Skip to main content

Entropies and Capacities in Networked Control Systems

  • Chapter
  • First Online:
Analysis and Design of Networked Control Systems

Part of the book series: Communications and Control Engineering ((CCE))

Abstract

In this chapter, we introduce some basic concepts and results in communication and information theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Intuitively, the asymptotic equipartition property indicates that “almost all events are almost equally surprising”; see, e.g., Chap. 3 of [1] for more details.

  2. 2.

    We note that, for the erasure channel model considered in the control community, e.g., [7], the data is lost in the unit of packet (a collection of bits) rather than bit.

  3. 3.

    Note that transmission rate in information theory [1] is defined as the rate at which information is processed by a transmission facility. Its unit is usually expressed as bits per second.

References

  1. T. Cover, J. Thomas, Elements of Information Theory (Wiley-Interscience, New York, 2006)

    MATH  Google Scholar 

  2. R. Adler, A. Konheim, M. McAndrew, Topological entropy. Trans. Am. Math. Soc. 114(2), 309–319 (1965)

    MathSciNet  MATH  Google Scholar 

  3. K. Mahler, An application of Jensen’s formula to polynomials. Mathematica 7, 98–100 (1960)

    MathSciNet  MATH  Google Scholar 

  4. N. Elia, When Bode meets Shannon: control-oriented feedback communication schemes. IEEE Trans. Autom. Control 49(9), 1477–1488 (2004)

    MathSciNet  Google Scholar 

  5. C. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    MathSciNet  MATH  Google Scholar 

  6. J. Hespanha, P. Naghshtabrizi, Y. Xu, A survey of recent results in networked control systems. Proc. IEEE 95(1), 138–162 (2007)

    Google Scholar 

  7. N. Elia, Remote stabilization over fading channels. Syst. Control Lett. 54(3), 237–249 (2005)

    MathSciNet  MATH  Google Scholar 

  8. D. Tse, P. Viswanath, Fundamentals of Wireless Communication (Cambridge University Press, Cambridge, 2005)

    MATH  Google Scholar 

  9. A. Goldsmith, Wireless Communications (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  10. M. Simon, M. Alouini, Digital Communication Over Fading Channels (Wiley-IEEE Press, London, 2005)

    Google Scholar 

  11. A. Goldsmith, P. Varaiya, Capacity of fading channels with channel side information. IEEE Trans. Inf. Theory 43(6), 1986–1992 (1997)

    MathSciNet  MATH  Google Scholar 

  12. L. Li, A. Goldsmith, Capacity and optimal resource allocation for fading broadcast channels—I: Ergodic capacity. IEEE Trans. Inf. Theory 47(3), 1083–1102 (2001)

    MathSciNet  MATH  Google Scholar 

  13. L. Li, A. Goldsmith, Capacity and optimal resource allocation for fading broadcast channels—II: Outage capacity. IEEE Trans. Inf. Theory 47(3), 1103–1127 (2001)

    MathSciNet  MATH  Google Scholar 

  14. A. El Gamal, T. Cover, Multiple user information theory. Proc. IEEE 68(12), 1466–1483 (1980)

    Google Scholar 

  15. M. Gastpar, Causal coding and feedback in Gaussian sensor networks, Advances in Control, Communication Networks, and Transportation Systems (Birkhauser, Boston, 2005), pp. 91–110

    Google Scholar 

  16. T. Linder, R. Zamir, Causal coding of stationary sources and individual sequences with high resolution. IEEE Trans. Inf. Theory 52(2), 662–680 (2006)

    MathSciNet  MATH  Google Scholar 

  17. R. Kalman, Nonlinear aspects of sampled-data control systems, in Proceedings of the Symposium on Nonlinear Circuit Analysis, vol. 6, pp. 273–313 (1956)

    Google Scholar 

  18. D. Williamson, Finite wordlength design of digital Kalman filters for state estimation. IEEE Trans. Autom. Control 30(10), 930–939 (1985)

    MATH  Google Scholar 

  19. D. Delchamps, Stabilizing a linear system with quantized state feedback. IEEE Trans. Autom. Control 35(8), 916–924 (1990)

    MathSciNet  MATH  Google Scholar 

  20. W. Wong, R. Brockett, Systems with finite communication bandwidth constraints-Part I: state estimation problems. IEEE Trans. Autom. Control 42(9), 1294–1299 (1997)

    MathSciNet  MATH  Google Scholar 

  21. W. Wong, R. Brockett, Systems with finite communication bandwidth constraints. II. Stabilization with limited information feedback. IEEE Trans. Autom. Control 44(5), 1049–1053 (1999)

    MathSciNet  MATH  Google Scholar 

  22. R. Brockett, D. Liberzon, Quantized feedback stabilization of linear systems. IEEE Trans. Autom. Control 45(7), 1279–1289 (2000)

    MathSciNet  MATH  Google Scholar 

  23. J. Baillieul, Feedback coding for information-based control: operating near the data-rate limit, in Proceedings of 41st IEEE Conference on Decision and Control (2002)

    Google Scholar 

  24. G. Nair, R. Evans, Stabilizability of stochastic linear systems with finite feedback data rates. SIAM J. Control Optim. 43(2), 413–436 (2004)

    MathSciNet  MATH  Google Scholar 

  25. G. Nair, R. Evans, Exponential stabilisability of finite-dimensional linear systems with limited data rates. Automatica 39(4), 585–593 (2003)

    MathSciNet  MATH  Google Scholar 

  26. S. Tatikonda, S. Mitter, Control under communication constraints. IEEE Trans. Autom. Control 49(7), 1056–1068 (2004)

    MathSciNet  Google Scholar 

  27. S. Yuksel, T. Basar, Minimum rate coding for LTI systems over noiseless channels. IEEE Trans. Autom. Control 51(12), 1878–1887 (2006)

    MathSciNet  Google Scholar 

  28. N. Elia, S. Mitter, Stabilization of linear systems with limited information. IEEE Trans. Autom. Control 46(9), 1384–1400 (2001)

    MathSciNet  MATH  Google Scholar 

  29. M. Fu, L. Xie, The sector bound approach to quantized feedback control. IEEE Trans. Autom. Control 50(11), 1698–1711 (2005)

    MathSciNet  Google Scholar 

  30. M. Fu, L. Xie, Finite-level quantized feedback control for linear systems. IEEE Trans. Autom. Control 54(5), 1165–1170 (2009)

    MathSciNet  Google Scholar 

  31. K. You, W. Su, M. Fu, L. Xie, Attainability of the minimum data rate for stabilization of linear systems via logarithmic quantization. Automatica 47(1), 170–176 (2011)

    MathSciNet  MATH  Google Scholar 

  32. B. Widrow, I. Kollar, M. Liu, Statistical theory of quantization. IEEE Trans. Instrum. Meas. 45(2), 353–361 (1996)

    Google Scholar 

  33. G. Nair, F. Fagnani, S. Zampieri, R. Evans, Feedback control under data rate constraints: an overview. Proc. IEEE 95(1), 108–137 (2007)

    Google Scholar 

  34. V. Borkar, S. Mitter, LQG control with communication constraints, Communications, Computation, Control and Signal Processing: A Tribute to Thomas Kailath (Kluwer, Norwell, 1997)

    Google Scholar 

  35. S. Tatikonda, A. Sahai, S. Mitter, Stochastic linear control over a communication channel. IEEE Trans. Autom. Control 49(9), 1549–1561 (2004)

    MathSciNet  Google Scholar 

  36. M. Fu, Linear quadratic Gaussian control with quantized feedback, in American Control Conference, pp. 2172–2177 (2009)

    Google Scholar 

  37. K. You, L. Xie, Linear quadratic Gaussian control with quantised innovations Kalman filter over a symmetric channel. IET Control Theory Appl. 5(3), 437–446 (2011)

    MathSciNet  Google Scholar 

  38. L. Bao, M. Skoglund, K. Johansson, Iterative encoder-controller design for feedback control over noisy channels. IEEE Trans. Autom. Control 56(2), 265–278 (2011)

    MathSciNet  Google Scholar 

  39. R. Curry, Estimation and Control with Quantized Measurements (MIT Press, Cambridge, 1970)

    MATH  Google Scholar 

  40. F. Fagnani, S. Zampieri, Stability analysis and synthesis for scalar linear systems with a quantized feedback. IEEE Trans. Autom. Control 48(9), 1569–1584 (2003)

    MathSciNet  Google Scholar 

  41. F. Fagnani, S. Zampieri, Quantized stabilization of linear systems: complexity versus performance. IEEE Trans. Autom. Control 49(9), 1534–1548 (2004)

    MathSciNet  Google Scholar 

  42. S. Tatikonda, S. Mitter, Control over noisy channels. IEEE Trans. Autom. Control 49(7), 1196–1201 (2004)

    MathSciNet  Google Scholar 

  43. A. Matveev, A. Savkin, Comments on control over noisy channels and relevant negative results. IEEE Trans. Autom. Control 50(12), 2105–2110 (2005)

    MathSciNet  Google Scholar 

  44. G. Goodwin, E. Silva, D. Quevedo, Analysis and design of networked control systems using the additive noise model methodology. Asian J. Control 12(4), 443–459 (2010)

    MathSciNet  Google Scholar 

  45. J. Braslavsky, R. Middleton, J. Freudenberg, Feedback stabilization over signal-to-noise ratio constrained channels, in Proceedings of American Control Conference, pp. 4903–4908 (2005)

    Google Scholar 

  46. J. Braslavsky, R. Middleton, J. Freudenberg, Feedback stabilization over signal-to-noise ratio constrained channels. IEEE Trans. Autom. Control 52(8), 1391–1403 (2007)

    MathSciNet  Google Scholar 

  47. A. Rojas, Feedback control over signal to noise ratio constrained communication channels. Ph.D. thesis (The University of Newcastle, Callaghan, Australia, 2006)

    Google Scholar 

  48. R. Middleton, A. Rojas, J. Freudenberg, J. Braslavsky, Feedback stabilization over a first order moving average Gaussian noise channel. IEEE Trans. Autom. Control 54(1), 163–167 (2009)

    MathSciNet  Google Scholar 

  49. J. Freudenberg, R. Middleton, J. Braslavsky, Stabilization with disturbance attenuation over a Gaussian channel, in Proceedings of the 46th IEEE Conference on Decision and Control, pp. 3958–3963 (2008)

    Google Scholar 

  50. E. Silva, A unified framework for the analysis and design of networked control systems. Ph.D. thesis (The University of Newcastle, Callaghan, Australia, 2009)

    Google Scholar 

  51. Y. Li, E. Tuncel, J. Chen, W. Su, Optimal tracking performance of discrete-time systems over an additive white noise channel, in Proceedings of the 48th IEEE Conference on Decision and Control, pp. 2070–2075 (2009)

    Google Scholar 

  52. Y. Mostofi, R. Murray, To drop or not to drop: design principles for Kalman filtering over wireless fading channels. IEEE Trans. Autom. Control 54(2), 376–381 (2009)

    MathSciNet  Google Scholar 

  53. Y. Mostofi, R. Murray, Kalman filtering over wireless fading channels-how to handle packet drop. Int. J. Robust Nonlinear Control 19(18), 1993–2015 (2009)

    MathSciNet  MATH  Google Scholar 

  54. S. Dey, A. Leong, J. Evans, Kalman filtering with faded measurements. Automatica 45(10), 2223–2233 (2009)

    MathSciNet  MATH  Google Scholar 

  55. N. Martins, M. Dahleh, N. Elia, Feedback stabilization of uncertain systems in the presence of a direct link. IEEE Trans. Autom. Control 51(3), 438–447 (2006)

    MathSciNet  Google Scholar 

  56. P. Minero, M. Franceschetti, S. Dey, G. Nair, Data rate theorem for stabilization over time-varying feedback channels. IEEE Trans. Autom. Control 54(2), 243–255 (2009)

    MathSciNet  Google Scholar 

  57. K. You, L. Xie, Minimum data rate for mean square stabilization of discrete LTI systems over lossy channels. IEEE Trans. Autom. Control 55(10), 2373–2378 (2010)

    MathSciNet  Google Scholar 

  58. A. Matveev, A. Savkin, Comments on control over noisy channels and relevant negative results. IEEE Trans. Autom. Control 50(12), 2105–2110 (2005)

    MathSciNet  Google Scholar 

  59. A. Matveev, A. Savkin, An analogue of Shannon information theory for detection and stabilization via noisy discrete communication channels. SIAM J. Control Optim. 46, 1323–1367 (2007)

    MathSciNet  MATH  Google Scholar 

  60. A. Sahai, S. Mitter, The necessity and sufficiency of anytime capacity for control over a noisy communication link: Part I: scalar systems. IEEE Trans. Inf. Theory 52(8), 3369–3395 (2006)

    MathSciNet  Google Scholar 

  61. K. You, L. Xie, Minimum data rate for mean square stabilizability of linear systems with Markovian packet losses. IEEE Trans. Autom. Control 56(4), 772–785 (2011)

    MathSciNet  Google Scholar 

  62. Y. Kim, Feedback capacity of the first-order moving average Gaussian channel. IEEE Trans. Inf. Theory 52(7), 3063–3079 (2006)

    MATH  Google Scholar 

  63. K. Zhou, J. Doyle, Essentials of Robust Control (Prentice Hall, Upper Saddle River, 1998)

    Google Scholar 

  64. A. Ribeiro, G. Giannakis, Bandwidth-constrained distributed estimation for wireless sensor networks-part I: Gaussian case. IEEE Trans. Signal Process. 54(3), 1131–1143 (2006)

    Google Scholar 

  65. H. Papadopoulos, G. Wornell, A. Oppenheim, Sequential signal encoding from noisy measurements using quantizers with dynamic bias control. IEEE Trans. Inf. Theory 47(3), 978–1002 (2002)

    MathSciNet  Google Scholar 

  66. J. Fang, H. Li, Distributed adaptive quantization for wireless sensor networks: from delta modulation to maximum likelihood. IEEE Trans. Signal Process. 56(10), 5246–5257 (2008)

    MathSciNet  Google Scholar 

  67. D. Marelli, K. You, M. Fu, Identification of ARMA models using intermittent and quantized output observations. Automatica 49(2), 360–369 (2013)

    MathSciNet  MATH  Google Scholar 

  68. A. Ribeiro, G. Giannakis, S. Roumeliotis, SOI-KF: distributed Kalman filtering with low-cost communications using the sign of innovations. IEEE Trans. Signal Process. 54(12), 4782–4795 (2006)

    Google Scholar 

  69. K. You, L. Xie, S. Sun, W. Xiao, Multiple-level quantized innovation Kalman filter, in Proceedings of 17th IFAC World Congress, pp. 1420–1425 (2008)

    Google Scholar 

  70. V. Borkar, S. Mitter, S. Tatikonda, Optimal sequential vector quantization of Markov sources. SIAM J. Control Optim. 40(1), 135–148 (2001)

    MathSciNet  MATH  Google Scholar 

  71. J. Xiao, A. Ribeiro, Z. Luo, G. Giannakis, Distributed compression-estimation using wireless sensor networks. IEEE Signal Process. Mag. 23(4), 27–41 (2006)

    Google Scholar 

  72. L. Wang, G. Yin, J. Zhang, Y. Zhao, System Identification with Quantized Observations (Birkhäuser, Boston, 2010)

    MATH  Google Scholar 

  73. Z. Luo, An isotropic universal decentralized estimation scheme for a bandwith constrained ad hoc sensor network. IEEE J. Sel. Areas Commun. 23(4), 735–744 (2005)

    Google Scholar 

  74. G. Pagès, H. Pham, Optimal quantization methods for nonlinear filtering with discrete-time observations. Bernoulli 11(5), 893–932 (2005)

    MathSciNet  MATH  Google Scholar 

  75. A. Ribeiro, G. Giannakis, Bandwidth-constrained distributed estimation for wireless sensor networks-part II: unknown pdf. IEEE Trans. Signal Process. 54(7), 2784–2796 (2006)

    Google Scholar 

  76. M. Huang, S. Dey, Dynamic quantizer design for hidden Markov state estimation via multiple sensors with fusion center feedback. IEEE Trans. Signal Process. 54(8), 2887–2896 (2006)

    Google Scholar 

  77. R. Karlsson, F. Gustafsson, Particle filtering for quantized sensor information, in Proceedings of the 13th European Signal Processing Conference, Antalya, Turkey, September 2005

    Google Scholar 

  78. Z. Luo, Universal decentralized estimation in a bandwidth constrained sensor network. IEEE Trans. Inf. Theory 51(6), 2210–2219 (2005)

    MATH  Google Scholar 

  79. K. You, L. Xie, Kalman filtering with scheduled measurements. IEEE Trans. Signal Process. 61(6), 1520–1530 (2013)

    MathSciNet  Google Scholar 

  80. M. Huang, S. Dey, Dynamic quantization for multisensor estimation over bandlimited fading channels. IEEE Trans. Signal Process. 55(9), 4696–4702 (2007)

    MathSciNet  Google Scholar 

  81. E. Msechu, S. Roumeliotis, A. Ribeiro, G. Giannakis, Decentralized quantized Kalman filtering with scalable communication cost. IEEE Trans. Signal Process. 56(8), 3727–3741 (2008)

    MathSciNet  Google Scholar 

  82. I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002)

    Google Scholar 

  83. K. You, L. Xie, S. Song, Asymptotically optimal parameter estimation with scheduled measurements. IEEE Trans. Signal Process. 61(14), 3521–3531 (2013)

    MathSciNet  Google Scholar 

  84. J. Wu, Q. Jia, K. Johansson, L. Shi, Event-based sensor data scheduling: trade-off between sensor communication rate and estimation quality. Preprint (2011)

    Google Scholar 

  85. G. Battistelli, A. Benavoli, L. Chisci, Data-driven communication for state estimation with sensor networks. Automatica 48(5), 926–935 (2012)

    MathSciNet  MATH  Google Scholar 

  86. C. Wikle, N. Cressie, A dimension-reduced approach to space-time Kalman filtering. Biometrika 86(4), 815–829 (1999)

    MathSciNet  MATH  Google Scholar 

  87. I. Schizas, G. Giannakis, Z. Luo, Distributed estimation using reduced-dimensionality sensor observations. IEEE Trans. Signal Process. 55(8), 4284–4299 (2007)

    MathSciNet  Google Scholar 

  88. H. Zhu, I. Schizas, G. Giannakis, Power-efficient dimensionality reduction for distributed channel-aware Kalman tracking using WSNs. IEEE Trans. Signal Process. 57(8), 3193–3207 (2009)

    MathSciNet  Google Scholar 

  89. A. Makarenko, H. Durrant-Whyte, Decentralized Bayesian algorithms for active sensor networks. Inf. Fusion 7(4), 418–433 (2006)

    Google Scholar 

  90. D. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    MathSciNet  MATH  Google Scholar 

  91. Z. Quan, W. Kaiser, A. Sayed, Innovations diffusion: a spatial sampling scheme for distributed estimation and detection. IEEE Trans. Signal Process. 57(2), 738–751 (2009)

    MathSciNet  Google Scholar 

  92. Y. Mo, R. Ambrosino, B. Sinopoli, Sensor selection strategies for state estimation in energy constrained wireless sensor networks. Automatica 47(7), 1330–1338 (2011)

    MathSciNet  MATH  Google Scholar 

  93. J. Li, G. AlRegib, Rate-constrained distributed estimation in wireless sensor networks. IEEE Trans. Signal Process. 55(5), 1634–1643 (2007)

    MathSciNet  Google Scholar 

  94. C. Berger, S. Choi, S. Zhou, P. Willett, Channel energy based estimation of target trajectories using distributed sensors with low communication rate. IEEE Trans. Signal Process. 58(4), 2339–2350 (2010)

    MathSciNet  Google Scholar 

  95. J. Gubner, Distributed estimation and quantization. IEEE Trans. Inf. Theory 39(4), 1456–1459 (1993)

    MathSciNet  MATH  Google Scholar 

  96. O. Ozdemir, R. Niu, P.K. Varshney, Channel aware target localization with quantized data in wireless sensor networks. IEEE Trans. Signal Process. 57(3), 1190–1202 (2009)

    MathSciNet  Google Scholar 

  97. G. Balkan, S. Gezici, CRLB based optimal noise enhanced parameter estimation using quantized observations. IEEE Signal Process. Lett. 17(5), 477–480 (2010)

    Google Scholar 

  98. Y. Zhao, L. Wang, G. Yin, J. Zhang, Identification of Wiener systems with binary-valued output observations. Automatica 43(10), 1752–1765 (2007)

    MathSciNet  MATH  Google Scholar 

  99. K. You, L. Xie, S. Sun, W. Xiao, Quantized filtering of linear stochastic system. Trans. Inst. Meas. Control 33(6), 683–698 (2011)

    Google Scholar 

  100. B. Anderson, B. Moore, Optimal Filtering Systems Sciences Series (Prentice-Hall, Englewood Cliffs, 1979)

    Google Scholar 

  101. B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan, S. Sastry, Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 49(9), 1453–1464 (2004)

    MathSciNet  Google Scholar 

  102. K. Plarre, F. Bullo, On Kalman filtering for detectable systems with intermittent observations. IEEE Trans. Autom. Control 54(2), 386–390 (2009)

    MathSciNet  Google Scholar 

  103. Y. Mo, B. Sinopoli, Towards finding the critical value for Kalman filtering with intermittent observations (2010). http://arxiv.org/abs/1005.2442

  104. M. Huang, S. Dey, Stability of Kalman filtering with Markovian packet losses. Automatica 43(4), 598–607 (2007)

    MathSciNet  MATH  Google Scholar 

  105. L. Xie, L. Xie, Stability of a random Riccati equation with Markovian binary switching. IEEE Trans. Autom. Control 53(7), 1759–1764 (2008)

    Google Scholar 

  106. K. You, M. Fu, L. Xie, Mean square stability for Kalman filtering with Markovian packet losses. Automatica 47(12), 2647–2657 (2011)

    MathSciNet  MATH  Google Scholar 

  107. M. Trivellato, N. Benvenuto, State control in networked control systems under packet drops and limited transmission bandwidth. IEEE Trans. Commun. 58(2), 611–622 (2010)

    Google Scholar 

  108. V. Gupta, A. Dana, J. Hespanha, R. Murray, B. Hassibi, Data transmission over networks for estimation and control. IEEE Trans. Autom. Control 54(8), 1807–1819 (2009)

    MathSciNet  Google Scholar 

  109. S. Kluge, K. Reif, M. Brokate, Stochastic stability of the extended Kalman filter with intermittent observations. IEEE Trans. Autom. Control 55(2), 514–518 (2010)

    MathSciNet  Google Scholar 

  110. S. Hu, W. Yan, Stability robustness of networked control systems with respect to packet loss. Automatica 43(7), 1243–1248 (2007)

    MathSciNet  MATH  Google Scholar 

  111. A. Censi, Kalman filtering with intermittent observations: convergence for semi-Markov chains and an intrinsic performance measure. IEEE Trans. Autom. Control 56(2), 376–381 (2011)

    MathSciNet  Google Scholar 

  112. S. Sun, L. Xie, W. Xiao, Y. Soh, Optimal linear estimation for systems with multiple packet dropouts. Automatica 44(5), 1333–1342 (2008)

    MathSciNet  MATH  Google Scholar 

  113. M. Epstein, L. Shi, A. Tiwari, R. Murray, Probabilistic performance of state estimation across a lossy network. Automatica 44(12), 3046–3053 (2008)

    MathSciNet  MATH  Google Scholar 

  114. N. Xiao, L. Xie, M. Fu, Kalman filtering over unreliable communication networks with bounded Markovian packet dropouts. Int. J. Robust Nonlinear Control 19(16), 1770–1786 (2009)

    MathSciNet  MATH  Google Scholar 

  115. L. Shi, M. Epstein, R. Murray, Kalman filtering over a packet-dropping network: a probabilistic perspective. IEEE Trans. Autom. Control 55(3), 594–604 (2010)

    MathSciNet  Google Scholar 

  116. S. Kar, B. Sinopoli, J. Moura, Kalman filtering with intermittent observations: weak convergence to a stationary distribution. IEEE Trans. Autom. Control 57(2), 405–420 (2012)

    MathSciNet  Google Scholar 

  117. P. Bougerol, Kalman filtering with random coefficients and contractions. SIAM J. Control Optim. 31, 942–959 (1993)

    MathSciNet  MATH  Google Scholar 

  118. P. Bougerol, Almost sure stabilizability and Riccati’s equation of linear systems with random parameters. SIAM J. Control Optim. 33(3), 702–717 (1995)

    MathSciNet  MATH  Google Scholar 

  119. M. Yu, L. Wang, G. Xie, T. Chu, Stabilization of networked control systems with data packet dropout via switched system approach, in Proceedings of IEEE International Symposium on Computer Aided Control Systems Design, pp. 362–367 (2004)

    Google Scholar 

  120. P. Seiler, R. Sengupta, Analysis of communication losses in vehicle control problems, in Proceedings of American Control Conference, pp. 1491–1496 (2001)

    Google Scholar 

  121. P. Seiler, R. Sengupta, An \({H}_{\infty }\) approach to networked control. IEEE Trans. Autom. Control 50(3), 356–364 (2005)

    MathSciNet  Google Scholar 

  122. J. Xiong, J. Lam, Stabilization of linear systems over networks with bounded packet loss. Automatica 43(1), 80–87 (2007)

    MathSciNet  MATH  Google Scholar 

  123. O. Costa, M. Fragoso, R. Marques, Discrete-Time Markov Jump Linear Systems (Springer, London, 2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keyou You .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

You, K., Xiao, N., Xie, L. (2015). Entropies and Capacities in Networked Control Systems. In: Analysis and Design of Networked Control Systems. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-6615-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6615-3_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6614-6

  • Online ISBN: 978-1-4471-6615-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics