Renewable Energy Exploitation for Domestic Supply

  • D. FontaniEmail author
  • P. Sansoni
Part of the Green Energy and Technology book series (GREEN)


Considering the utilization for domestic supply, first of all, it is useful to select the most suitable renewable energy sources. Then, in the architectural design phase, successively in the building construction phase, and finally during utilization, all energetic issues should be combined in order to optimize the energy exploitation. These aspects mainly concern the energetic balance inside the edifice and the power supply integration among the various sources.


Wind Turbine Solar Collector Fresnel Lens Domestic Supply Parabolic Trough 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Further Reading

  1. 1.
    Klapp J, Cervantes-Cota JL, Alcalá Chávez JF (2007) Towards a cleaner planet: energy for the future. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Winston R, Minano JC, Benitez P (2005) Non-imaging optics. Optics and photonics. Elsevier Academic Press, USAGoogle Scholar
  3. 3.
    Jenkins DG (2001) High-uniformity solar concentrators for photovoltaic systems. Proc SPIE 4446:52–59CrossRefGoogle Scholar
  4. 4.
    Luque A (1989) Solar cells and optics for photovoltaic concentration. The Adam hilger series on optics and optoelectronics. Bristol and Philadelphia. ISBN 0-85274-106-5Google Scholar
  5. 5.
    Winston R, Goodman NB, Ignatius R, Wharton L (1976) Solid-dielectric compound parabolic concentrators: on their use with photovoltaic devices. Appl Opt 15(10):2434–2436CrossRefGoogle Scholar
  6. 6.
    Winston R (1970) Light collection within the framework of geometrical optics. J Opt Soc Amer 60(2):245–247CrossRefGoogle Scholar
  7. 7.
    Collares Pereira M, Rabl A, Winston R (1977) Lens-mirror combinations with maximal concentration. Appl Opt 16(10):2677–2683CrossRefGoogle Scholar
  8. 8.
    Ning Xiaohui (1988) Three-dimensional ideal θ1/θ2 angular transformer and its uses in fiber optics. Appl Opt 27(19):4126–4130CrossRefGoogle Scholar
  9. 9.
    Cariou JM, Dugas J, Martin L (1982) Transport of solar power with optical fibres. Solar Power 29(5):397–406Google Scholar
  10. 10.
    Liang D, Nunes Y, Monteiro LF, Monteiro MLF, Collares Pereira M (1997) 200 W solar power delivery with optical fiber bundles. SPIE 3139:277–286Google Scholar
  11. 11.
    King RR, Law DC, Edmondson KM, Fetzer CM, Kinsey GS, Yoon H, Sherif RA, Karam NH (2007) 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl Phys Lett 90:183516CrossRefGoogle Scholar
  12. 12.
    Sherif R A et al (2005) The path to 1 GW of concentrator photovoltaics using multijunction solar cells. In: 31st IEEE PVSC, pp 17–22Google Scholar
  13. 13.
    Araki K et al (2003) Development of a robust and high efficiency concentrator receiver. WCPEC 3:630–633Google Scholar
  14. 14.
    Araki K et al (2003) Sunshine environment and spectrum analysis for concentrator PV systems in Japan. Sol En Mater Sol Cells 75:715–721CrossRefGoogle Scholar
  15. 15.
    Araki K et al (2004) A 28 % Efficient, 400x and 200 Wp Concentrator Module. In: 19th European PVSEC, pp 2495–2498Google Scholar
  16. 16.
    Araki K et al (2005) Comparison of efficiency measurement for a HCPV module with 3 J-cells in 3 sites. In: 31st IEEE PVSC, pp 846–849Google Scholar
  17. 17.
    Verlinden PJ et al (2006) Performance and reliability of multi-junction III-V dense array modules for concentrator dish and central receiver applications. In: IEEE 4th world conference on photovoltaic energy conversion, HawaiiGoogle Scholar
  18. 18.
    Bett W et al (2004) FLATCON/TM and FLASHCON/TM: concepts for high concentration PV. In: 19th European PVSEC, pp 2488–2491Google Scholar
  19. 19.
    Alvarez JL et al (2005) Optical performance measurements of very high concentration systems. In: 20 European PVSC, pp 2357–2359Google Scholar
  20. 20.
    Sarno A et al (2002) The PhoCUS Project. In: Proceedings of the PV in Europe conference, RomeGoogle Scholar
  21. 21.
    Sansoni P, Francini F, Fontani D, Mercatelli L, Jafrancesco D (2008) Indoor illumination by solar light collectors. Lighting Res Technol 40(4):323–332CrossRefGoogle Scholar
  22. 22.
    Fontani D, Francini F, Jafrancesco D, Longobardi G, Sansoni P (2007) Optical design and development of fibre coupled compact solar collectors. Lighting Res Technol 39(1):17–30CrossRefGoogle Scholar
  23. 23.
    Ciamberlini C, Francini F, Longobardi G, Piattelli M, Sansoni P (2003) Solar system for the exploitation of the whole collected energy. Opt Laser Eng 39(2):233–246CrossRefGoogle Scholar
  24. 24.
    Fontani D, Francini F, Sansoni P (2007) Optical characterisation of solar collectors. Opt Laser Eng 45:351–359CrossRefGoogle Scholar
  25. 25.
    de Winter F (ed) (1991) Solar collectors, power storage and materials. The MIT press Cambridge, Massachusetts. ISBN 0-262-04104-9Google Scholar
  26. 26.
    Kalogirou SA (2004) Solar thermal collectors and applications. Prog Energy Combust Sci 30:231–295CrossRefGoogle Scholar
  27. 27.
    Kearney DW, Parabolic trough collector overview, parabolic trough workshop 2007 at the National Renewable Energy Laboratory, Golden COGoogle Scholar
  28. 28.
    Plataforma Solar de Almerìa—CIEMAT, Annual report 2007Google Scholar
  29. 29.
    Weiss w, Rommel M (2005) Solar heat for industrial process: state of the art—medium temperature collectors, IEA-SHC Task 33/IV, May 2005Google Scholar
  30. 30.
    Krüger D, Pandian Y, Hennecke K, Schmitz M (2008) Parabolic trough collector testing in the frame of the REACt project. Desalination 220(1–3):612–618CrossRefGoogle Scholar
  31. 31.
    High temperature heat from solar energy, ENEA Press, Roma (2004)Google Scholar
  32. 32.
    Bakos GC, Ioannidis I, Tsagas NF, Seftelis I (2000) Design, optimisation and conversion-efficiency determination of a line-focus parabolic-trough solar-collector (PTC). Appl Energy 68(1):43–50CrossRefGoogle Scholar
  33. 33.
    Price H, Lüpfert E, Kearney D, Zarza E, Cohen G, Gee R et al (2002) Advances in parabolic trough solar power technology. J Sol Energy Eng 124(2):109–125CrossRefGoogle Scholar
  34. 34.
    Klapp J, Cervantes Cota JL, Alcalá Chávez JF (2007) Towards a cleaner planet: energy for the future. Springer, BerlinCrossRefGoogle Scholar
  35. 35.
    Prapas DE, Norton B, Probert SD (1987) Optics of parabolic-trough, solar-energy collectors, possessing small concentration ratios. Sol Energy 39(6):541–550CrossRefGoogle Scholar
  36. 36.
    Winston R, Miñano JC, Benítez P, Shatz N, Bortz JC (2005) Nonimaging optics. Elsevier Academic Press, AmsterdamGoogle Scholar
  37. 37.
    Fontani D, Sansoni P, Francini F, Jafrancesco D, Chiani G, De Lucia M (2008) In: Efficiency of a linear parabolic mirror for geometrical deformations proceedings of EUROSUN 2008 1st international conference on solar heating, cooling and buildings, Lisbon, 7–10 Oct 2008Google Scholar
  38. 38.
    Kandpal TC, Mathur SS, Singhal AK (1985) Optical performance of a composite parabolic trough. Appl Energy 19(3):231–239CrossRefGoogle Scholar
  39. 39.
    Güven HM, Bannerot RB (1986) Determination of error tolerances for the optical design of parabolic troughs for developing countries. Sol Energy 36(6):535–550CrossRefGoogle Scholar
  40. 40.
    Fontani D, Sansoni P, Francini F, Mercatelli L, Jafrancesco D (2007) A pinhole camera to track the sun position. In: ISES Solar World Congress 2007, Beijing, 18-21 Sept 2007Google Scholar
  41. 41.
    Fontani D, Sansoni P, Francini F, Jafrancesco D, Mercatelli L (2008) Sensors for sun pointing proceedings of WREC/WREN World Renewable Energy Congress/Network 2008, Glasgow, 19–25 July 2008Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.CNR-INO National Institute of OpticsFlorenceItaly

Personalised recommendations