Advertisement

Molecular Epidemiology Focused on Airborne Carcinogens

  • Pavel RossnerJr.
  • Blanka Binkova
  • Andrea Rossnerova
  • Radim J. Sram
Part of the Molecular and Integrative Toxicology book series (MOLECUL)

Abstract

Health risk associated with genotoxic and carcinogenic effects of air pollution is evaluated by biomarkers of exposure, effect and susceptibility. The use of these molecular methods combined with epidemiological studies became new research area termed molecular epidemiology. These biomarkers begin with exposure and include absorption, metabolism, distribution, critical target interaction (i.e. DNA damage and repair), genetic changes and finally disease. The development of biomarkers has given rise to the field of molecular epidemiology, which uses these biomarkers rather than disease to assess the risk of environmental exposure. This chapter is an overview of a contemporary knowledge how biomarkers may be used to evaluate the health risk of air pollution. As biomarkers of exposure were reviewed bulky DNA adducts, oxidative damage markers (8-oxodG, 15-F2t-IsoP), double strand DNA breaks (Comet assay), as biomarkers of effect chromosomal aberrations (conventional cytogenetic analysis, FISH technique, the analysis of micronuclei), sperm DNA fragmentation, as biomarkers of susceptibility genetic polymorphisms, as omics biomarkers mRNA expression, DNA methylation, microRNA expression. All presented studies indicate, that DNA adducts, Comet assay and DNA fragmentation in the sperm are sensitive biomarkers of exposure to airborne carcinogens, chromosomal aberrations assessed by FISH and micronuclei are suitable biomarkers of effect, and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and 15-F2t-isoprostane (15-F2t-IsoP) biomarkers of oxidative damage.

Keywords

Carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) DNA adducts DNA oxidative damage Lipid peroxidation Chromosomal aberrations Sperm DNA fragmentation Genetic polymorphisms 

Notes

Acknowledgement

We would like to acknowledge the great help and support of our friends from National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA, especially Drs. Joellen Lewtas, Lawrence W. Reiter, and Sally Perault Darney. Thanks to their support we were able to establish molecular epidemiology methods in the Czech Republic.

References

  1. Albertini RJ (1998) The use and interpretation of biomarkers of environmental genotoxicity in humans. Biotherapy 11(2–3):155–167Google Scholar
  2. Albertini RJ, Nicklas JA, O’Neill JP (1996) Future research directions for evaluating human genetic and cancer risk from environmental exposures. Environ Health Perspect 104(Suppl 3):503–510Google Scholar
  3. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. doi: 10.1038/nature02871
  4. Ames BN (2001) DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutat Res 475(1–2):7–20Google Scholar
  5. Autrup H, Daneshvar B, Dragsted LO, Gamborg M, Hansen M, Loft S et al (1999) Biomarkers for exposure to ambient air pollution–comparison of carcinogen-DNA adduct levels with other exposure markers and markers for oxidative stress. Environ Health Perspect 107(3):233–238Google Scholar
  6. Baccarelli A, Bollati V (2009) Epigenetics and environmental chemicals. Curr Opin Pediatr 21(2):243–251Google Scholar
  7. Bagryantseva Y, Novotna B, Rossner P Jr, Chvatalova I, Milcova A, Svecova V et al (2010) Oxidative damage to biological macromolecules in Prague bus drivers and garagemen: Impact of air pollution and genetic polymorphisms. Toxicol Lett 199:60–68. doi: 10.1016/j.toxlet.2010.08.007, S0378-4274(10)01629-2 [pii]
  8. Barregard L, Sallsten G, Gustafson P, Andersson L, Johansson L, Basu S et al (2006) Experimental exposure to wood-smoke particles in healthy humans: effects on markers of inflammation, coagulation, and lipid peroxidation. Inhal Toxicol 18(11):845–853Google Scholar
  9. Barreto G, Madureira D, Capani F, Aon-Bertolino L, Saraceno E, Alvarez-Giraldez LD (2009) The role of catechols and free radicals in benzene toxicity: an oxidative DNA damage pathway. Environ Mol Mutagen 50(9):771–780. doi: 10.1002/em.20500
  10. Beaglehole R, Bonita R, Kjellstrom T (1993) Basic epidemiology. WHO, GenevaGoogle Scholar
  11. Berger F, Reiser MF (2013) Micro-RNAs as potential new molecular biomarkers in oncology: have they reached relevance for the clinical imaging sciences? Theranostics 3(12):943–952. doi: 10.7150/thno.7445
  12. Beskid O, Binkova B, Dusek Z, Rossner P, Solansky I, Kalina I et al (2007) Chromosomal aberrations by fluorescence in situ hybridization (FISH) – biomarker of exposure to carcinogenic PAHs. Mutat Res 620(1–2):62–70Google Scholar
  13. Binkova B, Lewtas J, Miskova I, Lenicek J, Sram R (1995) DNA adducts and personal air monitoring of carcinogenic polycyclic aromatic hydrocarbons in an environmentally exposed population. Carcinogenesis 16(5):1037–1046Google Scholar
  14. Binkova B, Lewtas J, Miskova I, Rossner P, Cerna M, Mrackova G et al (1996) Biomarker studies in northern Bohemia. Environ Health Perspect 104(Suppl 3):591–597Google Scholar
  15. Binkova B, Topinka J, Mrackova G, Gajdosova D, Vidova P, Stavkova Z et al (1998) Coke oven workers study: the effect of exposure and GSTM1 and NAT2 genotypes on DNA adduct levels in white blood cells and lymphocytes as determined by 32P-postlabelling. Mutat Res 416(1–2):67–84Google Scholar
  16. Binkova B, Vesely D, Vesela D, Jelinek R, Sram RJ (1999) Genotoxicity and embryotoxicity of urban air particulate matter collected during winter and summer period in two different districts of the Czech Republic. Mutat Res 440(1):45–58Google Scholar
  17. Binkova B, Smerhovsky Z, Strejc P, Boubelik O, Stavkova Z, Chvatalova I et al (2002) DNA-adducts and atherosclerosis: a study of accidental and sudden death males in the Czech Republic. Mutat Res 501(1–2):115–128. doi:S0027510702000192 [pii]Google Scholar
  18. Binkova B, Chvatalova I, Lnenickova Z, Milcova A, Tulupova E, Farmer PB et al (2007) PAH-DNA adducts in environmentally exposed population in relation to metabolic and DNA repair gene polymorphisms. Mutat Res 620(1–2):49–61. doi: 10.1016/j.mrfmmm.2007.02.022, S0027-5107(07)00103-0 [pii]
  19. Bollati V, Baccarelli A (2010) Environmental epigenetics. Heredity 105(1):105–112. doi: 10.1038/hdy.2010.2
  20. Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D et al (2007) Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res 67(3):876–880. doi: 10.1158/0008-5472.CAN-06-2995
  21. Bollati V, Angelici L, Rizzo G, Pergoli L, Rota F, Hoxha M et al (2015) Microvesicle-associated microRNA expression is altered upon particulate matter exposure in healthy workers and in A549 cells. J Appl Toxicol 35(1):59–67Google Scholar
  22. Bonassi S, Neri M, Lando C, Ceppi M, Lin YP, Chang WP et al (2003) Effect of smoking habit on the frequency of micronuclei in human lymphocytes: results from the Human MicroNucleus project. Mutat Res 543(2):155–166Google Scholar
  23. Bonassi S, Znaor A, Ceppi M, Lando C, Chang WP, Holland N et al (2007) An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis 28(3):625–631. doi: 10.1093/carcin/bgl177
  24. Bonassi S, Norppa H, Ceppi M, Stromberg U, Vermeulen R, Znaor A et al (2008) Chromosomal aberration frequency in lymphocytes predicts the risk of cancer: results from a pooled cohort study of 22 358 subjects in 11 countries. Carcinogenesis 29(6):1178–1183. doi: 10.1093/carcin/bgn075, bgn075 [pii]
  25. Bonassi S, Taioli E, Vermeulen R (2013) Omics in population studies: a molecular epidemiology perspective. Environ Mol Mutagen 54(7):455–460. doi: 10.1002/em.21805
  26. Bonina FP, Puglia C, Frasca G, Cimino F, Trombetta D, Tringali G et al (2008) Protective effects of a standardised red orange extract on air pollution-induced oxidative damage in traffic police officers. Nat Prod Res 22(17):1544–1551. doi: 10.1080/14786410701740401
  27. Ceylan E, Kocyigit A, Gencer M, Aksoy N, Selek S (2006) Increased DNA damage in patients with chronic obstructive pulmonary disease who had once smoked or been exposed to biomass. Respir Med 100(7):1270–1276Google Scholar
  28. Chen C, Arjomandi M, Balmes J, Tager I, Holland N (2007) Effects of chronic and acute ozone exposure on lipid peroxidation and antioxidant capacity in healthy young adults. Environ Health Perspect 115(12):1732–1737Google Scholar
  29. Cheng TF, Choudhuri S, Muldoon-Jacobs K (2012) Epigenetic targets of some toxicologically relevant metals: a review of the literature. J Appl Toxicol 32(9):643–653. doi: 10.1002/jat.2717
  30. Chuang CY, Lee CC, Chang YK, Sung FC (2003) Oxidative DNA damage estimated by urinary 8-hydroxydeoxyguanosine: influence of taxi driving, smoking and areca chewing. Chemosphere 52(7):1163–1171Google Scholar
  31. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26(3):249–261. doi: 10.1385/MB:26:3:249
  32. Collins A, Koppen G, Valdiglesias V, Dusinska M, Kruszewski M, Moller P et al (2014) The comet assay as a tool for human biomonitoring studies: the ComNet project. Mutat Res 759:27–39. doi: 10.1016/j.mrrev.2013.10.001
  33. Committee on Biological Markers of the National Research Council (1987) Biological markers in environmental health research. Environ Health Perspect 74:3–9Google Scholar
  34. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10):1195–1214Google Scholar
  35. Countryman PI, Heddle JA (1976) The production of micronuclei from chromosome aberrations in irradiated cultures of human lymphocytes. Mutat Res 41(2–3):321–332Google Scholar
  36. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329(1–2):23–38Google Scholar
  37. Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A (2006) Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10(2):389–406Google Scholar
  38. De Bustos C, Ramos E, Young JM, Tran RK, Menzel U, Langford CF et al (2009) Tissue-specific variation in DNA methylation levels along human chromosome 1. Epigenetics Chromatin 2(1):7. doi: 10.1186/1756-8935-2-7
  39. De Coster S, van Leeuwen DM, Jennen DG, Koppen G, Den Hond E, Nelen V et al (2013) Gender-specific transcriptomic response to environmental exposure in Flemish adults. Environ Mol Mutagen 54(7):574–588. doi: 10.1002/em.21774
  40. De Prins S, Koppen G, Jacobs G, Dons E, Van de Mieroop E, Nelen V et al (2013) Influence of ambient air pollution on global DNA methylation in healthy adults: a seasonal follow-up. Environ Int 59:418–424. doi: 10.1016/j.envint.2013.07.007
  41. DeMarini DM (2013) Genotoxicity biomarkers associated with exposure to traffic and near-road atmospheres: a review. Mutagenesis 28(5):485–505. doi: 10.1093/mutage/get042
  42. Dockery DW, Pope CA 3rd, Xu X, Spengler JD, Ware JH, Fay ME et al (1993) An association between air pollution and mortality in six U.S. cities. N Engl J Med 329(24):1753–1759. doi: 10.1056/NEJM199312093292401
  43. Dunlop RA, Brunk UT, Rodgers KJ (2009) Oxidized proteins: mechanisms of removal and consequences of accumulation. IUBMB Life 61(5):522–527. doi: 10.1002/iub.189
  44. Edwards A, Voisin P, Sorokine-Durm I, Maznik N, Vinnikov V, Mikhalevich L et al (2004) Biological estimates of dose to inhabitants of Belarus and Ukraine following the Chernobyl accident. Radiat Prot Dosimetry 111(2):211–219. doi: 10.1093/rpd/nch039
  45. Evangelou E, Ioannidis JP (2013) Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet 14(6):379–389. doi: 10.1038/nrg3472
  46. Evenson DP (2013) Sperm chromatin structure assay (SCSA(R)). Methods Mol Biol 927:147–164. doi: 10.1007/978-1-62703-038-0_14
  47. Evenson DP, Larson KL, Jost LK (2002) Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl 23(1):25–43Google Scholar
  48. Evenson DP, Kasperson K, Wixon RL (2007) Analysis of sperm DNA fragmentation using flow cytometry and other techniques. Soc Reprod Fertil Suppl 65:93–113Google Scholar
  49. Fenech M (2001) The role of folic acid and vitamin B12 in genomic stability of human cells. Mutat Res 475(1–2):57–67Google Scholar
  50. Fenech M, Ferguson LR (2001) Vitamins/minerals and genomic stability in humans. Mutat Res 475(1–2):1–6Google Scholar
  51. Fenech M, Morley AA (1985) Measurement of micronuclei in lymphocytes. Mutat Res 147(1–2):29–36Google Scholar
  52. Fenech M, Bonassi S, Turner J, Lando C, Ceppi M, Chang WP et al (2003) Intra- and inter-laboratory variation in the scoring of micronuclei and nucleoplasmic bridges in binucleated human lymphocytes. Results of an international slide-scoring exercise by the HUMN project. Mutat Res 534(1–2):45–64Google Scholar
  53. Fenech M, Kirsch-Volders M, Rossnerova A, Sram R, Romm H, Bolognesi C et al (2013) HUMN project initiative and review of validation, quality control and prospects for further development of automated micronucleus assays using image cytometry systems. Int J Hyg Environ Health 216(5):541–552. doi: 10.1016/j.ijheh.2013.01.008
  54. Flom JD, Ferris JS, Liao Y, Tehranifar P, Richards CB, Cho YH et al (2011) Prenatal smoke exposure and genomic DNA methylation in a multiethnic birth cohort. Cancer Epidemiol Biomarkers Prev 20(12):2518–2523. doi: 10.1158/1055-9965.EPI-11-0553
  55. Forrest MS, Lan Q, Hubbard AE, Zhang L, Vermeulen R, Zhao X et al (2005) Discovery of novel biomarkers by microarray analysis of peripheral blood mononuclear cell gene expression in benzene-exposed workers. Environ Health Perspect 113(6):801–807Google Scholar
  56. Fossati S, Baccarelli A, Zanobetti A, Hoxha M, Vokonas PS, Wright RO et al (2014) Ambient particulate air pollution and microRNAs in elderly men. Epidemiology 25(1):68–78. doi: 10.1097/EDE.0000000000000026
  57. Fraga MF, Esteller M (2002) DNA methylation: a profile of methods and applications. Biotechniques 33(3):632, 4, 6–49Google Scholar
  58. Georgiadis P, Topinka J, Stoikidou M, Kaila S, Gioka M, Katsouyanni K et al (2001) Biomarkers of genotoxicity of air pollution (the AULIS project): bulky DNA adducts in subjects with moderate to low exposures to airborne polycyclic aromatic hydrocarbons and their relationship to environmental tobacco smoke and other parameters. Carcinogenesis 22(9):1447–1457Google Scholar
  59. Godschalk RW, Dallinga JW, Wikman H, Risch A, Kleinjans JC, Bartsch H et al (2001) Modulation of DNA and protein adducts in smokers by genetic polymorphisms in GSTM1, GSTT1, NAT1 and NAT2. Pharmacogenetics 11(5):389–398Google Scholar
  60. Guo L, Byun HM, Zhong J, Motta V, Barupal J, Zheng Y et al (2014) Effects of short-term exposure to inhalable particulate matter on DNA methylation of tandem repeats. Environ Mol Mutagen 55(4):322–335. doi: 10.1002/em.21838
  61. Hagmar L, Stromberg U, Bonassi S, Hansteen IL, Knudsen LE, Lindholm C et al (2004) Impact of types of lymphocyte chromosomal aberrations on human cancer risk: results from Nordic and Italian cohorts. Cancer Res 64(6):2258–2263Google Scholar
  62. Halappanavar S, Wu D, Williams A, Kuo B, Godschalk RW, Van Schooten FJ et al (2011) Pulmonary gene and microRNA expression changes in mice exposed to benzo(a)pyrene by oral gavage. Toxicology 285(3):133–141. doi: 10.1016/j.tox.2011.04.011
  63. Han YY, Donovan M, Sung FC (2010) Increased urinary 8-hydroxy-2′-deoxyguanosine excretion in long-distance bus drivers in Taiwan. Chemosphere 79(9):942–948. doi: 10.1016/j.chemosphere.2010.02.057, S0045-6535(10)00238-9 [pii]
  64. Hayatsu H (2008) The bisulfite genomic sequencing used in the analysis of epigenetic states, a technique in the emerging environmental genotoxicology research. Mutat Res 659(1–2):77–82. doi: 10.1016/j.mrrev.2008.04.003
  65. Herbstman JB, Tang D, Zhu D, Qu L, Sjodin A, Li Z et al (2012) Prenatal exposure to polycyclic aromatic hydrocarbons, benzo[a]pyrene-DNA adducts and genomic DNA methylation in cord blood. Environ Health Perspect. doi: 10.1289/ehp.1104056
  66. Hong YC, Park HS, Ha EH (2000) Influence of genetic susceptibility on the urinary excretion of 8-hydroxydeoxyguanosine of firefighters. Occup Environ Med 57(6):370–375Google Scholar
  67. Izzotti A, Pulliero A (2014) The effects of environmental chemical carcinogens on the microRNA machinery. Int J Hyg Environ Health 217(6):601–627Google Scholar
  68. Izzotti A, Calin GA, Arrigo P, Steele VE, Croce CM, De Flora S (2009a) Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J 23(3):806–812. doi: 10.1096/fj.08-121384
  69. Izzotti A, Calin GA, Steele VE, Croce CM, De Flora S (2009b) Relationships of microRNA expression in mouse lung with age and exposure to cigarette smoke and light. FASEB J 23(9):3243–3250. doi: 10.1096/fj.09-135251
  70. Izzotti A, Larghero P, Longobardi M, Cartiglia C, Camoirano A, Steele VE et al (2011) Dose-responsiveness and persistence of microRNA expression alterations induced by cigarette smoke in mouse lung. Mutat Res 717(1–2):9–16. doi: 10.1016/j.mrfmmm.2010.12.008
  71. Janssen BG, Godderis L, Pieters N, Poels K, Kici Ski M, Cuypers A et al (2013) Placental DNA hypomethylation in association with particulate air pollution in early life. Part Fibre Toxicol 10(1):22. doi: 10.1186/1743-8977-10-22
  72. Joubert BR, Haberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK et al (2012) 450 K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect 120(10):1425–1431. doi: 10.1289/ehp.1205412
  73. Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151(2):362–367. doi: 10.1016/j.envpol.2007.06.012, S0269-7491(07)00284-9 [pii]
  74. Kato T, Inoue T, Morooka T, Yoshimoto N, Node K (2006) Short-term passive smoking causes endothelial dysfunction via oxidative stress in nonsmokers. Can J Physiol Pharmacol 84(5):523–529Google Scholar
  75. Kelada SN, Eaton DL, Wang SS, Rothman NR, Khoury MJ (2003) The role of genetic polymorphisms in environmental health. Environ Health Perspect 111(8):1055–1064Google Scholar
  76. Kim JY, Mukherjee S, Ngo LC, Christiani DC (2004) Urinary 8-hydroxy-2′-deoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to fine particulates. Environ Health Perspect 112(6):666–671Google Scholar
  77. Kirsch-Volders M, Bonassi S, Knasmueller S, Holland N, Bolognesi C, Fenech MF (2014) Commentary: critical questions, misconceptions and a road map for improving the use of the lymphocyte cytokinesis-block micronucleus assay for in vivo biomonitoring of human exposure to genotoxic chemicals-a HUMN project perspective. Mutat Res 759:49–58. doi: 10.1016/j.mrrev.2013.12.001
  78. Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267Google Scholar
  79. Kyrtopoulos SA, Georgiadis P, Autrup H, Demopoulos NA, Farmer P, Haugen A et al (2001) Biomarkers of genotoxicity of urban air pollution. Overview and descriptive data from a molecular epidemiology study on populations exposed to moderate-to-low levels of polycyclic aromatic hydrocarbons: the AULIS project. Mutat Res 496(1–2):207–228Google Scholar
  80. Lai CH, Liou SH, Lin HC, Shih TS, Tsai PJ, Chen JS et al (2005) Exposure to traffic exhausts and oxidative DNA damage. Occup Environ Med 62(4):216–222. doi: 10.1136/oem.2004.015107, 62/4/216 [pii]
  81. Laird PW (2010) Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 11(3):191–203. doi: 10.1038/nrg2732
  82. Lampe JW, Stepaniants SB, Mao M, Radich JP, Dai H, Linsley PS et al (2004) Signatures of environmental exposures using peripheral leukocyte gene expression: tobacco smoke. Cancer Epidemiol Biomarkers Prev 13(3):445–453Google Scholar
  83. Larson-Cook KL, Brannian JD, Hansen KA, Kasperson KM, Aamold ET, Evenson DP (2003) Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril 80(4):895–902Google Scholar
  84. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854Google Scholar
  85. Lee MW, Chen ML, Lung SC, Tsai CJ, Yin XJ, Mao IF (2010) Exposure assessment of PM2.5 and urinary 8-OHdG for diesel exhaust emission inspector. Sci Total Environ 408(3):505–510. doi: 10.1016/j.scitotenv.2009.10.012, S0048-9697(09)00955-3 [pii]
  86. Lewtas J (2007) Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat Res 636(1–3):95–133Google Scholar
  87. Lewtas J, Walsh D, Williams R, Dobias L (1997) Air pollution exposure-DNA adduct dosimetry in humans and rodents: evidence for non-linearity at high doses. Mutat Res 378(1–2):51–63Google Scholar
  88. Li D, Wang Q, Liu C, Duan H, Zeng X, Zhang B et al (2012) Aberrant expression of miR-638 contributes to benzo(a)pyrene-induced human cell transformation. Toxicol Sci 125(2):382–391. doi: 10.1093/toxsci/kfr299
  89. Liu L, Ruddy T, Dalipaj M, Poon R, Szyszkowicz M, You H et al (2009) Effects of indoor, outdoor, and personal exposure to particulate air pollution on cardiovascular physiology and systemic mediators in seniors. J Occup Environ Med 51(9):1088–1098. doi: 10.1097/JOM.0b013e3181b35144
  90. Loft S, Vistisen K, Ewertz M, Tjonneland A, Overvad K, Poulsen HE (1992) Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in humans: influence of smoking, gender and body mass index. Carcinogenesis 13(12):2241–2247Google Scholar
  91. Loft S, Hogh Danielsen P, Mikkelsen L, Risom L, Forchhammer L, Moller P (2008) Biomarkers of oxidative damage to DNA and repair. Biochem Soc Trans 36(Pt 5):1071–1076. doi: 10.1042/BST0361071, BST0361071 [pii]
  92. Lucas JN, Awa A, Straume T, Poggensee M, Kodama Y, Nakano M et al (1992) Rapid translocation frequency analysis in humans decades after exposure to ionizing radiation. Int J Radiat Biol 62(1):53–63Google Scholar
  93. Maccani MA, Avissar-Whiting M, Banister CE, McGonnigal B, Padbury JF, Marsit CJ (2010) Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics 5(7):583–589Google Scholar
  94. Madrigano J, Baccarelli A, Mittleman MA, Sparrow D, Spiro A 3rd, Vokonas PS et al (2012) Air pollution and DNA methylation: interaction by psychological factors in the VA Normative Aging Study. Am J Epidemiol 176(3):224–232. doi: 10.1093/aje/kwr523
  95. Mazzoli-Rocha F, Fernandes S, Einicker-Lamas M, Zin WA (2010) Roles of oxidative stress in signaling and inflammation induced by particulate matter. Cell Biol Toxicol 26(5):481–498. doi: 10.1007/s10565-010-9158-2
  96. McHale CM, Zhang L, Lan Q, Li G, Hubbard AE, Forrest MS et al (2009) Changes in the peripheral blood transcriptome associated with occupational benzene exposure identified by cross-comparison on two microarray platforms. Genomics 93(4):343–349. doi: 10.1016/j.ygeno.2008.12.006
  97. McHale CM, Zhang L, Hubbard AE, Smith MT (2010) Toxicogenomic profiling of chemically exposed humans in risk assessment. Mutat Res 705(3):172–183. doi: 10.1016/j.mrrev.2010.04.001
  98. Medina-Navarro R, Lifshitz A, Wacher N, Hicks JJ (1997) Changes in human serum antioxidant capacity and peroxidation after four months of exposure to air pollutants. Arch Med Res 28(2):205–208Google Scholar
  99. Migliore L, Coppede F (2002) Genetic and environmental factors in cancer and neurodegenerative diseases. Mutat Res 512(2–3):135–153Google Scholar
  100. Moller P, Loft S (2010) Oxidative damage to DNA and lipids as biomarkers of exposure to air pollution. Environ Health Perspect 118(8):1126–1136. doi: 10.1289/ehp.0901725
  101. Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ (1990) A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci U S A 87(23):9383–9387Google Scholar
  102. Natarajan AT, Obe G (1980) Screening of human populations for mutations induced by environmental pollutants: use of human lymphocyte system. Ecotoxicol Environ Saf 4(4):468–481Google Scholar
  103. Niki E (2009) Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med 47(5):469–484. doi: 10.1016/j.freeradbiomed.2009.05.032, S0891-5849(09)00330-X [pii]
  104. Novotna B, Topinka J, Solansky I, Chvatalova I, Lnenickova Z, Sram RJ (2007) Impact of air pollution and genotype variability on DNA damage in Prague policemen. Toxicol Lett 172(1–2):37–47. doi: 10.1016/j.toxlet.2007.05.013
  105. Nuernberg AM, Boyce PD, Cavallari JM, Fang SC, Eisen EA, Christiani DC (2008) Urinary 8-isoprostane and 8-OHdG concentrations in boilermakers with welding exposure. J Occup Environ Med 50(2):182–189. doi: 10.1097/JOM.0b013e31815cf6cc
  106. Obe G, Pfeiffer P, Savage JR, Johannes C, Goedecke W, Jeppesen P et al (2002) Chromosomal aberrations: formation, identification and distribution. Mutat Res 504(1–2):17–36Google Scholar
  107. Orjuela MA, Liu X, Warburton D, Siebert AL, Cujar C, Tang D et al (2010) Prenatal PAH exposure is associated with chromosome-specific aberrations in cord blood. Mutat Res 703(2):108–114. doi: 10.1016/j.mrgentox.2010.08.004
  108. Palli D, Russo A, Masala G, Saieva C, Guarrera S, Carturan S et al (2001) DNA adduct levels and DNA repair polymorphisms in traffic-exposed workers and a general population sample. Int J Cancer 94(1):121–127Google Scholar
  109. Palli D, Masala G, Vineis P, Garte S, Saieva C, Krogh V et al (2003) Biomarkers of dietary intake of micronutrients modulate DNA adduct levels in healthy adults. Carcinogenesis 24(4):739–746Google Scholar
  110. Palus J, Rydzynski K, Dziubaltowska E, Wyszynska K, Natarajan AT, Nilsson R (2003) Genotoxic effects of occupational exposure to lead and cadmium. Mutat Res 540(1):19–28Google Scholar
  111. Peluso M, Merlo F, Munnia A, Valerio F, Perrotta A, Puntoni R et al (1998) 32P-postlabeling detection of aromatic adducts in the white blood cell DNA of nonsmoking police officers. Cancer Epidemiol Biomarkers Prev 7(1):3–11Google Scholar
  112. Perera FP, Whyatt RM (1994) Biomarkers and molecular epidemiology in mutation/cancer research. Mutat Res 313:117–129Google Scholar
  113. Perera FP, Whyatt RM, Jedrychowski W, Rauh V, Manchester D, Santella RM et al (1998) Recent developments in molecular epidemiology: a study of the effects of environmental polycyclic aromatic hydrocarbons on birth outcomes in Poland. Am J Epidemiol 147(3):309–314Google Scholar
  114. Peretz A, Peck EC, Bammler TK, Beyer RP, Sullivan JH, Trenga CA et al (2007) Diesel exhaust inhalation and assessment of peripheral blood mononuclear cell gene transcription effects: an exploratory study of healthy human volunteers. Inhal Toxicol 19(14):1107–1119. doi: 10.1080/08958370701665384
  115. Phillips DH (2005) DNA adducts as markers of exposure and risk. Mutat Res 577(1–2):284–292. doi: 10.1016/j.mrfmmm.2005.03.008
  116. Phillips DH, Castegnaro M (1999) Standardization and validation of DNA adduct postlabelling methods: report of interlaboratory trials and production of recommended protocols. Mutagenesis 14(3):301–315Google Scholar
  117. Pope CA 3rd, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, Speizer FE et al (1995) Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am J Respir Crit Care Med 151(3 Pt 1):669–674. doi: 10.1164/ajrccm/151.3_Pt_1.669
  118. Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K et al (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287(9):1132–1141Google Scholar
  119. Ricceri F, Godschalk RW, Peluso M, Phillips DH, Agudo A, Georgiadis P et al (2010) Bulky DNA adducts in white blood cells: a pooled analysis of 3,600 subjects. Cancer Epidemiol Biomarkers Prev 19(12):3174–3181. doi: 10.1158/1055-9965.EPI-10-0314
  120. Rossner P Jr, Sram RJ (2012) Immunochemical detection of oxidatively damaged DNA. Free Radic Res 46(4):492–522. doi: 10.3109/10715762.2011.632415
  121. Rossner P, Boffetta P, Ceppi M, Bonassi S, Smerhovsky Z, Landa K et al (2005) Chromosomal aberrations in lymphocytes of healthy subjects and risk of cancer. Environ Health Perspect 113(5):517–520Google Scholar
  122. Rossner P Jr, Svecova V, Milcova A, Lnenickova Z, Solansky I, Santella RM et al (2007) Oxidative and nitrosative stress markers in bus drivers. Mutat Res 617:23–32Google Scholar
  123. Rossner P Jr, Svecova V, Milcova A, Lnenickova Z, Solansky I, Sram RJ (2008a) Seasonal variability of oxidative stress markers in city bus drivers – part I: oxidative damage to DNA. Mutat Res 642:14–20Google Scholar
  124. Rossner P Jr, Svecova V, Milcova A, Lnenickova Z, Solansky I, Sram RJ (2008b) Seasonal variability of oxidative stress markers in city bus drivers – part II: oxidative damage to lipids and proteins. Mutat Res 642:21–27Google Scholar
  125. Rossner P Jr, Rossnerova A, Sram RJ (2011a) Oxidative stress and chromosomal aberrations in an environmentally exposed population. Mutat Res 707(1–2):34–41. doi: 10.1016/j.mrfmmm.2010.12.005, S0027-5107(10)00312-X [pii]
  126. Rossner P Jr, Uhlirova K, Beskid O, Rossnerova A, Svecova V, Sram RJ (2011b) Expression of XRCC5 in peripheral blood lymphocytes is upregulated in subjects from a heavily polluted region in the Czech Republic. Mutat Res 713:76–82. doi: 10.1016/j.mrfmmm.2011.06.001
  127. Rossner P Jr, Rossnerova A, Spatova M, Beskid O, Uhlirova K, Libalova H et al (2013a) Analysis of biomarkers in a Czech population exposed to heavy air pollution. Part II: chromosomal aberrations and oxidative stress. Mutagenesis 28(1):97–106. doi: 10.1093/mutage/ges058
  128. Rossner P Jr, Svecova V, Schmuczerova J, Milcova A, Tabashidze N, Topinka J et al (2013b) Analysis of biomarkers in a Czech population exposed to heavy air pollution. Part I: bulky DNA adducts. Mutagenesis 28(1):89–95. doi: 10.1093/mutage/ges057
  129. Rossner P Jr, Rossnerova A, Beskid O, Tabashidze N, Libalova H, Uhlirova K et al (2014a) Nonhomologous DNA end joining and chromosome aberrations in human embryonic lung fibroblasts treated with environmental pollutants. Mutat Res 763-764C:28–38. doi: 10.1016/j.mrfmmm.2014.03.006
  130. Rossner P Jr, Tulupova E, Rossnerova A, Libalova H, Gmuender H, Svecova V et al (2014b) Gene expression profiling in populations exposed to different levels of respirable air particles. Mutagenesis, Mutation Research (submitted)Google Scholar
  131. Rossnerova A, Spatova M, Rossner P, Solansky I, Sram RJ (2009) The impact of air pollution on the levels of micronuclei measured by automated image analysis. Mutat Res 669(1–2):42–47. doi: 10.1016/j.mrfmmm.2009.04.008, S0027-5107(09)00146-8 [pii]
  132. Rossnerova A, Tulupova E, Tabashidze N, Schmuczerova J, Dostal M, Rossner P Jr et al (2013) Factors affecting the 27 K DNA methylation pattern in asthmatic and healthy children from locations with various environments. Mutat Res 741–742:18–26Google Scholar
  133. Rubes J, Selevan SG, Evenson DP, Zudova D, Vozdova M, Zudova Z et al (2005) Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum Reprod 20(10):2776–2783. doi: 10.1093/humrep/dei122
  134. Rubes J, Selevan SG, Sram RJ, Evenson DP, Perreault SD (2007) GSTM1 genotype influences the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutat Res 625(1–2):20–28. doi: 10.1016/j.mrfmmm.2007.05.012
  135. Rubes J, Rybar R, Prinosilova P, Veznik Z, Chvatalova I, Solansky I et al (2010) Genetic polymorphisms influence the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutat Res 683(1–2):9–15. doi: 10.1016/j.mrfmmm.2009.09.010, S0027-5107(09)00290-5 [pii]
  136. Rusiecki JA, Baccarelli A, Bollati V, Tarantini L, Moore LE, Bonefeld-Jorgensen EC (2008) Global DNA hypomethylation is associated with high serum-persistent organic pollutants in Greenlandic Inuit. Environ Health Perspect 116(11):1547–1552. doi: 10.1289/ehp.11338
  137. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M et al (2011) Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 6(6):692–702Google Scholar
  138. Sarnat JA, Schwartz J, Suh HH (2001) Fine particulate air pollution and mortality in 20 U.S. cities. N Engl J Med 344(16):1253–1254. doi: 10.1056/NEJM200104193441614
  139. Sessa R, Hata A (2013) Role of microRNAs in lung development and pulmonary diseases. Pulm Circ 3(2):315–328. doi: 10.4103/2045-8932.114758
  140. Sigurdson AJ, Ha M, Hauptmann M, Bhatti P, Sram RJ, Beskid O et al (2008) International study of factors affecting human chromosome translocations. Mutat Res 652(2):112–121. doi: 10.1016/j.mrgentox.2008.01.005, S1383-5718(08)00019-3 [pii]
  141. Slade PG, Williams MV, Brahmbhatt V, Dash A, Wishnok JS, Tannenbaum SR (2010) Proteins modified by the lipid peroxidation aldehyde 9,12-dioxo-10(E)-dodecenoic acid in MCF7 breast cancer cells. Chem Res Toxicol 23(3):557–567. doi: 10.1021/tx9002808
  142. Sram RJ, Rossner P, Smerhovsky Z (2004) Cytogenetic analysis and occupational health in the Czech Republic. Mutat Res 566(1):21–48. doi:S1383574203000346 [pii]Google Scholar
  143. Sram RJ, Beskid O, Binkova B, Chvatalova I, Lnenickova Z, Milcova A et al (2007a) Chromosomal aberrations in environmentally exposed population in relation to metabolic and DNA repair genes polymorphisms. Mutat Res 620(1–2):22–33. doi: 10.1016/j.mrfmmm.2007.02.019, S0027-5107(07)00100-5 [pii]
  144. Sram RJ, Beskid O, Rossnerova A, Rossner P, Lnenickova Z, Milcova A et al (2007b) Environmental exposure to carcinogenic polycyclic aromatic hydrocarbons – the interpretation of cytogenetic analysis by FISH. Toxicol Lett 172(1–2):12–20Google Scholar
  145. Sram RJ, Binkova B, Beskid O, Milcova A, Rossner P, Rossner P Jr et al (2011) Biomarkers of exposure and effect—interpretation in human risk assessment. Air Qual Atmos Health 4(3–4):161–167Google Scholar
  146. Svecova V, Rossner P Jr, Dostal M, Topinka J, Solansky I, Sram RJ (2009) Urinary 8-oxodeoxyguanosine levels in children exposed to air pollutants. Mutat Res 662(1–2):37–43. doi: 10.1016/j.mrfmmm.2008.12.003, S0027-5107(08)00317-5 [pii]
  147. Tarantini L, Bonzini M, Apostoli P, Pegoraro V, Bollati V, Marinelli B et al (2009) Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. Environ Health Perspect 117(2):217–222. doi: 10.1289/ehp.11898
  148. Terry MB, Delgado-Cruzata L, Vin-Raviv N, Wu HC, Santella RM (2011) DNA methylation in white blood cells: association with risk factors in epidemiologic studies. Epigenetics 6(7):828–837Google Scholar
  149. Thacker J, Zdzienicka MZ (2003) The mammalian XRCC genes: their roles in DNA repair and genetic stability. DNA Repair (Amst) 2(6):655–672Google Scholar
  150. Tucker JD, Morgan WF, Awa AA, Bauchinger M, Blakey D, Cornforth MN et al (1995) A proposed system for scoring structural aberrations detected by chromosome painting. Cytogenet Cell Genet 68(3–4):211–221Google Scholar
  151. Tuimala J, Szekely G, Gundy S, Hirvonen A, Norppa H (2002) Genetic polymorphisms of DNA repair and xenobiotic-metabolizing enzymes: role in mutagen sensitivity. Carcinogenesis 23(6):1003–1008Google Scholar
  152. van Leeuwen DM, van Herwijnen MH, Pedersen M, Knudsen LE, Kirsch-Volders M, Sram RJ et al (2006) Genome-wide differential gene expression in children exposed to air pollution in the Czech Republic. Mutat Res 600(1–2):12–22. doi: 10.1016/j.mrfmmm.2006.05.032
  153. van Leeuwen DM, Gottschalk RW, Schoeters G, van Larebeke NA, Nelen V, Baeyens WF et al (2008a) Transcriptome analysis in peripheral blood of humans exposed to environmental carcinogens: a promising new biomarker in environmental health studies. Environ Health Perspect 116(11):1519–1525. doi: 10.1289/ehp.11401
  154. van Leeuwen DM, Pedersen M, Hendriksen PJ, Boorsma A, van Herwijnen MH, Gottschalk RW et al (2008b) Genomic analysis suggests higher susceptibility of children to air pollution. Carcinogenesis 29(5):977–983. doi: 10.1093/carcin/bgn065
  155. Vineis P, van Veldhoven K, Chadeau-Hyam M, Athersuch TJ (2013) Advancing the application of omics-based biomarkers in environmental epidemiology. Environ Mol Mutagen 54(7):461–467. doi: 10.1002/em.21764
  156. Wang Z, Neuburg D, Li C, Su L, Kim JY, Chen JC et al (2005) Global gene expression profiling in whole-blood samples from individuals exposed to metal fumes. Environ Health Perspect 113(2):233–241Google Scholar
  157. Wild CP, Scalbert A, Herceg Z (2013) Measuring the exposome: a powerful basis for evaluating environmental exposures and cancer risk. Environ Mol Mutagen 54(7):480–499. doi: 10.1002/em.21777
  158. Wright WR, Parzych K, Crawford D, Mein C, Mitchell JA, Paul-Clark MJ (2012) Inflammatory transcriptome profiling of human monocytes exposed acutely to cigarette smoke. PLoS One 7(2):e30120. doi: 10.1371/journal.pone.0030120
  159. Wu MT, Pan CH, Huang YL, Tsai PJ, Chen CJ, Wu TN (2003) Urinary excretion of 8-hydroxy-2-deoxyguanosine and 1-hydroxypyrene in coke-oven workers. Environ Mol Mutagen 42(2):98–105. doi: 10.1002/em.10176
  160. Wu LL, Chiou CC, Chang PY, Wu JT (2004) Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics [Review] [54 refs]. Clin Chim Acta 339(1–2):1–9Google Scholar
  161. Wu HC, Delgado-Cruzata L, Flom JD, Kappil M, Ferris JS, Liao Y et al (2011) Global methylation profiles in DNA from different blood cell types. Epigenetics 6(1):76–85. doi: 10.4161/epi.6.1.13391
  162. Wu HC, Wang Q, Delgado-Cruzata L, Santella RM, Terry MB (2012) Genomic methylation changes over time in peripheral blood mononuclear cell DNA: differences by assay type and baseline values. Cancer Epidemiol Biomarkers Prev 21(8):1314–1318. doi: 10.1158/1055-9965.EPI-12-0300
  163. Xue W, Warshawsky D (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol 206(1):73–93. doi: 10.1016/j.taap.2004.11.006, S0041-008X(04)00514-9 [pii]
  164. Zijno A, Andreoli C, Leopardi P, Marcon F, Rossi S, Caiola S et al (2003) Folate status, metabolic genotype, and biomarkers of genotoxicity in healthy subjects. Carcinogenesis 24(6):1097–1103. doi: 10.1093/carcin/bgg064, bgg064 [pii]

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Pavel RossnerJr.
    • 1
  • Blanka Binkova
    • 1
  • Andrea Rossnerova
    • 1
  • Radim J. Sram
    • 1
  1. 1.Department of Genetic EcotoxicologyInstitute of Experimental Medicine, AS CRPrague 4Czech Republic

Personalised recommendations