Pertrochanteric Fractures

  • Dean G. Lorich
  • Richard M. Hinds
  • Patrick C. Schottel
  • Takeshi Sawaguchi


Pertrochanteric fractures represent an important health issue. The goal of treatment is to restore function and pre-injury level of independence. This chapter discusses indications, surgical technique and postoperative outcome of intramedullary fixation. Fracture stability is the clinical most important determinant. Whereas stable fractures will withstand medial compressive forces after fixation, unstable fractures will collapse and/or displace under medial compressive forces despite axial reduction. Intramedullary devices have the theoretical advantage of more efficient load transfer due to its proximity to the medial calcar compared to extramedullary implants as well as less implant strain because of its closer positioning to the mechanical axis of the femur resulting in a shorter lever arm. A precise intramedullary nail starting point and skillful operative technique reduces this risk of iatrogenic neurovascular or musculotendinous injury. The reduction of the pertrochanteric fracture is recommended prior to placement of the intramedullary nail. Correct placement of the nail prevents postoperative complications and assures uneventful healing. Outcome is depending on the preoperative condition of the patient and the quality of reduction and fixation.


Pertrochanteric Fracture Epidemiology Classification Plate osteosynthesis Intramedullary nailing Surgical technique Calcar Reduction Outcome 


  1. 1.
    Office of the Surgeon General (US). Bone health and osteoporosis: a report of the surgeon general. A public health approach to promote bone health. 1st ed. Rockville: Office of the Surgeon General (US); 2004.Google Scholar
  2. 2.
    Ettinger B, Black DM, Dawson-Hughes B, Pressman AR, Melton 3rd LJ. Updated fracture incidence rates for the US version of FRAX. Osteoporos Int. 2010;21(1):25–33.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Gullberg B, Johnell O, Kanis JA. World-wide projections for hip fracture. Osteoporos Int. 1997;7(5):407–13.PubMedCrossRefGoogle Scholar
  4. 4.
    Cummings SR, Rubin SM, Black D. The future of hip fractures in the United States. Numbers, costs, and potential effects of postmenopausal estrogen. Clin Orthop Relat Res. 1990;(252):163–66.Google Scholar
  5. 5.
    Melton LJ 3rd, Ilstrup DM, Riggs BL, Beckenbaugh RD. Fifty-year trend in hip fracture incidence. Clin Orthop Relat Res. 1982;(162):144–49.Google Scholar
  6. 6.
    Sattin RW. Falls among older persons: a public health perspective. Annu Rev Public Health. 1992;13:489–508.PubMedCrossRefGoogle Scholar
  7. 7.
    Anglen JO, Baumgaertner MR, Smith WR, Tornetta Iii P, Ziran BH. Technical tips in fracture care: fractures of the hip. Instr Course Lect. 2008;57:17–24.PubMedGoogle Scholar
  8. 8.
    Lorich DG, Geller DS, Nielson JH. Osteoporotic pertrochanteric hip fractures: management and current controversies. Instr Course Lect. 2004;53:441–54.PubMedGoogle Scholar
  9. 9.
    Gallagher JC, Melton LJ, Riggs BL. Examination of prevalence rates of possible risk factors in a population with a fracture of the proximal femur. Clin Orthop Relat Res. 1980;(153):158–65.Google Scholar
  10. 10.
    Rubenstein LZ, Josephson KR. The epidemiology of falls and syncope. Clin Geriatr Med. 2002;18(2):141–58.PubMedCrossRefGoogle Scholar
  11. 11.
    Cummings SR, Nevitt MC. A hypothesis: the causes of hip fractures. J Gerontol. 1989;44(4):M107–11.PubMedCrossRefGoogle Scholar
  12. 12.
    Apple Jr DF, Hayes WC, editors. Prevention of falls and hip fractures in the elderly. Rosemont: American Academy of Orthopaedic Surgeons; 1993.Google Scholar
  13. 13.
    Zain Elabdien BS, Olerud S, Karlstrom G. The influence of age on the morphology of trochanteric fracture. Arch Orthop Trauma Surg. 1984;103(3):156–61.PubMedCrossRefGoogle Scholar
  14. 14.
    Cumming RG, Nevitt MC, Cummings SR. Epidemiology of hip fractures. Epidemiol Rev. 1997;19(2):244–57.PubMedCrossRefGoogle Scholar
  15. 15.
    Friedman RJ, Wyman ET Jr. Ipsilateral hip and femoral shaft fractures. Clin Orthop Relat Res. 1986;(208):188–94.Google Scholar
  16. 16.
    Kuhn KM, Boudreau JA, Watson JT. Rare combination of ipsilateral acetabular fracture-dislocation and pertrochanteric fracture. Am J Orthop (Belle Mead NJ). 2013;42(8):372–5.Google Scholar
  17. 17.
    Tufescu T, Sharkey B. The lateral radiograph is useful in predicting shortening in 31A2 pertrochanteric hip fractures. Can J Surg. 2013;56(4):270–4.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Koval KJ, Oh CK, Egol KA. Does a traction-internal rotation radiograph help to better evaluate fractures of the proximal femur? Bull NYU Hosp Jt Dis. 2008;66(2):102–6.PubMedGoogle Scholar
  19. 19.
    Rizzo PF, Gould ES, Lyden JP, Asnis SE. Diagnosis of occult fractures about the hip. Magnetic resonance imaging compared with bone-scanning. J Bone Joint Surg Am. 1993;75(3):395–401.PubMedGoogle Scholar
  20. 20.
    Verbeeten KM, Hermann KL, Hasselqvist M, Lausten GS, Joergensen P, Jensen CM, et al. The advantages of MRI in the detection of occult hip fractures. Eur Radiol. 2005;15(1):165–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Lubovsky O, Liebergall M, Mattan Y, Weil Y, Mosheiff R. Early diagnosis of occult hip fractures MRI versus CT scan. Injury. 2005;36(6):788–92.PubMedCrossRefGoogle Scholar
  22. 22.
    Ingari JV, Smith DK, Aufdemorte TB, Yaszemski MJ. Anatomic significance of magnetic resonance imaging findings in hip fracture. Clin Orthop Relat Res. 1996;(332):209–14.Google Scholar
  23. 23.
    Hossain M, Barwick C, Sinha AK, Andrew JG. Is magnetic resonance imaging (MRI) necessary to exclude occult hip fracture? Injury. 2007;38(10):1204–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Hakkarinen DK, Banh KV, Hendey GW. Magnetic resonance imaging identifies occult hip fractures missed by 64-slice computed tomography. J Emerg Med. 2012;43(2):303–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Gill SK, Smith J, Fox R, Chesser TJ. Investigation of occult hip fractures: the use of CT and MRI. Sci World J. 2013;2013:830319.CrossRefGoogle Scholar
  26. 26.
    Evans EM. The treatment of trochanteric fractures of the femur. J Bone Joint Surg Br. 1949;31B(2):190–203.PubMedGoogle Scholar
  27. 27.
    Müller M, Nazarian S, Koch P, Schatzker J. The comprehensive classification of fractures of the long bones. 3rd ed. Berlin: Springer; 1990. p. 118.CrossRefGoogle Scholar
  28. 28.
    Jin WJ, Dai LY, Cui YM, Zhou Q, Jiang LS, Lu H. Reliability of classification systems for intertrochanteric fractures of the proximal femur in experienced orthopaedic surgeons. Injury. 2005;36(7):858–61.PubMedCrossRefGoogle Scholar
  29. 29.
    Orthopaedic Trauma Association. Fracture and dislocation compendium. Orthopaedic Trauma Association Committee for Coding and Classification. J Orthop Trauma. 1996;10 Suppl 1:v–ix, 1–154.Google Scholar
  30. 30.
    Gotfried Y. The lateral trochanteric wall: a key element in the reconstruction of unstable pertrochanteric hip fractures. Clin Orthop Relat Res. 2004;425:82–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Kaufer H. Mechanics of the treatment of hip injuries. Clin Orthop Relat Res. 1980;(146):53–61.Google Scholar
  32. 32.
    Winter WG. Nonoperative treatment of proximal femoral fractures in the demented, nonambulatory patient. Clin Orthop Relat Res. 1987;(218):97–103.Google Scholar
  33. 33.
    Parker MJ, Handoll HH. Conservative versus operative treatment for extracapsular hip fractures. Cochrane Database Syst Rev. 2000;(2):CD000337.Google Scholar
  34. 34.
    Rogers FB, Shackford SR, Keller MS. Early fixation reduces morbidity and mortality in elderly patients with hip fractures from low-impact falls. J Trauma. 1995;39(2):261–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Sexson SB, Lehner JT. Factors affecting hip fracture mortality. J Orthop Trauma. 1987;1(4):298–305.PubMedCrossRefGoogle Scholar
  36. 36.
    Zuckerman JD, Skovron ML, Koval KJ, Aharonoff G, Frankel VH. Postoperative complications and mortality associated with operative delay in older patients who have a fracture of the hip. J Bone Joint Surg Am. 1995;77(10):1551–6.PubMedGoogle Scholar
  37. 37.
    Kim SY, Kim YG, Hwang JK. Cementless calcar-replacement hemiarthroplasty compared with intramedullary fixation of unstable intertrochanteric fractures. A prospective, randomized study. J Bone Joint Surg Am. 2005;87(10):2186–92.PubMedCrossRefGoogle Scholar
  38. 38.
    Pho RW, Nather A, Tong GO, Korku CT. Endoprosthetic replacement of unstable, comminuted intertrochanteric fracture of the femur in the elderly, osteoporotic patient. J Trauma. 1981;21(9):792–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Haentjens P, Casteleyn PP, De Boeck H, Handelberg F, Opdecam P. Treatment of unstable intertrochanteric and subtrochanteric fractures in elderly patients. Primary bipolar arthroplasty compared with internal fixation. J Bone Joint Surg Am. 1989;71(8):1214–25.PubMedGoogle Scholar
  40. 40.
    Vahl AC, Dunki Jacobs PB, Patka P, Haarman HJ. Hemiarthroplasty in elderly, debilitated patients with an unstable femoral fracture in the trochanteric region. Acta Orthop Belg. 1994;60(3):274–9.PubMedGoogle Scholar
  41. 41.
    Geiger F, Zimmermann-Stenzel M, Heisel C, Lehner B, Daecke W. Trochanteric fractures in the elderly: the influence of primary hip arthroplasty on 1-year mortality. Arch Orthop Trauma Surg. 2007;127(10):959–66.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Tang P, Hu F, Shen J, Zhang L, Zhang L. Proximal femoral nail antirotation versus hemiarthroplasty: a study for the treatment of intertrochanteric fractures. Injury. 2012;43(6):876–81.PubMedCrossRefGoogle Scholar
  43. 43.
    Chan KC, Gill GS. Cemented hemiarthroplasties for elderly patients with intertrochanteric fractures. Clin Orthop Relat Res. 2000;(371):206–15.Google Scholar
  44. 44.
    Anglen JO, Weinstein JN, American Board of Orthopaedic Surgery Research Committee. Nail or plate fixation of intertrochanteric hip fractures: changing pattern of practice. A review of the American Board of Orthopaedic Surgery Database. J Bone Joint Surg Am. 2008;90(4):700–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Rosenblum SF, Zuckerman JD, Kummer FJ, Tam BS. A biomechanical evaluation of the gamma nail. J Bone Joint Surg Br. 1992;74(3):352–7.PubMedGoogle Scholar
  46. 46.
    Davis TR, Sher JL, Horsman A, Simpson M, Porter BB, Checketts RG. Intertrochanteric femoral fractures. Mechanical failure after internal fixation. J Bone Joint Surg Br. 1990;72(1):26–31.PubMedGoogle Scholar
  47. 47.
    Sadowski C, Lubbeke A, Saudan M, Riand N, Stern R, Hoffmeyer P. Treatment of reverse oblique and transverse intertrochanteric fractures with use of an intramedullary nail or a 95 degrees screw-plate: a prospective, randomized study. J Bone Joint Surg Am. 2002;84-A(3):372–81.PubMedGoogle Scholar
  48. 48.
    Utrilla AL, Reig JS, Munoz FM, Tufanisco CB. Trochanteric gamma nail and compression hip screw for trochanteric fractures: a randomized, prospective, comparative study in 210 elderly patients with a new design of the gamma nail. J Orthop Trauma. 2005;19(4):229–33.PubMedCrossRefGoogle Scholar
  49. 49.
    Hardy DC, Descamps PY, Krallis P, Fabeck L, Smets P, Bertens CL, et al. Use of an intramedullary hip-screw compared with a compression hip-screw with a plate for intertrochanteric femoral fractures. A prospective, randomized study of one hundred patients. J Bone Joint Surg Am. 1998;80(5):618–30.PubMedGoogle Scholar
  50. 50.
    Platzer P, Thalhammer G, Wozasek GE, Vecsei V. Femoral shortening after surgical treatment of trochanteric fractures in nongeriatric patients. J Trauma. 2008;64(4):982–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Gill JB, Jensen L, Chin PC, Rafiei P, Reddy K, Schutt Jr RC. Intertrochanteric hip fractures treated with the trochanteric fixation nail and sliding hip screw. J Surg Orthop Adv. 2007;16(2):62–6.PubMedGoogle Scholar
  52. 52.
    Adams CI, Robinson CM, Court-Brown CM, McQueen MM. Prospective randomized controlled trial of an intramedullary nail versus dynamic screw and plate for intertrochanteric fractures of the femur. J Orthop Trauma. 2001;15(6):394–400.PubMedCrossRefGoogle Scholar
  53. 53.
    Parker MJ, Handoll HH. Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst Rev. 2010;(9):CD000093.Google Scholar
  54. 54.
    Knobe M, Drescher W, Heussen N, Sellei RM, Pape HC. Is helical blade nailing superior to locked minimally invasive plating in unstable pertrochanteric fractures? Clin Orthop Relat Res. 2012;470(8):2302–12.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Yli-Kyyny TT, Sund R, Juntunen M, Salo JJ, Kroger HP. Extra- and intramedullary implants for the treatment of pertrochanteric fractures – results from a Finnish National Database Study of 14,915 patients. Injury. 2012;43(12):2156–60.PubMedCrossRefGoogle Scholar
  56. 56.
    Huang X, Leung F, Xiang Z, Tan PY, Yang J, Wei DQ, et al. Proximal femoral nail versus dynamic hip screw fixation for trochanteric fractures: a meta-analysis of randomized controlled trials. Sci World J. 2013;2013:805805.Google Scholar
  57. 57.
    Hou Z, Bowen TR, Irgit KS, Matzko ME, Andreychik CM, Horwitz DS, et al. Treatment of pertrochanteric fractures (OTA 31-A1 and A2): long versus short cephalomedullary nailing. J Orthop Trauma. 2013;27(6):318–24.PubMedCrossRefGoogle Scholar
  58. 58.
    Haidukewych GJ. Intertrochanteric fractures: ten tips to improve results. Instr Course Lect. 2010;59:503–9.PubMedGoogle Scholar
  59. 59.
    de Landevoisin Soucanye E, Bertani A, Candoni P, Charpail C, Demortiere E. Proximal femoral nail antirotation (PFN-ATM) fixation of extra-capsular proximal femoral fractures in the elderly: retrospective study in 102 patients. Orthop Traumatol Surg Res. 2012;98(3):288–95.CrossRefGoogle Scholar
  60. 60.
    Gallagher D, Adams B, El-Gendi H, Patel A, Grossman L, Berdia J, et al. Is distal locking necessary? A biomechanical investigation of intramedullary nailing constructs for intertrochanteric fractures. J Orthop Trauma. 2013;27(7):373–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Kuzyk PR, Shah S, Zdero R, Olsen M, Waddell JP, Schemitsch EH. A biomechanical comparison of static versus dynamic lag screw modes for cephalomedullary nails used to fix unstable peritrochanteric fractures. J Trauma Acute Care Surg. 2012;72(2):E65–70.PubMedGoogle Scholar
  62. 62.
    Simmermacher RK, Bosch AM, Van der Werken C. The AO/ASIF-proximal femoral nail (PFN): a new device for the treatment of unstable proximal femoral fractures. Injury. 1999;30(5):327–32.PubMedCrossRefGoogle Scholar
  63. 63.
    Ingman AM. Percutaneous intramedullary fixation of trochanteric fractures of the femur. Clinical trial of a new hip nail. Injury. 2000;31(7):483–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Ruecker AH, Rupprecht M, Gruber M, Gebauer M, Barvencik F, Briem D, et al. The treatment of intertrochanteric fractures: results using an intramedullary nail with integrated cephalocervical screws and linear compression. J Orthop Trauma. 2009;23(1):22–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Forte ML, Virnig BA, Eberly LE, Swiontkowski MF, Feldman R, Bhandari M, et al. Provider factors associated with intramedullary nail use for intertrochanteric hip fractures. J Bone Joint Surg Am. 2010;92(5):1105–14.PubMedCrossRefGoogle Scholar
  66. 66.
    Forte ML, Virnig BA, Kane RL, Durham S, Bhandari M, Feldman R, et al. Geographic variation in device use for intertrochanteric hip fractures. J Bone Joint Surg Am. 2008;90(4):691–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Ward FO. Human anatomy. London: Renshaw; 1838.Google Scholar
  68. 68.
    Griffin JB. The calcar femorale redefined. Clin Orthop Relat Res. 1982;(164):211–14.Google Scholar
  69. 69.
    Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am. 1977;59(7):954–62.PubMedGoogle Scholar
  70. 70.
    Currey JD. The mechanical properties of bone. Clin Orthop Relat Res. 1970;73:209–31.PubMedGoogle Scholar
  71. 71.
    Gray H. Gray’s anatomy. In: Williams PL, Warwick R, Dyson M, et al., editors. 40th ed. New York: Churchill Livingstone; 2008. p. 267–635.Google Scholar
  72. 72.
    Browner B, Jupiter JB, Levine AM, Trafton PG, Krettek C. Skeletal trauma: basic science, management, and reconstruction. 4th ed. Philadelphia: Saunders/Elsevier; 2009.Google Scholar
  73. 73.
    Grose AW, Gardner MJ, Sussmann PS, Helfet DL, Lorich DG. The surgical anatomy of the blood supply to the femoral head: description of the anastomosis between the medial femoral circumflex and inferior gluteal arteries at the hip. J Bone Joint Surg Br. 2008;90(10):1298–303.PubMedCrossRefGoogle Scholar
  74. 74.
    Ansari Moein CM, Verhofstad MH, Bleys RL, van der Werken C. Soft tissue anatomy around the hip and its implications for choice of entry point in antegrade femoral nailing. Clin Anat. 2008;21(6):568–74.PubMedCrossRefGoogle Scholar
  75. 75.
    Gardner MJ, Robertson WJ, Boraiah S, Barker JU, Lorich DG. Anatomy of the greater trochanteric ‘bald spot’: a potential portal for abductor sparing femoral nailing? Clin Orthop Relat Res. 2008;466(9):2196–200.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Ozsoy MH, Basarir K, Bayramoglu A, Erdemli B, Tuccar E, Eksioglu MF. Risk of superior gluteal nerve and gluteus medius muscle injury during femoral nail insertion. J Bone Joint Surg Am. 2007;89(4):829–34.PubMedCrossRefGoogle Scholar
  77. 77.
    Dora C, Leunig M, Beck M, Rothenfluh D, Ganz R. Entry point soft tissue damage in antegrade femoral nailing: a cadaver study. J Orthop Trauma. 2001;15(7):488–93.PubMedCrossRefGoogle Scholar
  78. 78.
    Mathews PV, Perry JJ, Murray PC. Compartment syndrome of the well leg as a result of the hemilithotomy position: a report of two cases and review of literature. J Orthop Trauma. 2001;15(8):580–3.PubMedCrossRefGoogle Scholar
  79. 79.
    Boraiah S, Barker JU, Lorich D. Efficacy of an aiming device for the placement of distal interlocking screws in trochanteric fixation nailing. Arch Orthop Trauma Surg. 2009;129(9):1177–82.PubMedCrossRefGoogle Scholar
  80. 80.
    Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am. 1995;77(7):1058–64.PubMedGoogle Scholar
  81. 81.
    Baumgaertner MR, Solberg BD. Awareness of tip-apex distance reduces failure of fixation of trochanteric fractures of the hip. J Bone Joint Surg Br. 1997;79(6):969–71.PubMedCrossRefGoogle Scholar
  82. 82.
    Geller JA, Saifi C, Morrison TA, Macaulay W. Tip-apex distance of intramedullary devices as a predictor of cut-out failure in the treatment of peritrochanteric elderly hip fractures. Int Orthop. 2010;34(5):719–22.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Nikoloski AN, Osbrough AL, Yates PJ. Should the tip-apex distance (TAD) rule be modified for the proximal femoral nail antirotation (PFNA)? A retrospective study. J Orthop Surg Res. 2013;8(1):35.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Holt G, Smith R, Duncan K, Hutchison JD, Gregori A. Epidemiology and outcome after hip fracture in the under 65 s-evidence from the Scottish Hip Fracture Audit. Injury. 2008;39(10):1175–81.PubMedCrossRefGoogle Scholar
  85. 85.
    Holt G, Smith R, Duncan K, Hutchison JD, Gregori A. Outcome after surgery for the treatment of hip fracture in the extremely elderly. J Bone Joint Surg Am. 2008;90(9):1899–905.PubMedCrossRefGoogle Scholar
  86. 86.
    Holt G, Macdonald D, Fraser M, Reece AT. Outcome after surgery for fracture of the hip in patients aged over 95 years. J Bone Joint Surg Br. 2006;88(8):1060–4.PubMedCrossRefGoogle Scholar
  87. 87.
    Koval KJ, Skovron ML, Polatsch D, Aharonoff GB, Zuckerman JD. Dependency after hip fracture in geriatric patients: a study of predictive factors. J Orthop Trauma. 1996;10(8):531–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Koval KJ, Skovron ML, Aharonoff GB, Meadows SE, Zuckerman JD. Ambulatory ability after hip fracture. A prospective study in geriatric patients. Clin Orthop Relat Res. 1995;(310):150–59.Google Scholar
  89. 89.
    Koval KJ, Skovron ML, Aharonoff GB, Zuckerman JD. Predictors of functional recovery after hip fracture in the elderly. Clin Orthop Relat Res. 1998;(348):22–8.Google Scholar
  90. 90.
    Wehren LE, Hawkes WG, Orwig DL, Hebel JR, Zimmerman SI, Magaziner J. Gender differences in mortality after hip fracture: the role of infection. J Bone Miner Res. 2003;18(12):2231–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Holt G, Smith R, Duncan K, Hutchison JD, Gregori A. Gender differences in epidemiology and outcome after hip fracture: evidence from the Scottish Hip Fracture Audit. J Bone Joint Surg Br. 2008;90(4):480–3.PubMedCrossRefGoogle Scholar
  92. 92.
    Penrod JD, Litke A, Hawkes WG, Magaziner J, Doucette JT, Koval KJ, et al. The association of race, gender, and comorbidity with mortality and function after hip fracture. J Gerontol A Biol Sci Med Sci. 2008;63(8):867–72.PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Givens JL, Sanft TB, Marcantonio ER. Functional recovery after hip fracture: the combined effects of depressive symptoms, cognitive impairment, and delirium. J Am Geriatr Soc. 2008;56(6):1075–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Marcantonio ER, Flacker JM, Michaels M, Resnick NM. Delirium is independently associated with poor functional recovery after hip fracture. J Am Geriatr Soc. 2000;48(6):618–24.PubMedGoogle Scholar
  95. 95.
    Beaupre LA, Cinats JG, Jones CA, Scharfenberger AV, William C, Johnston D, Senthilselvan A, et al. Does functional recovery in elderly hip fracture patients differ between patients admitted from long-term care and the community? J Gerontol A Biol Sci Med Sci. 2007;62(10):1127–33.PubMedCrossRefGoogle Scholar
  96. 96.
    Kristensen MT, Foss NB, Kehlet H. Factors with independent influence on the ‘timed up and go’ test in patients with hip fracture. Physiother Res Int. 2009;14(1):30–41.PubMedCrossRefGoogle Scholar
  97. 97.
    Paul O, Barker JU, Lane JM, Helfet DL, Lorich DG. Functional and radiographic outcomes of intertrochanteric hip fractures treated with calcar reduction, compression, and trochanteric entry nailing. J Orthop Trauma. 2012;26(3):148–54.PubMedCrossRefGoogle Scholar
  98. 98.
    Fogagnolo F, Kfuri Jr M, Paccola CA. Intramedullary fixation of pertrochanteric hip fractures with the short AO-ASIF proximal femoral nail. Arch Orthop Trauma Surg. 2004;124(1):31–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Giessauf C, Glehr M, Bernhardt GA, Seibert FJ, Gruber K, Sadoghi P, et al. Quality of life after pertrochanteric femoral fractures treated with a gamma nail: a single center study of 62 patients. BMC Musculoskelet Disord. 2012;13:214. doi: 10.1186/1471-2474-13-214.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Erez O, Dougherty PJ. Early complications associated with cephalomedullary nail for intertrochanteric hip fractures. J Trauma Acute Care Surg. 2012;72(2):E101–5.PubMedGoogle Scholar
  101. 101.
    Chou DT, Taylor AM, Boulton C, Moran CG. Reverse oblique intertrochanteric femoral fractures treated with the intramedullary hip screw (IMHS). Injury. 2012;43(6):817–21.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Dean G. Lorich
    • 1
  • Richard M. Hinds
    • 2
  • Patrick C. Schottel
    • 2
  • Takeshi Sawaguchi
    • 3
  1. 1.Orthopaedic Trauma ServiceHospital for Special Surgery and New York Presbyterian Hospital/Weill Cornell Medical CollegeNew YorkUSA
  2. 2.Orthopaedic Trauma ServiceHospital for Special SurgeryNew YorkUSA
  3. 3.Department of Orthopaedic SurgeryToyama Municipal HospitalToyama CityJapan

Personalised recommendations