer WA. Texas Institute for Research and Rehabilitation Hospital Computer System (Houston). In: Collen MF, editor. Hospital computer systems. New York: Wiley; 1974. p. 662–700.

    Google Scholar 

  327. Vallbona C, Brohn J, Albin J. Pilot test and preliminary evaluation of an optical card medical record system. Proc MEDINFO. 1989; 809–12.

    Google Scholar 

  328. Van Brunt E. Selected observations on ambulatory care: office practice. Proc AMIA. 1982; 202–5.

    Google Scholar 

  329. Van Brunt E, Davis LS, Terdiman JF, Singer S, Besag E, Collen MF. Current status of a medical information system. Methods Inf Med. 1970;9:149–60.

    PubMed  Google Scholar 

  330. VanName ML, Catchings B. SQL-a database language sequel to Dbase. Byte. 1989;14:175.

    Google Scholar 

  331. Vickery DM. Computer support of paramedical personnel: the question of quality control. Proc MEDINFO. 1974; 281–7.

    Google Scholar 

  332. Walters RF. File structures for database management systems. MD Comput. 1987;5:30–41.

    Google Scholar 

  333. Walters RF. Microprocessors as intelligent front-end devices for medical information systems. Med Inform (Lond). 1979;44:139–50.

    Article  Google Scholar 

  334. Ware WH. Old practices in a new age endanger information privacy. Hosp JAHA. 1977;51:133–9.

    CAS  Google Scholar 

  335. Ware WH. Records, computers and the rights of citizens. Report of the Secretary’s Advisory Committee on Automated Personal Data. Washington, DC: US Govt Print Office; 1973.

    Google Scholar 

  336. Warner H, Morgan J, Pryor T, Clark S, Miller W. HELP–a self-improving system for medical decision-making. Proc MEDINFO. 1974; 989–93.

    Google Scholar 

  337. Warner HR. Data sources. In: Computer-assisted decision making. New York: Academic; 1979. p. 6–101.

    Google Scholar 

  338. Warner HR. History of medical informatics at Utah. In: Blum BI, Duncan KA, editors. A history of medical informatics. New York: Addison-Wesley; 1990. p. 357–69.

    Google Scholar 

  339. Warner HR. Computer-based patient monitoring. In: Stacy RW, Waxman B, editors. Computers in biomedical research, vol. III. New York: Academic; 1972. p. 239–51.

    Google Scholar 

  340. Wasserman AI. Minicomputers may maximize data processing. Hosp JAHA. 1977;51:119–28.

    CAS  Google Scholar 

  341. Wasserman AI, Stinson SK. A specification method for interactive medical information systems. Proc SCAMC. 1980;3:1471–8.

    Google Scholar 

  342. Wasserman AI, Pircher PA, Shewmake DT, Kersten ML. Developing interactive information systems with the user software methodology. IEEE Trans Softw Eng. SE-12(2):326–45.

    Google Scholar 

  343. Watson JD, Crick FHC. Molecular structure of nucleic acids. Nature. 1953;171:737–8.

    Article  CAS  PubMed  Google Scholar 

  344. Watson RJ. Medical staff response to a medical information system with direct physician-computer interface. Proc MEDINFO. 1974;74:299–302.

    Google Scholar 

  345. Waxman BD. Biomedical computing 1965. Ann NY Acad Sci. 1966;128:723–30.

    Article  CAS  PubMed  Google Scholar 

  346. Weiland AJ. The challenges of genetic advances. Healthplan. 2000;41:24–30.

    CAS  PubMed  Google Scholar 

  347. Weinstein M. Securing and safeguarding paperless records. Am Coll Phys Obs. 1988 (July/August); 17.

    Google Scholar 

  348. Weinstein M. Economic evaluation of medical procedures and technologies: progress, problems and prospects. In: Wagner J, ed. Medical technology. DHEW Pub No (PHS) 79-3254. NCHSR Research Proc Series. 1979; 52–68.

    Google Scholar 

  349. Wess Jr BP. Distributed computer networks in support of complex group practices. Proc SCAMC. 1978; 469–77.

    Google Scholar 

  350. Westberg EE, Miller RA. The basis for using the internet to support the information needs of primary care. JAMIA. 1999;6:6–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  351. Westin AF. New developments and problems in health care confidentiality. Proc SCAMC. 1979; 380–1.

    Google Scholar 

  352. Westin AF. A policy analysis of citizen rights: issues in health data systems. National Bureau of Standards Special Pub 467. Washington, DC: US Govt Print Office; 1977.

    Google Scholar 

  353. Westin AF. Computers, health records, and citizen rights. National Bureau of Standards Monograph 157. Washington, DC: US Govt Print Office; 1976.

    Google Scholar 

  354. Westin AF. Legal safeguards to insure privacy in a computer society. Commun ACM. 1967;10:533–7.

    Article  Google Scholar 

  355. Westin AF, Baker MA. Databanks in a free society: computers, record keeping and privacy. New York: Quadrangel Books; 1972.

    Google Scholar 

  356. Whiting-O’Keefe QE, Simborg DW, Epstein WV. A controlled experiment to evaluate the use of a time-oriented summary medical record. Med Care. 1980;18:842–52.

    Article  PubMed  Google Scholar 

  357. Whiting-O’Keefe QE, Simborg DW, Epstein WV, Warger A. A computerized summary medical record system can provide more information than the standard medical record. JAMA. 1985;254:1185–92.

    Article  PubMed  Google Scholar 

  358. Wiederhold G. Databases, a tutorial. Proc AAMSI. 1984; 423–30.

    Google Scholar 

  359. Wiederhold G. Modeling databases. Inf Sci. 1983;29:115–26.

    Article  Google Scholar 

  360. Wiederhold G. Databases for ambulatory care. Proc AMIA. 1982; 79–85.

    Google Scholar 

  361. Wiederhold G. Summary of visit to the Research Center, Rockland Psychiatric Center, Orangeburg, NY, on January 9, 1974. CDR-4 HRA Contract. 1975.

    Google Scholar 

  362. Wiederhold G, Walker MG, Blum RL. Acquisition of medical knowledge from medical records. Proc Benutzer-gruppenseminar Med Syst. 1987; 213–4.

    Google Scholar 

  363. Wiederhold G. Database technology in health care. J Med Syst. 1981;5:175–96.

    Article  CAS  PubMed  Google Scholar 

  364. Willard KE, Hallgren JH, Sielaff B, Connelly D. The deployment of a World Wide Web (W3) based medical information system. Proc AMIA. 1995;771–5.

    Google Scholar 

  365. Wilson GA, McDonald CJ, McCabe GP. The effect of immediate access to a computerized medical record on physician test ordering: a controlled clinical trial in the emergency room. Am J Public Health. 1982;72:698–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  366. Wilson JF. Making electronic health records meaningful. Ann Intern Med. 2009;151:293–6.

    Article  PubMed  Google Scholar 

  367. Winters S, Hurt S, Turney SZ. Levels of security in a critical care hospital data system. Proc SCAMC. 1984; 517–23.

    Google Scholar 

  368. Yu H, Hripcsak G. A large scale, cross-disease family health history data set. Proc AMIA. 2000; 1162.

    Google Scholar 

  369. Zeichner ML, Brusil PJ, Tolchin SG. Distributed processing architecture for a hospital information system. Proc SCAMC. 1979; 859–65.

    Google Scholar 

  370. Zimmerman J. Towards generalized automated ambulatory care record systems. Proc MEDINFO. 1977;77:473–7.

    Google Scholar 

  371. Zinn TK, DiGiulio LW. Actualizing system benefits – part II. Comput Healthc. 1988;9:38–40.

    CAS  PubMed  Google Scholar 

  372. Zoltan-Ford E. Professional persons’ attitudes toward computers: comparative analyses and some suggestions. Proc SCAMC. 1984; 536–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warner V. Slack M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Collen, M.F., Slack, W.V., Bleich, H.L. (2015). Medical Databases and Patient Record Systems. In: Collen, M., Ball, M. (eds) The History of Medical Informatics in the United States. Health Informatics. Springer, London. https://doi.org/10.1007/978-1-4471-6732-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6732-7_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6731-0

  • Online ISBN: 978-1-4471-6732-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics