Basics of Human Binocular Vision

  • Robert Earl Patterson


This chapter presents the basics of human binocular vision: the longitudinal horopter, horizontal binocular disparity, binocular disparity gradients, binocular rivalry, spatio-temporal frequency processing, and visual pathways. Vertical disparity will not be discussed; for discussion of vertical disparity, see papers by Tyler (1983) and Tyler and Scott (1979).


Binocular Rivalry Dorsal Stream Binocular Disparity Temporal Acuity Vertical Disparity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arditi, A. (1986). Binocular vision. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of perception and performance: Vol. 1. Sensory processes and perception (pp. 23.1–23.40). New York: Wiley.Google Scholar
  2. Backus, B. T., Fleet, D. J., Parker, A. J., & Heeger, D. J. (2001). Human cortical activity correlates with stereoscopic depth perception. Journal of Neurophysiology, 86, 2054–2068.Google Scholar
  3. Blake, R. (1989). A neural theory of binocular rivalry. Psychological Review, 96, 145–167.CrossRefGoogle Scholar
  4. Blake, R. (2001). A primer on binocular rivalry, including current controversies. Brain and Mind, 2, 5–38.CrossRefMathSciNetGoogle Scholar
  5. Blake, R., & Sekuler, R. (2005). Perception. New York: McGraw-Hill.Google Scholar
  6. Breese, B. B. (1899). On inhibition. Psychological Monographs, 3, 1–65.CrossRefGoogle Scholar
  7. Burkhalter, A., & Van Essen, D. C. (1986). Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey. The Journal of Neuroscience, 6, 2327–2351.Google Scholar
  8. Burt, P., & Julesz, B. (1980). Modifications of the classical notion of Panum’s fusional area. Perception, 9, 671–682.CrossRefGoogle Scholar
  9. Campbell, F. W., & Robson, J. G. (1968). Application of Fourier analysis to the visibility of gratings. Journal of Physiology, 197, 551–566.CrossRefGoogle Scholar
  10. Cumming, B. G., & Parker, A. J. (1999). Binocular neurons in V1 of awake monkeys are selective for absolute, not relative, disparity. Journal of Neuroscience, 19, 5602–5618.Google Scholar
  11. De Lange, H. (1952). Experiments on flicker and some calculations on an electrical analogue of the foveal systems. Physica, 18, 935–950.CrossRefGoogle Scholar
  12. De Lange, H. (1954). Relationship between critical flicker-frequency and a set of low-frequency characteristics of the eye. Journal of the Optical Society of America, 44, 380–389.CrossRefGoogle Scholar
  13. De Valois, R. L., & De Valois, K. K. (1988). Spatial vision. New York: Oxford University Press.Google Scholar
  14. Farivar, R. (2009). Dorsal-ventral integration in object recognition. Brain Research Reviews, 61, 144–153.CrossRefGoogle Scholar
  15. Foley, J. M., & Richards, W. (1972). Effect of voluntary eye movement and convergence on the binocular appreciation of depth. Perception & Psychophysics, 11, 423–427.CrossRefGoogle Scholar
  16. Georgieva, S., Peeters, R., Kolster, H., Todd, J. T., & Orban, G. A. (2009). The processing of three dimensional shape from disparity in the human brain. Journal of Neuroscience, 29(3), 727–742.CrossRefGoogle Scholar
  17. Grossman, E. D., & Blake, R. (2001). Brain activity evoked by inverted and imagined biological motion. Vision Research, 41, 1475–1482.CrossRefGoogle Scholar
  18. Grossman, E. D., Donnelly, M., Price, P., Morgan, V., Pickens, D., Neighbor, G., et al. (2000). Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience, 12, 711–720.CrossRefGoogle Scholar
  19. Hegde, J., & Felleman, D. J. (2007). Reappraising the functional implications of the primate visual anatomical hierarchy. The Neuroscientist, 13, 416–421.CrossRefGoogle Scholar
  20. Hollins, M., & Leung, E. (1978). The influence of color on binocular rivalry. In J. C. Armington, J. Krausfopf, & B. R. Wotten (Eds.), Visual psychophysics and physiology (pp. 181–190). New York: Academic Press.CrossRefGoogle Scholar
  21. Howard, I. P. (2002). Seeing in depth: Vol. 1. Basic mechanisms. New York: Porteous.Google Scholar
  22. Howard, I. P., & Rogers, B. J. (1995). Binocular vision and stereopsis. Oxford, England: Oxford University Press.Google Scholar
  23. Kelly, D. H. (1971). Theory of flicker and transient responses. II. Counterphase gratings. Journal of the Optical Society of America A, 61, 632–640.CrossRefGoogle Scholar
  24. Lack, L. (1969). The effect of practice on binocular rivalry control. Perception & Psychophysics, 6, 397–400.CrossRefGoogle Scholar
  25. Levelt, W. J. M. (1965). On binocular rivalry. Soesterberg, The Netherlands: Institute for Perception, RVO-TNO.Google Scholar
  26. Likova, L. T., & Tyler, C. W. (2007). Stereomotion processing in the human occipital cortex. NeuroImage, 38, 293–305.CrossRefGoogle Scholar
  27. Livingstone, M. S., & Hubel, D. H. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240, 740–749.CrossRefGoogle Scholar
  28. Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. Oxford, England: Oxford University Press.Google Scholar
  29. Ogle, K. N. (1964). Binocular vision. New York: Hafner.Google Scholar
  30. Patten, M. L., & Murphy, A. P. (2012). Relative disparity processing in the dorsal visual pathway. The Journal of Neuroscience, 32, 5353–5355.CrossRefGoogle Scholar
  31. Patterson, R. (2007). Human factors of 3D displays. Journal of the Society for Information Display, 15, 861–871.CrossRefGoogle Scholar
  32. Patterson, R., Geri, G. A., Dyre, B. P., Pierce, B. J., Akhtar, S. C., Covas, C. M., et al. (2006). Active heading control in simulated flight based on vertically extended contours. Perception & Psychophysics, 68, 593–600.CrossRefGoogle Scholar
  33. Patterson, R., & Martin, W. L. (1992). Human stereopsis. Human Factors, 34, 669–692.Google Scholar
  34. Patterson, R., Winterbottom, M., Pierce, B., & Fox, R. (2007). Binocular rivalry and head-mounted displays. Human Factors, 49, 1083–1096.CrossRefGoogle Scholar
  35. Peuskens, H., Sunaert, S., Dupont, P., Van Hecke, P., & Orban, G. A. (2001). Human brain regions involved in heading estimation. Journal of Neuroscience, 21, 2451–2461.Google Scholar
  36. Rash, C. E., Mozo, B. T., McEntire, B. J., & Licina, J. R. (1996). RAH-66 Comanche health hazard and performance issues for the helmet integrated display and sighting system (Tech. Rep. 97-1). Fort Rucker, AL: U.S. Army Aeromedical Research Laboratory.Google Scholar
  37. Schall, J., Nawrot, M., Blake, R., & Yu, K. (1993). Visual guided attention is neutralized when informative cues are visible but unperceived. Vision Research, 33, 2057–2064.CrossRefGoogle Scholar
  38. Schiller, P. H., Logothetis, N. K., & Charles, E. R. (1990). Role of the color opponent and broad-band channels in vision. Visual Neuroscience, 5, 321–346.CrossRefGoogle Scholar
  39. Shipley, T., & Rawlings, S. C. (1970). The nonius horopter: I. History and theory. Vision Research, 10, 1225–1262.CrossRefGoogle Scholar
  40. T’so, D. Y., & Roe, A. W. (1995). Functional compartments in visual cortex: Segregation and interaction. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 325–337). Cambridge, MA: MIT Press.Google Scholar
  41. Tsao, D. Y., Vanduffel, W., Sasaki, Y., Fize, D., Knutsen, T. A., Mandeville, J. B., et al. (2003). Stereopsis activates V3A and caudal intraparietal areas in macaques and humans. Neuron, 39, 555–568.CrossRefGoogle Scholar
  42. Tsou, B. H., & Shenker, M. (2000). Visual factors associated with headmounted displays. In M. Bass (Ed.), Handbook of optics: Vol. III. Visual optics: Issues pertinent to the optical designer (2nd ed., pp. 18.1–18.15). New York: McGraw-Hill.Google Scholar
  43. Tyler, C. W. (1973). Stereoscopic vision: Cortical limitations and a disparity scaling effect. Science, 181, 276–278.CrossRefGoogle Scholar
  44. Tyler, C. W. (1983). Sensory processing of binocular disparity. In C. M. Schor & K. J. Ciuffreda (Eds.), Vergence eye movements: Basic and clinical aspects (pp. 199–295). Boston: Butterworths.Google Scholar
  45. Tyler, C. W., & Scott, A. B. (1979). Binocular vision. In R. E. Records (Ed.), Physiology of the human eye and visual system (pp. 643–671). New York: Harper & Row.Google Scholar
  46. Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, England: MIT Press.Google Scholar
  47. Van Essen, D. C., & DeYoe, E. A. (1995). Concurrent processing in the primate visual cortex. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 383–400). Cambridge, MA: MIT Press.Google Scholar
  48. Yabuta, N. H., Sawatari, A., & Callaway, E. M. (2001). Two functional channels from primary visual cortex to dorsal visual cortical areas. Science, 292, 297–300.CrossRefGoogle Scholar
  49. Yeh, Y., & Silverstein, L. (1990). Limits of fusion and depth judgments in stereoscopic color displays. Human Factors, 32, 45–54.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Robert Earl Patterson
    • 1
  1. 1.DaytonUSA

Personalised recommendations