Stabilization of Linear Systems Over Fading Channels

  • Keyou You
  • Nan Xiao
  • Lihua Xie
Part of the Communications and Control Engineering book series (CCE)


Fading channels are often encountered in wireless communications and have attracted a lot of attentions in the study of networked control recently.


  1. 1.
    N. Elia, Remote stabilization over fading channels. Syst. Control Lett. 54(3), 237–249 (2005)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    D. Tse, P. Viswanath, Fundamentals of Wireless Communication (Cambridge University Press, Cambridge, 2005)CrossRefMATHGoogle Scholar
  3. 3.
    S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory (Society for Industrial Mathematics, Philadelphia, 1994)CrossRefMATHGoogle Scholar
  4. 4.
    W. Wonham, On pole assignment in multi-input controllable linear systems. IEEE Trans. Autom. Control 12(6), 660–665 (1967)CrossRefGoogle Scholar
  5. 5.
    G. Gu, L. Qiu, Networked stabilization of multi-input systems with channel resource allocation, in Proceedings of the 17th IFAC World Congress, pp. 625–630 (2008)Google Scholar
  6. 6.
    S. Hu, W. Yan, Stability of networked control systems under a multiple-packet transmission policy. IEEE Trans. Autom. Control 53(7), 1706–1711 (2008)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Y. Li, E. Tuncel, J. Chen, W. Su, Optimal tracking performance of discrete-time systems over an additive white noise channel, in Proceedings of the 48th IEEE Conference on Decision and Control, pp. 2070–2075 (2009)Google Scholar
  8. 8.
    S. Hu, W. Yan, Stability robustness of networked control systems with respect to packet loss. Automatica 43(7), 1243–1248 (2007)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan, S. Sastry, Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 49(9), 1453–1464 (2004)CrossRefMathSciNetGoogle Scholar
  10. 10.
    D. Tse, Optimal power allocation over parallel Gaussian broadcast channels, in Proceedings of IEEE International Symposium on Information Theory, p. 27 (1997)Google Scholar
  11. 11.
    L. Li, A. Goldsmith, Capacity and optimal resource allocation for fading broadcast channels—I: Ergodic capacity. IEEE Trans. Inf. Theory 47(3), 1083–1102 (2001)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    M. Tabbara, A. Rantzer, D. Nesic, On controller and capacity allocation co-design for networked control systems. Syst. Control Lett. 58(9), 672–676 (2009)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    G. Nair, R. Evans, Stabilizability of stochastic linear systems with finite feedback data rates. SIAM J. Control Optim. 43(2), 413–436 (2004)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, S. Sastry, Foundations of control and estimation over lossy networks. Proc. IEEE 95(1), 163–187 (2007)CrossRefGoogle Scholar
  15. 15.
    K. Zhou, J. Doyle, Essentials of Robust Control (Prentice Hall, New Jersey, 1998)Google Scholar
  16. 16.
    O. Toker, J. Chen, L. Qiu, Tracking performance limitations in LTI multivariable discrete-time systems. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 49(5), 657–670 (2002)CrossRefMathSciNetGoogle Scholar
  17. 17.
    J. Braslavsky, R. Middleton, J. Freudenberg, Feedback stabilization over signal-to-noise ratio constrained channels. IEEE Trans. Autom. Control 52(8), 1391–1403 (2007)CrossRefMathSciNetGoogle Scholar
  18. 18.
    B. Francis, A Course in \(H_{\infty }\) Control Theory (Springer, New York, 1987)Google Scholar
  19. 19.
    A. Rojas, Comments on feedback stabilization over signal-to-noise ratio constrained channels. IEEE Trans. Autom. Control 54(6), 1425–1426 (2009)CrossRefMathSciNetGoogle Scholar
  20. 20.
    G. Gomez, G. Goodwin, An algebraic approach to decoupling in linear multivariable systems. Int. J. Control 73(7), 582–599 (2000)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    P. Seiler, A. Pant, K. Hedrick, Disturbance propagation in vehicle strings. IEEE Trans. Autom. Control 49(10), 1835–1842 (2004)CrossRefMathSciNetGoogle Scholar
  22. 22.
    R. Middleton, J. Braslavsky, String instability in classes of linear time invariant formation control with limited communication range. IEEE Trans. Autom. Control 55(7), 1519–1530 (2010)CrossRefMathSciNetGoogle Scholar
  23. 23.
    A. Goldsmith, Wireless Communications (Cambridge University Press, Cambridge, 2005)CrossRefGoogle Scholar
  24. 24.
    S. Dey, A. Leong, J. Evans, Kalman filtering with faded measurements. Automatica 45(10), 2223–2233 (2009)CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    N. Xiao, L. Xie, L. Qiu, Mean square stabilization of multi-input systems over stochastic multiplicative channels, in Proceedings of the 48th IEEE Conference on Decision and Control, pp. 6893–6898 (2009)Google Scholar
  26. 26.
    E. Silva, A unified framework for the analysis and design of networked control systems, PhD thesis, Callaghan, Australia: The University of Newcastle (2009)Google Scholar
  27. 27.
    M. Derpich, E. Silva, D. Quevedo, G. Goodwin, On optimal perfect reconstruction feedback quantizers. IEEE Trans. Signal Process. 56(8), 3871–3890 (2008)CrossRefMathSciNetGoogle Scholar
  28. 28.
    W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1987)MATHGoogle Scholar
  29. 29.
    N. Xiao, L. Xie, L. Qiu, Feedback stabilization of discrete-time networked systems over fading channels. IEEE Trans. Autom. Control 57(9), 2176–2189 (2012)CrossRefMathSciNetGoogle Scholar
  30. 30.
    N. Xiao, L. Xie, Analysis and design of discrete-time networked systems over fading channels, in Proceedings of the 30th Chinese Control Conference, pp. 6562–6567 (2011)Google Scholar
  31. 31.
    G. Gu, L. Qiu, Networked feedback control over fading channels and the relation to H2 control, in Proceedings of the International Conference on Information and Automation, pp. 247–252 (2012)Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Department of AutomationTsinghua UniversityBeijingChina
  2. 2.Future Urban Mobility Interdisciplinary Research GroupSingapore-MIT Alliance for Research and Technology CentreSingaporeSingapore
  3. 3.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations