Tendons and Ligaments: Current State and Future Directions

  • Shawn P. Reese
  • Jeffrey A. Weiss


Tendons and ligament are soft connective tissues that transmit load and support movement and joint articulation within the musculoskeletal system.


Representative Volume Element Collagen Fibril Micromechanical Model Force Transfer Capsular Ligament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Banos CC, Thomas AH, Kuo CK. Collagen fibrillogenesis in tendon development: current models and regulation of fibril assembly. Birth Defects Res C Embryo Today. 2008;84(3):228–244.Google Scholar
  2. 2.
    Birk DE, Trelstad RL. Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation. J Cell Biol. 1986;103(1):231–240.Google Scholar
  3. 3.
    Birk DE, Zycband EI, Woodruff S, Winkelmann DA, Trelstad RL. Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures. Dev Dyn. 1997;208(3):291–298.Google Scholar
  4. 4.
    Chen CS. Mechanotransduction - a field pulling together? J Cell Sci. 2008;121(Pt 20):3285–3292. doi: 10.1242/jcs.023507.
  5. 5.
    Sharir A, Zelzer E. Tendon homeostasis: the right pull. Curr Biol. 2011;21(12):R472–R474. doi: 10.1016/j.cub.2011.05.025.
  6. 6.
    Wang JH. Mechanobiology of tendon. J Biomech. 2006;39(9):1563–1582. doi: 10.1016/j.jbiomech.2005.05.011.
  7. 7.
    Wang JH, Guo Q, Li B. Tendon biomechanics and mechanobiology-a minireview of basic concepts and recent advancements. J Hand Ther. 2012;25(2):133–140; quiz 41. doi: 10.1016/j.jht.2011.07.004.
  8. 8.
    Chiquet M, Gelman L, Lutz R, Maier S. From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochim Biophys Acta. 2009;1793(5):911–920. doi: 10.1016/j.bbamcr.2009.01.012.
  9. 9.
    Rees JD, Stride M, Scott A. Tendons - time to revisit inflammation. Br J Sports Med. 2013. doi: 10.1136/bjsports-2012-091957.
  10. 10.
    Kannus P. Structure of the tendon connective tissue. Scand J Med Sci Sports. 2000;10(6):312–320.Google Scholar
  11. 11.
    Kastelic J, Galeski A, Baer E. The multicomposite structure of tendon. Connect Tissue Res. 1978;6(1):11–23.Google Scholar
  12. 12.
    Royce PM, Steinmann B. Connective Tissue and Its Heritable Disorders: Molecular, Genetic, and Medical Aspects. 2nd Edition ed. New York: John Wiley and Sons; 2002.Google Scholar
  13. 13.
    Tsipouras P, Ramirez F. Genetic disorders of collagen. Journal of medical genetics. 1987;24(1):2–8.Google Scholar
  14. 14.
    Glazebrook MA, Wright JR, Jr., Langman M, Stanish WD, Lee JM. Histological analysis of achilles tendons in an overuse rat model. J Orthop Res. 2008;26(6):840–846. doi: 10.1002/jor.20546.
  15. 15.
    Kongsgaard M, Qvortrup K, Larsen J, Aagaard P, Doessing S, Hansen P et al. Fibril morphology and tendon mechanical properties in patellar tendinopathy: effects of heavy slow resistance training. Am J Sports Med. 2010;38(4):749–756. doi: 10.1177/0363546509350915.
  16. 16.
    Nakama LH, King KB, Abrahamsson S, Rempel DM. Evidence of tendon microtears due to cyclical loading in an in vivo tendinopathy model. J Orthop Res. 2005;23(5):1199–1205. doi: 10.1016/j.orthres.2005.03.006.
  17. 17.
    Fredberg U, Stengaard-Pedersen K. Chronic tendinopathy tissue pathology, pain mechanisms, and etiology with a special focus on inflammation. Scand J Med Sci Sports. 2008;18(1):3–15. doi: 10.1111/j.1600-0838.2007.00746.x.
  18. 18.
    Maffulli N, Khan KM, Puddu G. Overuse tendon conditions: time to change a confusing terminology. Arthroscopy. 1998;14(8):840–843.Google Scholar
  19. 19.
    Sharma P, Maffulli N. Tendon injury and tendinopathy: healing and repair. The Journal of Bone and Joint Surgery (American Volume). 2005;87(1):187–202. doi: 10.2106/JBJS.D.01850.
  20. 20.
    Bunata RE, Brown DS, Capelo R. Anatomic factors related to the cause of tennis elbow. J Bone Joint Surg Am. 2007;89(9):1955–1963. doi: 10.2106/jbjs.f.00727.
  21. 21.
    Beynnon BD, Shultz SJ. Anatomic alignment, menstrual cycle phase, and the risk of anterior cruciate ligament injury. J Athl Train. 2008;43(5):541–542. doi: 10.4085/1062-6050-43.5.541.
  22. 22.
    Lavagnino M, Arnoczky SP, Kepich E, Caballero O, Haut RC. A finite element model predicts the mechanotransduction response of tendon cells to cyclic tensile loading. Biomech Model Mechanobiol. 2008;7(5):405–416.Google Scholar
  23. 23.
    Parkinson J, Kadler KE, Brass A. Simple physical model of collagen fibrillogenesis based on diffusion limited aggregation. J Mol Biol. 1995;247(4):823–831. doi: 10.1006/jmbi.1994.0182.
  24. 24.
    Ahmed AM, Burke DL, Duncan NA, Chan KH. Ligament tension pattern in the flexed knee in combined passive anterior translation and axial rotation. Journal of Orthopaedic Research. 1992;10(6):854–867.Google Scholar
  25. 25.
    Ahmed AM, Hyder A, Burke DL, Chan KH. In vitro ligament tension pattern in the flexed knee in passive loading. J Orthop Res. 1987;5(2):217–230.Google Scholar
  26. 26.
    Bach JM, Hull ML, Patterson HA. Direct measurement of strain in the posterolateral bundle of the anterior cruciate ligament. J Biomech. 1997;30(3):281–283.Google Scholar
  27. 27.
    Berns GS, Hull ML, Patterson HA. Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading. J Orthop Res. 1992;10(2):167–176.Google Scholar
  28. 28.
    Blankevoort L, Kuiper JH, Huiskes R, Grootenboer HJ. Articular contact in a three-dimensional model of the knee. Journal of Biomechanics. 1991;24(11):1019–1031.Google Scholar
  29. 29.
    Ellis BJ, Lujan TJ, Dalton MS, Weiss JA. Medial collateral ligament insertion site and contact forces in the ACL-deficient knee. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2006;24(4):800–810. doi: 10.1002/jor.20102.
  30. 30.
    Butler DL, Noyes FR, Grood ES. Ligamentous restraints to anterior-posterior drawer in the human knee. Journal of Bone and Joint Surgery (Am). 1980;62:259–270.Google Scholar
  31. 31.
    Daniel DM, Akeson WH, O’Connor JJ. Knee Ligaments: Structure, Function, Injury and Repair. New York: Raven Press; 1990.Google Scholar
  32. 32.
    Gardiner JC, Weiss JA. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. Journal of Orthopaedic Research. 2003;21:1098–1106.Google Scholar
  33. 33.
    Gardiner JC, Weiss JA, Rosenberg TD. Strain in the human medial collateral ligament during valgus loading of the knee. Clin Orthop. 2001;391:266–274.Google Scholar
  34. 34.
    Weiss JA, Gardiner JC. Computational modeling of ligament mechanics. Crit Rev Biomed Eng. 2001;29(3):303–371.Google Scholar
  35. 35.
    Woo SL-Y. Biomechanics of tendons and ligaments. Frontiers in Biomechanics. New York 1986. p. 180–195.Google Scholar
  36. 36.
    Woo SL-Y, An K-N, Arnoczky SP, Wayne JS, Fithian DC, Myers BS. Anatomy, Biology, and Biomechanics of Tendon, Ligament and Meniscus. In: Simon S, editor. Orthopaedic Basic Science. American Academy of Orthopaedic Surgeons; 1994. p. 47–74.Google Scholar
  37. 37.
    Woo SL-Y, Weiss JA, MacKenna DA. Biomechanics and morphology of the medial collateral and anterior cruciate ligaments. In: Mow VaR, A and Woo, SL-Y, editor. Biomechanics of Diarthrodial Joints, Volume 1. 1990. p. 63–103.Google Scholar
  38. 38.
    Debski RE, Weiss JA, Newman WJ, Moore SM, McMahon PJ. In-situ force, stress and strain distribution in the glenohumeral capsule. Journal of Shoulder and Elbow Surgery. 2003;In Review.Google Scholar
  39. 39.
    Debski RE, Weiss JA, Newman WJ, Moore SM, McMahon PJ. Stress and strain in the anterior band of the inferior glenohumeral ligament during a simulated clinical examination. Journal of shoulder and elbow surgery/American Shoulder and Elbow Surgeons [et al]. 2005;14(1 Suppl S):24S–31S. doi: 10.1016/j.jse.2004.10.003.
  40. 40.
    Debski RE, Wong EK, Woo SL, Sakane M, Fu FH, Warner JJ. In situ force distribution in the glenohumeral joint capsule during anterior-posterior loading. J Orthop Res. 1999;17(5):769–776.Google Scholar
  41. 41.
    Drury NJ, Ellis BJ, Weiss JA, McMahon PJ, Debski RE. The impact of glenoid labrum thickness and modulus on labrum and glenohumeral capsule function. Journal of biomechanical engineering. 2010;132(12):121003. doi: 10.1115/1.4002622.
  42. 42.
    Drury NJ, Ellis BJ, Weiss JA, McMahon PJ, Debski RE. Finding consistent strain distributions in the glenohumeral capsule between two subjects: implications for development of physical examinations. Journal of biomechanics. 2011;44(4):607–613. doi: 10.1016/j.jbiomech.2010.11.018.
  43. 43.
    Ellis BJ, Debski RE, Moore SM, McMahon PJ, Weiss JA. Methodology and sensitivity studies for finite element modeling of the inferior glenohumeral ligament complex. Journal of biomechanics. 2007;40(3):603–612. doi: 10.1016/j.jbiomech.2006.01.024.
  44. 44.
    Ellis BJ, Drury NJ, Moore SM, McMahon PJ, Weiss JA, Debski RE. Finite element modelling of the glenohumeral capsule can help assess the tested region during a clinical exam. Computer methods in biomechanics and biomedical engineering. 2010;13(3):413–418. doi: 10.1080/10255840903317378.
  45. 45.
    Moore SM, Ellis B, Weiss JA, McMahon PJ, Debski RE. The glenohumeral capsule should be evaluated as a sheet of fibrous tissue: a validated finite element model. Annals of biomedical engineering. 2010;38(1):66–76. doi: 10.1007/s10439-009-9834-7.
  46. 46.
    Abdel-Rahman E. Three-dimensional dynamic anatomically based model of the human tibio-femoral joint [Ph.D.]. Toledo: University of Toledo; 1995.Google Scholar
  47. 47.
    Woo SL-Y, Weiss JA, Gomez MA, Hawkins DA. Measurement of changes in ligament tension with knee motion and skeletal maturation. J Biomech Eng. 1990;112(1):46–51.Google Scholar
  48. 48.
    Cooper RR, Misol S. Tendon and ligament insertion. A light and electron microscopic study. Journal of Bone and Joint Surgery (Am). 1970;52:1–20.Google Scholar
  49. 49.
    Benjamin M, Evans EJ, Copp L. The histology of tendon attachments to bone in man. Journal of Anatomy. 1986;149:89–100.Google Scholar
  50. 50.
    Batson EL, Paramour RJ, Smith TJ, Birch HL, Patterson-Kane JC, Goodship AE. Are the material properties and matrix composition of equine flexor and extensor tendons determined by their functions? Equine veterinary journal. 2003;35(3):314–318.Google Scholar
  51. 51.
    Butler DL, Kay MD, Stouffer DC. Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. Journal of biomechanics. 1986;19(6):425–432.Google Scholar
  52. 52.
    Cui L, Maas H, Perreault EJ, Sandercock TG. In situ estimation of tendon material properties: differences between muscles of the feline hindlimb. Journal of biomechanics. 2009;42(6):679–685. doi: 10.1016/j.jbiomech.2009.01.022.
  53. 53.
    Fukunaga T, Kubo K, Kawakami Y, Fukashiro S, Kanehisa H, Maganaris CN. In vivo behaviour of human muscle tendon during walking. Proceedings Biological sciences / The Royal Society. 2001;268(1464):229–233. doi: 10.1098/rspb.2000.1361.
  54. 54.
    Heinemeier KM, Kjaer M. In vivo investigation of tendon responses to mechanical loading. Journal of musculoskeletal & neuronal interactions. 2011;11(2):115–123.Google Scholar
  55. 55.
    Ishikawa M, Komi PV, Grey MJ, Lepola V, Bruggemann GP. Muscle-tendon interaction and elastic energy usage in human walking. Journal of applied physiology. 2005;99(2):603–608. doi: 10.1152/japplphysiol.00189.2005.
  56. 56.
    Lichtwark GA, Wilson AM. In vivo mechanical properties of the human Achilles tendon during one-legged hopping. The Journal of experimental biology. 2005;208(Pt 24):4715–4725. doi: 10.1242/jeb.01950.
  57. 57.
    Maganaris CN, Narici MV, Maffulli N. Biomechanics of the Achilles tendon. Disability and rehabilitation. 2008;30(20–22):1542–1547. doi: 10.1080/09638280701785494.
  58. 58.
    Malvankar S, Khan WS. Evolution of the Achilles tendon: The athlete’s Achilles heel? Foot. 2011;21(4):193–197. doi: 10.1016/j.foot.2011.08.004.
  59. 59.
    Shadwick RE. Elastic energy storage in tendons: mechanical differences related to function and age. Journal of applied physiology. 1990;68(3):1033–1040.Google Scholar
  60. 60.
    Jung HJ, Fisher MB, Woo SL. Role of biomechanics in the understanding of normal, injured, and healing ligaments and tendons. Sports medicine, arthroscopy, rehabilitation, therapy & technology : SMARTT. 2009;1(1):9. doi: 10.1186/1758-2555-1-9.
  61. 61.
    Payne RC, Crompton RH, Isler K, Savage R, Vereecke EE, Gunther MM et al. Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture. Journal of anatomy. 2006;208(6):709–724. doi: 10.1111/j.1469-7580.2006.00563.x.
  62. 62.
    Pollock CM, Shadwick RE. Relationship between body mass and biomechanical properties of limb tendons in adult mammals. The American journal of physiology. 1994;266(3 Pt 2):R1016–R1021.Google Scholar
  63. 63.
    Magnusson SP, Narici MV, Maganaris CN, Kjaer M. Human tendon behaviour and adaptation, in vivo. The Journal of physiology. 2008;586(1):71–81. doi: 10.1113/jphysiol.2007.139105.
  64. 64.
    Birch HL. Tendon matrix composition and turnover in relation to functional requirements. International journal of experimental pathology. 2007;88(4):241–248. doi: 10.1111/j.1365-2613.2007.00552.x.
  65. 65.
    Maganaris CN, Paul JP. Tensile properties of the in vivo human gastrocnemius tendon. Journal of biomechanics. 2002;35(12):1639–1646.Google Scholar
  66. 66.
    Pollock CM, Shadwick RE. Allometry of muscle, tendon, and elastic energy storage capacity in mammals. The American journal of physiology. 1994;266(3 Pt 2):R1022–R1031.Google Scholar
  67. 67.
    Thorpe CT, Udeze CP, Birch HL, Clegg PD, Screen HR. Specialization of tendon mechanical properties results from interfascicular differences. J R Soc Interface. 2012;9(76):3108–3117. doi: 10.1098/rsif.2012.0362.
  68. 68.
    Benjamin M, Kaiser E, Milz S. Structure-function relationships in tendons: a review. J Anat. 2008;212(3):211–228. doi: 10.1111/j.1469-7580.2008.00864.x.
  69. 69.
    Benjamin M, Ralphs JR. Tendons and ligaments-an overview. Histol Histopathol. 1997;12(4):1135–1144.Google Scholar
  70. 70.
    Karas V, Cole BJ, Wang VM. Role of biomechanics in rotator cuff pathology: North American perspective. Medicine and sport science. 2012;57:18–26. doi: 10.1159/000328871.
  71. 71.
    Zajac FE. How musculotendon architecture and joint geometry affect the capacity of muscles to move and exert force on objects: a review with application to arm and forearm tendon transfer design. The Journal of hand surgery. 1992;17(5):799–804.Google Scholar
  72. 72.
    Robinson PS, Huang TF, Kazam E, Iozzo RV, Birk DE, Soslowsky LJ. Influence of decorin and biglycan on mechanical properties of multiple tendons in knockout mice. J Biomech Eng. 2005;127(1):181–185.Google Scholar
  73. 73.
    Maganaris CN, Narici MV, Almekinders LC, Maffulli N. Biomechanics and pathophysiology of overuse tendon injuries: ideas on insertional tendinopathy. Sports medicine. 2004;34(14):1005–1017.Google Scholar
  74. 74.
    Thomopoulos S, Hattersley G, Rosen V, Mertens M, Galatz L, Williams GR et al. The localized expression of extracellular matrix components in healing tendon insertion sites: an in situ hybridization study. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2002;20(3):454–463. doi: 10.1016/S0736-0266(01)00144-9.
  75. 75.
    Edelstein L, Thomas SJ, Soslowsky LJ. Rotator cuff tears: what have we learned from animal models? Journal of musculoskeletal & neuronal interactions. 2011;11(2):150–162.Google Scholar
  76. 76.
    Andarawis-Puri N, Kuntz AF, Ramsey ML, Soslowsky LJ. Effect of supraspinatus tendon repair technique on the infraspinatus tendon. Journal of biomechanical engineering. 2011;133(3):031008. doi:10.1115/1.4003326.CrossRefGoogle Scholar
  77. 77.
    Wurgler-Hauri CC, Dourte LM, Baradet TC, Williams GR, Soslowsky LJ. Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model. Journal of shoulder and elbow surgery / American Shoulder and Elbow Surgeons [et al]. 2007;16(5 Suppl):S198–203. doi: 10.1016/j.jse.2007.04.003.
  78. 78.
    Gimbel JA, Van Kleunen JP, Lake SP, Williams GR, Soslowsky LJ. The role of repair tension on tendon to bone healing in an animal model of chronic rotator cuff tears. Journal of biomechanics. 2007;40(3):561–568. doi: 10.1016/j.jbiomech.2006.02.010.
  79. 79.
    Gimbel JA, Van Kleunen JP, Williams GR, Thomopoulos S, Soslowsky LJ. Long durations of immobilization in the rat result in enhanced mechanical properties of the healing supraspinatus tendon insertion site. Journal of biomechanical engineering. 2007;129(3):400–404. doi: 10.1115/1.2721075.
  80. 80.
    Yokota A, Gimbel JA, Williams GR, Soslowsky LJ. Supraspinatus tendon composition remains altered long after tendon detachment. Journal of shoulder and elbow surgery / American Shoulder and Elbow Surgeons [et al]. 2005;14(1 Suppl S):72S–78S. doi: 10.1016/j.jse.2004.09.021.
  81. 81.
    Barton ER, Gimbel JA, Williams GR, Soslowsky LJ. Rat supraspinatus muscle atrophy after tendon detachment. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2005;23(2):259–265. doi: 10.1016/j.orthres.2004.08.018.
  82. 82.
    Gimbel JA, Mehta S, Van Kleunen JP, Williams GR, Soslowsky LJ. The tension required at repair to reappose the supraspinatus tendon to bone rapidly increases after injury. Clinical orthopaedics and related research. 2004(426):258–265.Google Scholar
  83. 83.
    Thomopoulos S, Williams GR, Gimbel JA, Favata M, Soslowsky LJ. Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J Orthop Res. 2003;21(3):413–419.Google Scholar
  84. 84.
    Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004;84(2):649–698. doi: 10.1152/physrev.00031.2003.
  85. 85.
    Venturoni M, Gutsmann T, Fantner GE, Kindt JH, Hansma PK. Investigations into the polymorphism of rat tail tendon fibrils using atomic force microscopy. Biochem Biophys Res Commun. 2003;303(2):508–513.Google Scholar
  86. 86.
    Ottani V, Raspanti M, Ruggeri A. Collagen structure and functional implications. Micron. 2001;32(3):251–260.Google Scholar
  87. 87.
    Ottani V, Martini D, Franchi M, Ruggeri A, Raspanti M. Hierarchical structures in fibrillar collagens. Micron. 2002;33(7–8):587–596.Google Scholar
  88. 88.
    Vidal DC. Image analysis of tendon helical superstructure using interference and polarized light microscopy. Micron. 2003;34(8):423–432.Google Scholar
  89. 89.
    Starborg T, Lu Y, Huffman A, Holmes DF, Kadler KE. Electron microscope 3D reconstruction of branched collagen fibrils in vivo. Scand J Med Sci Sports. 2009;19(4):547–552. doi: 10.1111/j.1600-0838.2009.00907.x.
  90. 90.
    Danylchuk KD, Finlay JB, Krcek JP. Microstructural organization of human and bovine cruciate ligaments. Clin Orthop Relat Res. 1978(131):294–298.Google Scholar
  91. 91.
    Jarvinen T, Jarvinen TL, Kannus P, Jozsa L, Jarvinen M. Collagen fibres of the spontaneously ruptured human tendons display decreased thickness and crimp angle. Journal of Orthopaedic Research. 2004;22(6):1303–1309.Google Scholar
  92. 92.
    Wang CJ, Walker PS, Wolf B. The effects of flexion and rotation on the length patterns of the ligaments of the knee. Journal of Biomechanics. 1973;6:587–596.Google Scholar
  93. 93.
    Hurschler C, Provenzano PP, Vanderby R, Jr. Scanning electron microscopic characterization of healing and normal rat ligament microstructure under slack and loaded conditions. Connect Tissue Res. 2003;44(2):59–68.Google Scholar
  94. 94.
    Niven H, Baer E, Hiltner A. Organization of collagen fibers in rat tail tendon at the optical microscope level. Coll Relat Res. 1982;2(2):131–142.Google Scholar
  95. 95.
    Haraldsson BT, Aagaard P, Qvortrup K, Bojsen-Moller J, Krogsgaard M, Koskinen S et al. Lateral force transmission between human tendon fascicles. Matrix Biol. 2008;27(2):86–95.Google Scholar
  96. 96.
    Smith KD, Vaughan-Thomas A, Spiller DG, Innes JF, Clegg PD, Comerford EJ. The organisation of elastin and fibrillins 1 and 2 in the cruciate ligament complex. J Anat. 2011;218(6):600–607. doi: 10.1111/j.1469-7580.2011.01374.x.
  97. 97.
    Gotoh T, Murashige N, Yamashita K. Ultrastructural observations on the tendon sheath of the rat tail. J Electron Microsc (Tokyo). 1997;46(3):247–252.Google Scholar
  98. 98.
    Ilic MZ, Carter P, Tyndall A, Dudhia J, Handley CJ. Proteoglycans and catabolic products of proteoglycans present in ligament. Biochem J. 2005;385(Pt 2):381–388. doi: 10.1042/bj20040844.
  99. 99.
    Lujan TJ, Dalton MS, Thompson BM, Ellis BJ, Weiss JA. Effect of ACL deficiency on MCL strains and joint kinematics. Journal of biomechanical engineering. 2007;129(3):386–392. doi: 10.1115/1.2720915.
  100. 100.
    Lujan TJ, Underwood CJ, Jacobs NT, Weiss JA. Contribution of glycosaminoglycans to viscoelastic tensile behavior of human ligament. J Appl Physiol. 2009;106(2):423–431.Google Scholar
  101. 101.
    Neame PJ, Kay CJ, McQuillan DJ, Beales MP, Hassell JR. Independent modulation of collagen fibrillogenesis by decorin and lumican. Cell Mol Life Sci. 2000;57(5):859–863.Google Scholar
  102. 102.
    Lujan TJ, Underwood CJ, Henninger HB, Thompson BM, Weiss JA. Effect of dermatan sulfate glycosaminoglycans on the quasi-static material properties of the human medial collateral ligament. J Orthop Res. 2007;25(7):894–903. doi: 10.1002/jor.20351.
  103. 103.
    Rosenbloom J. Elastin: Biosynthesis, structure, degradation, and role in disease processes. Connective Tissue Research. 1982;10:73–91.Google Scholar
  104. 104.
    Pins GD, Christiansen DL, Patel R, Silver FH. Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophys J. 1997;73(4):2164–2172.Google Scholar
  105. 105.
    Zhang G, Ezura Y, Chervoneva I, Robinson PS, Beason DP, Carine ET et al. Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J Cell Biochem. 2006;98(6):1436–1449.Google Scholar
  106. 106.
    Henninger HB, Maas SA, Shepherd JH, Joshi S, Weiss JA. Transversely isotropic distribution of sulfated glycosaminoglycans in human medial collateral ligament: a quantitative analysis. J Struct Biol. 2009;165(3):176–183.Google Scholar
  107. 107.
    Henninger HB, Underwood CJ, Ateshian GA, Weiss JA. Effect of sulfated glycosaminoglycan digestion on the transverse permeability of medial collateral ligament. Journal of biomechanics. 2010;43(13):2567–2573. doi: 10.1016/j.jbiomech.2010.05.012.
  108. 108.
    Black LD, Brewer KK, Morris SM, Schreiber BM, Toselli P, Nugent MA et al. Effects of elastase on the mechanical and failure properties of engineered elastin-rich matrices. J Appl Physiol. 2005;98(4):1434–1441.Google Scholar
  109. 109.
    Lanir Y. Structure-Strength Relationships in Mammalian Tendon. Biophysical Journal. 1978;24:541–554.Google Scholar
  110. 110.
    Nakagawa H, Mikawa Y, Watanabe R. Elastin in the human posterior longitudinal ligament and spinal dura. A histologic and biochemical study. Spine. 1994;19(19):2164–2169.Google Scholar
  111. 111.
    Uitto J. Biochemistry of the elastic fibers in normal connective tissues and its alterations in diseases. J Invest Dermatol. 1979;72(1):1–10.Google Scholar
  112. 112.
    Franchi M, Fini M, Quaranta M, De Pasquale V, Raspanti M, Giavaresi G et al. Crimp morphology in relaxed and stretched rat Achilles tendon. J Anat. 2007;210(1):1–7. doi: 10.1111/j.1469-7580.2006.00666.x.
  113. 113.
    Amiel D, Frank C, Harwood F, Fronek J, Akeson W. Tendons and ligaments: a morphological and biochemical comparison. Journal of Orthopaedic Research. 1984;1(3):257–265.Google Scholar
  114. 114.
    Rumian AP, Wallace AL, Birch HL. Tendons and ligaments are anatomically distinct but overlap in molecular and morphological features-a comparative study in an ovine model. J Orthop Res. 2007;25(4):458–464.Google Scholar
  115. 115.
    Ciccone WJ, 2nd, Bratton DR, Weinstein DM, Elias JJ. Viscoelasticity and temperature variations decrease tension and stiffness of hamstring tendon grafts following anterior cruciate ligament reconstruction. The Journal of bone and joint surgery American volume. 2006;88(5):1071–1078. doi: 10.2106/JBJS.E.00576.
  116. 116.
    Bonifasi-Lista C, Lake SP, Small MS, Weiss JA. Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading. J Orthop Res. 2005;23(1):67–76.Google Scholar
  117. 117.
    Lakes RS, Vanderby R. Interrelation of creep and relaxation: a modeling approach for ligament. Journal of Biomechanical Engineering. 1999;121(6):612–615.Google Scholar
  118. 118.
    Woo SL-Y. Mechanical properties of tendons and ligaments I. Quasi-static and nonlinear viscoelastic properties. Biorheology. 1982;19:385–396.Google Scholar
  119. 119.
    Cohen B, Lai WM, Mow VC. A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. J Biomech Eng. 1998;120(4):491–496.Google Scholar
  120. 120.
    Weiss JA, Gardiner JC, Ellis BJ, Lujan TJ, Phatak NS. Three-dimensional finite element modeling of ligaments: technical aspects. Medical engineering & physics. 2005;27(10):845–861. doi: 10.1016/j.medengphy.2005.05.006.
  121. 121.
    Weiss JA, Maakestad BJ. Permeability of human medial collateral ligament in compression transverse to the collagen fiber direction. J Biomech. 2006;39(2):276–283.Google Scholar
  122. 122.
    Yin L, Elliott DM. A biphasic and transversely isotropic mechanical model for tendon: application to mouse tail fascicles in uniaxial tension. J Biomech. 2004;37(6):907–916.Google Scholar
  123. 123.
    Komolafe OA, Doehring TC. Fascicle-scale loading and failure behavior of the Achilles tendon. J Biomech Eng. 2010;132(2):021004. doi: 10.1115/1.4000696.
  124. 124.
    Screen HR, Lee DA, Bader DL, Shelton JC. An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. Proc Inst Mech Eng [H]. 2004;218(2):109–119.Google Scholar
  125. 125.
    Screen HR, Shelton JC, Chhaya VH, Kayser MV, Bader DL, Lee DA. The influence of noncollagenous matrix components on the micromechanical environment of tendon fascicles. Ann Biomed Eng. 2005;33(8):1090–1099. doi: 10.1007/s10439-005-5777-9.
  126. 126.
    Screen HRC, Bader DL, Lee DA, Shelton JC. Local Strain Measurement within Tendon. Strain 2004. p. 157–163.Google Scholar
  127. 127.
    Screen HRC, Cheng VWT. The Micro-structural Strain Response of Tendon. Journal of Material Science 2007. p. 1–2.Google Scholar
  128. 128.
    Lafortune MA, Cavanagh PR, Sommer HJ, III, Kalenak A. Three-dimensional kinematics of the human knee during walking. J Biomechanics. 1992;25:347–357.Google Scholar
  129. 129.
    Lynch HA, Johannessen W, Wu JP, Jawa A, Elliott DM. Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon. Journal of biomechanical engineering. 2003;125(5):726–731.Google Scholar
  130. 130.
    Yamamoto E, Hayashi K, Yamamoto N. Effects of stress shielding on the transverse mechanical properties of rabbit patellar tendons. J Biomech Eng. 2000;122(6):608–614.Google Scholar
  131. 131.
    Weiss JA, Gardiner JC, Bonifasi-Lista C. Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. Journal of Biomechanics. 2002;35:943–950.Google Scholar
  132. 132.
    Weiss JA. A constitutive model and finite element representation for transversely isotropic soft tissues [Ph.D.]. Salt Lake City: University of Utah; 1994.Google Scholar
  133. 133.
    Reese SP, Maas SA, Weiss JA. Micromechanical models of helical superstructures in ligament and tendon fibers predict large Poisson’s ratios. Journal of biomechanics. 2010;43(7):1394–1400. doi: 10.1016/j.jbiomech.2010.01.004.
  134. 134.
    Lanir Y. Constitutive equations for fibrous connective tissues. Journal of Biomechanics. 1983;16(1):1–12.Google Scholar
  135. 135.
    Babuska I. The finite element method with Lagrangian multipliers. Num Math. 1973;20:179–192.Google Scholar
  136. 136.
    Woo SL-Y, Hollis JM, Adams DJ, Lyon RM, Takai S. Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Amer J Sports Med. 1991;19:217–225.Google Scholar
  137. 137.
    Yamamoto E, Hayashi K, Yamamoto N. Mechanical properties of collagen fascicles from the rabbit patellar tendon. J Biomech Eng. 1999;121(1):124–131.Google Scholar
  138. 138.
    Beatty MF, Stalnaker DO. The Poisson function of finite elasticity. Journal of applied mechanics 1986;53(4):807–813.Google Scholar
  139. 139.
    Hewitt J, Guilak F, Glisson R, Vail TP. Regional material properties of the human hip joint capsule ligaments. J Orthop Res. 2001;19(3):359–364.Google Scholar
  140. 140.
    Hannafin JA, Arnoczky SP. Effect of cyclic and static tensile loading on water content and solute diffusion in canine flexor tendons: an in vitro study. Journal of Orthopaedic Research. 1994;12:350–356.Google Scholar
  141. 141.
    Helmer KG, Nair G, Cannella M, Grigg P. Water movement in tendon in response to a repeated static tensile load using one-dimensional magnetic resonance imaging. J Biomech Eng. 2006;128(5):733–741.Google Scholar
  142. 142.
    Matsumoto H, Suda Y, Otani T, Niki Y, Seedhom BB, Fujikawa K. Roles of the anterior cruciate ligament and the medial collateral ligament in preventing valgus instability. Journal of Orthopaedic Science. 2001;6(1):28–32.Google Scholar
  143. 143.
    Defrate LE, van der Ven A, Boyer PJ, Gill TJ, Li G. The measurement of the variation in the surface strains of Achilles tendon grafts using imaging techniques. J Biomech. 2006;39(3):399–405. doi: 10.1016/j.jbiomech.2004.12.021.
  144. 144.
    Lake SP, Miller KS, Elliott DM, Soslowsky LJ. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading. J Orthop Res. 2009;27(12):1596–1602. doi: 10.1002/jor.20938.
  145. 145.
    Doehring TC, Kahelin M, Vesely I. Direct measurement of nonuniform large deformations in soft tissues during uniaxial extension. J Biomech Eng. 2009;131(6):061001. doi: 10.1115/1.3116155.
  146. 146.
    Mommersteeg TJ, Blankevoort L, Kooloos JG, Hendriks JC, Kauer JM, Huiskes R. Nonuniform distribution of collagen density in human knee ligaments. J Orthop Res. 1994;12(2):238–245.Google Scholar
  147. 147.
    Quapp KM, Weiss JA. Material characterization of human medial collateral ligament. J Biomech Eng. 1998;120:757–763.Google Scholar
  148. 148.
    Weiss JA, editor. Behavior of human medial collateral ligament in unconfined compression. Othopaedic Research Society 46th Annual Meeting; 2000 March 12–15; Orlando, FL: ORS.Google Scholar
  149. 149.
    Lakes RS. Viscoelastic Materials. New York, NY: Cambridge University Press; 2009.Google Scholar
  150. 150.
    Abramowitch SD, Clineff TD, Withrow JD, Papageorgiou CD, Woo SL. The quasilinear viscoelastic properties of the healing goat medial collateral ligament: an experimental & analytical approach. 23rd annual meeting of the American Society of Biomechanics. 1999.Google Scholar
  151. 151.
    Provenzano P, Lakes R, Keenan T, Vanderby R, Jr. Nonlinear ligament viscoelasticity. Ann Biomed Eng. 2001;29(10):908–914.Google Scholar
  152. 152.
    Thornton GM, Oliynyk A, Frank CB, Shrive NG. Ligament creep cannot be predicted from stress relaxation at low stresses: A biomechanical study of the rabbit medial collateral ligament. Journal of Orthopaedic Research. 1997;15:652–656.Google Scholar
  153. 153.
    Waggett AD, Ralphs JR, Kwan AP, Woodnutt D, Benjamin M. Characterization of collagens and proteoglycans at the insertion of the human Achilles tendon. Matrix Biol. 1998;16(8):457–470.Google Scholar
  154. 154.
    Reese SP, Weiss JA. Tendon fascicles exhibit a linear correlation between poisson’s ratio and force during uniaxial stress relaxation. J Biomech Eng. 2013;135(3):34501. doi: 10.1115/1.4023134.
  155. 155.
    Hansen KA, Weiss JA, Barton JK. Recruitment of Tendon Crimp With Applied Tensile Strain. ASME; 2002. p. 72.Google Scholar
  156. 156.
    Race A, Amis AA. The mechanical properties of the two bundles of the human posterior cruciate ligament. J Biomech. 1994;27(1):13–24.Google Scholar
  157. 157.
    Hirokawa S. An experimental study of the microstructures and mechanical properties of swine cruciate ligaments. JSME International Journal. 2003;46(4):1417–1425.Google Scholar
  158. 158.
    Atkinson TS, Ewers BJ, Haut RC. The tensile and stress relaxation responses of human patellar tendon varies with specimen cross-sectional area. J Biomech. 1999;32(9):907–914.Google Scholar
  159. 159.
    Miyazaki H, Kozaburo H. Tensile tests of collagen fibers obtained from the rabbit patellar tendon. Biomedical Microdevices. 1999;2(2):151–157.Google Scholar
  160. 160.
    van der Rijt JA, van der Werf KO, Bennink ML, Dijkstra PJ, Feijen J. Micromechanical testing of individual collagen fibrils. Macromol Biosci. 2006;6(9):697–702. doi: 10.1002/mabi.200600063.
  161. 161.
    Wenger MP, Bozec L, Horton MA, Mesquida P. Mechanical properties of collagen fibrils. Biophys J. 2007;93(4):1255–1263.Google Scholar
  162. 162.
    Yang L, van der Werf KO, Fitie CF, Bennink ML, Dijkstra PJ, Feijen J. Mechanical properties of native and cross-linked type I collagen fibrils. Biophys J. 2008;94(6):2204–2211. doi: 10.1529/biophysj.107.111013.
  163. 163.
    Yang L, van der Werf KO, Koopman BF, Subramaniam V, Bennink ML, Dijkstra PJ et al. Micromechanical bending of single collagen fibrils using atomic force microscopy. J Biomed Mater Res A. 2007;82(1):160–168. doi: 10.1002/jbm.a.31127.
  164. 164.
    Svensson RB, Hassenkam T, Hansen P, Peter Magnusson S. Viscoelastic behavior of discrete human collagen fibrils. J Mech Behav Biomed Mater. 3(1):112–115.Google Scholar
  165. 165.
    Rigozzi S, Stemmer A, Muller R, Snedeker JG. Mechanical response of individual collagen fibrils in loaded tendon as measured by atomic force microscopy. J Struct Biol. 2011;176(1):9–15. doi: 10.1016/j.jsb.2011.07.002.
  166. 166.
    Bozec L, Horton M. Topography and mechanical properties of single molecules of type I collagen using atomic force microscopy. Biophysical journal. 2005;88(6):4223–4231. doi: 10.1529/biophysj.104.055228.
  167. 167.
    Sun YL, Luo ZP, Fertala A, An KN. Direct quantification of the flexibility of type I collagen monomer. Biochemical and biophysical research communications. 2002;295(2):382–386.Google Scholar
  168. 168.
    Henninger HB, Underwood CJ, Romney SJ, Davis GL, Weiss JA. Effect of elastin digestion on the quasi-static tensile response of medial collateral ligament. J Orthop Res. 2013;31(8):1226–1233. doi: 10.1002/jor.22352.
  169. 169.
    Screen HR, Chhaya VH, Greenwald SE, Bader DL, Lee DA, Shelton JC. The influence of swelling and matrix degradation on the microstructural integrity of tendon. Acta Biomater. 2006;2(5):505–513. doi: 10.1016/j.actbio.2006.05.008.
  170. 170.
    Fung DT, Wang VM, Andarawis-Puri N, Basta-Pljakic J, Li Y, Laudier DM et al. Early response to tendon fatigue damage accumulation in a novel in vivo model. J Biomech. 2010;43(2):274–279. doi: 10.1016/j.jbiomech.2009.08.039.
  171. 171.
    Neviaser A, Andarawis-Puri N, Flatow E. Basic mechanisms of tendon fatigue damage. J Shoulder Elbow Surg. 2012;21(2):158–163. doi: 10.1016/j.jse.2011.11.014.
  172. 172.
    Andarawis-Puri N, Flatow EL. Tendon fatigue in response to mechanical loading. J Musculoskelet Neuronal Interact. 2011;11(2):106–114.Google Scholar
  173. 173.
    Killian ML, Cavinatto L, Galatz LM, Thomopoulos S. The role of mechanobiology in tendon healing. J Shoulder Elbow Surg. 2012;21(2):228–237. doi: 10.1016/j.jse.2011.11.002.
  174. 174.
    Fenwick SA, Hazleman BL, Riley GP. The vasculature and its role in the damaged and healing tendon. Arthritis Res. 2002;4(4):252–260.Google Scholar
  175. 175.
    Lavagnino M, Arnoczky SP, Frank K, Tian T. Collagen fibril diameter distribution does not reflect changes in the mechanical properties of in vitro stress-deprived tendons. J Biomech. 2005;38(1):69–75. doi: 10.1016/j.jbiomech.2004.03.035.
  176. 176.
    Henninger HB, Lujan TJ, Underwood CJ, Weiss JA, editors. Distribution and mechanical implications of dermatan sulfate in human medial collateral ligament. ASME Summer Bioengineeing Conference,; 2006; Amelia Island, FL.Google Scholar
  177. 177.
    Henninger HB, Maas SA, Underwood CJ, Whitaker RT, Weiss JA. Spatial distribution and orientation of dermatan sulfate in human medial collateral ligament. J Struct Biol. 2007;158(1):33–45.Google Scholar
  178. 178.
    Scott JE. Collagen-proteoglycan interactions. Localization of proteoglycans in tendon by electron microscopy. The Biochemical journal. 1980;187(3):887–891.Google Scholar
  179. 179.
    Scott JE. Proteoglycan-fibrillar collagen interactions. Biochem J. 1988;252(2):313–323.Google Scholar
  180. 180.
    Scott JE. Proteoglycan-collagen interactions and sub-fibrillar structure in collagen fibrils: implications in the development and remodelling of connective tissues. Biochem Soc Trans. 1990;18(3):489–490.Google Scholar
  181. 181.
    Scott JE. Proteoglycan: collagen interactions in connective tissues. Ultrastructural, biochemical, functional and evolutionary aspects. Int J Biol Macromol. 1991;13(3):157–161.Google Scholar
  182. 182.
    Sasaki N, Shukunami N, Matsushima N, Izumi Y. Time-resolved X-ray diffraction from tendon collagen during creep using synchrotron radiation. J Biomech. 1999;32(3):285–292.Google Scholar
  183. 183.
    Buehler MJ, Wong SY. Entropic elasticity controls nanomechanics of single tropocollagen molecules. Biophys J. 2007;93(1):37–43. doi: 10.1529/biophysj.106.102616.
  184. 184.
    Buehler MJ. Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc Natl Acad Sci U S A. 2006;103(33):12285–12290. doi: 10.1073/pnas.0603216103.
  185. 185.
    Anderson AE, Ellis BJ, Weiss JA. Verification, validation and sensitivity studies in computational biomechanics. Comput Methods Biomech Biomed Engin. 2007;10(3):171–184. doi: 10.1080/10255840601160484.
  186. 186.
    Henninger HB, Reese SP, Anderson AE, Weiss JA. Validation of computational models in biomechanics. Proc Inst Mech Eng H. 2010;224(7):801–812.Google Scholar
  187. 187.
    Holzapfel GA. Nonlinear Solid Mechanics. Chichester, United Kingdom: John Wiley and Sons, Ltd; 2000.Google Scholar
  188. 188.
    Spencer AJM. Continuum Mechanics. New York, NY: Dover Publications; 1980.Google Scholar
  189. 189.
    Weiss JA, Maker BN, Govindjee S. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comp Meth Appl Mech Eng. 1996;135:107–128.Google Scholar
  190. 190.
    Funk JR, Hall GW, Crandall JR, Pilkey WD. Linear and quasi-linear viscoelastic characterization of ankle ligaments. J Biomech Eng. 2000;122(1):15–22.Google Scholar
  191. 191.
    Puso MA, Weiss JA. Finite element implementation of anisotropic quasilinear viscoelasticity. Journal of Biomechanical Engineering. 1998;120(1):62–70.Google Scholar
  192. 192.
    Elliott DM, Robinson PS, Gimbel JA, Sarver JJ, Abboud JA, Iozzo RV et al. Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Annals of biomedical engineering. 2003;31(5):599–605.Google Scholar
  193. 193.
    Pena E, Pena JA, Doblare M. On modelling nonlinear viscoelastic effects in ligaments. Journal of biomechanics. 2008;41(12):2659–2666. doi: 10.1016/j.jbiomech.2008.06.019.
  194. 194.
    Lakes RS, Vanderby R. Interrelation of creep and relaxation: a modeling approach for ligaments. J Biomech Eng. 1999;121(6):612–615.Google Scholar
  195. 195.
    Provenzano PP, Lakes RS, Corr DT, R R, Jr. Application of nonlinear viscoelastic models to describe ligament behavior. Biomech Model Mechanobiol. 2002;1(1):45–57.Google Scholar
  196. 196.
    Puso MA, Weiss JA. Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. J Biomech Eng. 1998;120(1):62–70.Google Scholar
  197. 197.
    Funk JR, Hall GW, Crandall JR, Pilkey WD. Linear and quasi-linear viscoelastic characterization of ankle ligaments. Journal of biomechanical engineering. 2000;122(1):15–22.Google Scholar
  198. 198.
    Johnson GA, Tramaglini DM, Levine RE, Ohno K, Choi NY, Woo SL. Tensile and viscoelastic properties of human patellar tendon. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 1994;12(6):796–803. doi: 10.1002/jor.1100120607.
  199. 199.
    Thomopoulos S, Williams GR, Soslowsky LJ. Tendon to bone healing: differences in biomechanical, structural, and compositional properties due to a range of activity levels. Journal of biomechanical engineering. 2003;125(1):106–113.Google Scholar
  200. 200.
    Provenzano P, Lakes R, Keenan T, Vanderby R, Jr. Nonlinear ligament viscoelasticity. Annals of biomedical engineering. 2001;29(10):908–914.Google Scholar
  201. 201.
    Thornton GM, Oliynyk A, Frank CB, Shrive NG. Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 1997;15(5):652–656. doi: 10.1002/jor.1100150504.
  202. 202.
    Duenwald SE, Vanderby R, Jr., Lakes RS. Viscoelastic relaxation and recovery of tendon. Annals of biomedical engineering. 2009;37(6):1131–1140. doi: 10.1007/s10439-009-9687-0.
  203. 203.
    Einat R, Yoram L. Recruitment viscoelasticity of the tendon. Journal of biomechanical engineering. 2009;131(11):111008. doi: 10.1115/1.3212107.
  204. 204.
    Rausch MK, Reese S, Maas S, Weiss JA. Can poroelasticity predict the cyclic tensile viscoelastic behavior of ligament? Proc 55th Annual Meeting of the Orthopaedic Research Society. 2009.Google Scholar
  205. 205.
    Armstrong CG, Lai WM, Mow VC. An analysis of the unconfined compression of articular cartilage. J Biomech Eng. 1984;106(2):165–173.Google Scholar
  206. 206.
    Ateshian GA, Warden WH, Kim JJ, Grelsamer RP, Mow VC. Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J Biomech. 1997;30(11–12):1157–1164.Google Scholar
  207. 207.
    Huang CY, Soltz MA, Kopacz M, Mow VC, Ateshian GA. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage. J Biomech Eng. 2003;125(1):84–93.Google Scholar
  208. 208.
    Huang CY, Mow VC, Ateshian GA. The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage. J Biomech Eng. 2001;123(5):410–417.Google Scholar
  209. 209.
    Mak AF. Unconfined compression of hydrated viscoelastic tissues: a biphasic poroviscoelastic analysis. Biorheology. 1986;23(4):371–383.Google Scholar
  210. 210.
    Maas SA, Ellis BJ, Ateshian GA, Weiss JA. FEBio: finite elements for biomechanics. Journal of biomechanical engineering. 2012;134(1):011005. doi: 10.1115/1.4005694.
  211. 211.
    Kanouté P, Boso D, Chaboche J, Schrefler B. Multiscale Methods for Composites: A Review. Archives of Computational Methods in Engineering. 2009;16(1):31–75. doi: 10.1007/s11831-008-9028-8.
  212. 212.
    Geers MGD, Kouznetsova VG, Brekelmans WAM. Multi-scale computational homogenization: Trends and challenges. Jnl Comp Appl Math. 2010;234:2175–2182.Google Scholar
  213. 213.
    Suquet PM. Elements of homogenization theory for inelastic solid mechanics. In: Sanchez-Palencia E, Zaoui A, editors. Homogenization Techniques for Composite Media. Berlin: Springer; 1985.Google Scholar
  214. 214.
    Gitman IM, Askes H, Sluys LJ. Representative volume: Existence and size determination. Engineering Fracture Mechanics. 2007;74(16):2518–2534. doi: 10.1016/j.engfracmech.2006.12.021.
  215. 215.
    Gusev AA. Representative volume element size for elastic composites: A numerical study. Journal of the Mechanics and Physics of Solids. 1997;45(9):1449–1459. doi: 10.1016/s0022-5096(97)00016-1.
  216. 216.
    Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D. Determination of the size of the representative volume element for random composites: statistical and numerical approach. International Journal of Solids and Structures. 40(13–14):3647–3679. doi: 10.1016/s0020-7683(03)00143-4.
  217. 217.
    Pahr DH, Zysset PK. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomech Model Mechanobiol. 2008;7(6):463–476.Google Scholar
  218. 218.
    Hazanov S. On apparent properties of nonlinear heterogeneous bodies smaller than the representative volume Acta Mechanica. 1998;134(3–4):1619–6937.Google Scholar
  219. 219.
    Hazanov S. Hill condition and overall properties of composites. Archive of Applied Mechanics 1998. p. 385–294.Google Scholar
  220. 220.
    Xia Z, Zhou C, Yong Q, Wang X. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. International Journal of Solids and Structures. 2006;43(2):266–278.Google Scholar
  221. 221.
    Yin L, Elliott DM. A homogenization model of the annulus fibrosus. J Biomech. 2005;38(8):1674–1684.Google Scholar
  222. 222.
    Garnich MR, Karami G. Finite Element Micromechanics for Stiffness and Strength of Wavy Fiber Composites. Journal of Composite Materials. 2004;38(4):273.Google Scholar
  223. 223.
    Yvonnet J, Gonzalez D, He QC. Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. Computer Methods in Applied Mechanics and Engineering. 2009;198(33–36):2723–2737. doi: 10.1016/j.cma.2009.03.017.
  224. 224.
    Sharafi B, Ames EG, Holmes JW, Blemker SS. Strains at the myotendinous junction predicted by a micromechanical model. J Biomech. 2011;44(16):2795–2801. doi: 10.1016/j.jbiomech.2011.08.025.
  225. 225.
    Reese SP, Weiss JA, editors. Measurement of Poisson’s Ratio and Transverse Strain in Rat Tail Tendon During Stress Relaxation. Proc. of the 56th Annual Meeting of the Orthopaedic Research Society; 2010 March 5–9; New Orleans, LA.Google Scholar
  226. 226.
    Kouznetsova V, Geers MGD, Brekelmans WAM. Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. International Journal for Numerical Methods in Engineering. 2002;54(8):1235–1260. doi: 10.1002/nme.541.
  227. 227.
    Kouznetsova V, Brekelmans WAM, Baaijens FPT. An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics. 2001;27(1):37–48. doi: 10.1007/s004660000212.
  228. 228.
    Feyel F. A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Computer Methods in Applied Mechanics and Engineering. 2003;192(28–30):3233–3244. doi: 10.1016/s0045-7825(03)00348-7.
  229. 229.
    Yuan Z, Fish J. Toward realization of computational homogenization in practice. International Journal for Numerical Methods in Engineering. 2008;73(3):361–380. doi: 10.1002/nme.2074.
  230. 230.
    Tawhai M, Bischoff J, Einstein D, Erdemir A, Guess T, Reinbolt J. Multiscale modeling in computational biomechanics. IEEE Eng Med Biol Mag. 2009;28(3):41–49.Google Scholar
  231. 231.
    Okada J-i, Washio T, Hisada T. Study of efficient homogenization algorithms for nonlinear problems. Computational Mechanics. 2010;46(2):247–258. doi: 10.1007/s00466-009-0432-1.
  232. 232.
    Kouznetsova VG, Geers MGD, Brekelmans WAM. Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Computer Methods in Applied Mechanics and Engineering. 2004;193(48–51):5525–5550. doi: 10.1016/j.cma.2003.12.073.
  233. 233.
    Buechner PM, Lakes RS. Size effects in the elasticity and viscoelasticity of bone. Biomech Model Mechanobiol. 2003;1(4):295–301. doi: 10.1007/s10237-002-0026-8.
  234. 234.
    Vernerey FJ, Kabiri M. An adaptive concurrent multiscale method for microstructured elastic solids. Computer Methods in Applied Mechanics and Engineering. 2012;241–244(0):52–64. doi: 10.1016/j.cma.2012.04.021.
  235. 235.
    Freed AD, Doehring TC. Elastic model for crimped collagen fibrils. J Biomech Eng. 2005;127(4):587–593.Google Scholar
  236. 236.
    Grytz R, Meschke G. Constitutive modeling of crimped collagen fibrils in soft tissues. J Mech Behav Biomed Mater. 2009;2(5):522–533.Google Scholar
  237. 237.
    Hurschler C, Loitz-Ramage B, Vanderby R, Jr. A structurally based stress-stretch relationship for tendon and ligament. Journal of biomechanical engineering. 1997;119(4):392–399.Google Scholar
  238. 238.
    Ault HK, Hoffman AH. A composite micromechanical model for connective tissues: Part II - Application to rat tail tendon and joint capsule. Journal of Biomechanical Engineering. 1992;114(1):142–146.Google Scholar
  239. 239.
    Müller R, Rüegsegger P. Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures. Medical engineering & physics. 1995;17(2):126–133.Google Scholar
  240. 240.
    Podshivalov L, Fischer A, Bar-Yoseph PZ. 3D hierarchical geometric modeling and multiscale FE analysis as a base for individualized medical diagnosis of bone structure. Bone. 2011;48(4):693–703. doi: 10.1016/j.bone.2010.12.022.
  241. 241.
    Sanz-Herrera JA, Garcia-Aznar JM, Doblare M. On scaffold designing for bone regeneration: A computational multiscale approach. Acta Biomater. 2009;5(1):219–229. doi: 10.1016/j.actbio.2008.06.021.
  242. 242.
    Varga P, Dall’ara E, Pahr DH, Pretterklieber M, Zysset PK. Validation of an HR-pQCT-based homogenized finite element approach using mechanical testing of ultra-distal radius sections. Biomech Model Mechanobiol. 2010. doi: 10.1007/s10237-010-0245-3.
  243. 243.
    Goh KL, Meakin JR, Aspden RM, Hukins DW. Stress transfer in collagen fibrils reinforcing connective tissues: effects of collagen fibril slenderness and relative stiffness. J Theor Biol. 2007;245(2):305–311. doi: 10.1016/j.jtbi.2006.10.008.
  244. 244.
    Goh KL, Meakin JR, Aspden RM, Hukins DW. Influence of fibril taper on the function of collagen to reinforce extracellular matrix. Proceedings Biological sciences / The Royal Society. 2005;272(1575):1979–1983. doi: 10.1098/rspb.2005.3173.
  245. 245.
    Ault HK, Hoffman AH. A composite micromechanical model for connective tissues: Part I - Theory. Journal of Biomechanical Engineering. 1992;114(1):137–141.Google Scholar
  246. 246.
    Lake SP, Barocas VH. Mechanical and Structural Contribution of Non-Fibrillar Matrix in Uniaxial Tension: A Collagen-Agarose Co-Gel Model. Annals of biomedical engineering. 2011. doi: 10.1007/s10439-011-0298-1.
  247. 247.
    Vidal BC. Crimp as part of a helical structure. C R Acad Sci III. 1995;318(2):173–178.Google Scholar
  248. 248.
    Yahia LH, Drouin G. Microscopical investigation of canine anterior cruciate ligament and patellar tendon: collagen fascicle morphology and architecture. J Orthop Res. 1989;7(2):243–251.Google Scholar
  249. 249.
    Marino M, Vairo G. Stress and strain localization in stretched collagenous tissues via a multiscale modelling approach. Comput Methods Biomech Biomed Engin. 2012. doi: 10.1080/10255842.2012.658043.
  250. 250.
    Schulze-Tanzil G, Al-Sadi O, Wiegand E, Ertel W, Busch C, Kohl B et al. The role of pro-inflammatory and immunoregulatory cytokines in tendon healing and rupture: new insights. Scand J Med Sci Sports. 2011;21(3):337–351. doi: 10.1111/j.1600-0838.2010.01265.x.
  251. 251.
    Sander EA, Stylianopoulos T, Tranquillo RT, Barocas VH. Image-based multiscale modeling predicts tissue-level and network-level fiber reorganization in stretched cell-compacted collagen gels. Proc Natl Acad Sci U S A. 2009;106(42):17675–17680.Google Scholar
  252. 252.
    Chandran PL, Barocas VH. Deterministic material-based averaging theory model of collagen gel micromechanics. J Biomech Eng. 2007;129(2):137–147. doi: 10.1115/1.2472369.
  253. 253.
    Sander EA, Tranquillo RT, Barocas VH. Image-based multiscale structural models of fibrous engineered tissues. Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference. 2009;2009:4270-4272. doi: 10.1109/IEMBS.2009.5334586.
  254. 254.
    Reese SP, Ellis BJ, Weiss JA. Micromechanical model of a surrogate for collagenous soft tissues: development, validation and analysis of mesoscale size effects. Biomech Model Mechanobiol. 2013;12(6):1195–1204. doi: 10.1007/s10237-013-0475-2.
  255. 255.
    Ateshian GA, Rajan V, Chahine NO, Canal CE, Hung CT. Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J Biomech Eng. 2009;131(6):061003.Google Scholar
  256. 256.
    Upton ML, Gilchrist CL, Guilak F, Setton LA. Transfer of macroscale tissue strain to microscale cell regions in the deformed meniscus. Biophys J. 2008;95(4):2116-21-24. doi: 10.1529/biophysj.107.126938.
  257. 257.
    Reese SP, Maas SA, Weiss JA, editors. A bottom-up approach to construction and validation of multiscale models for aligned collagenous tissues. Workshop on Microscale Modeling in Biomechanics and Mechanobiology; 2011.Google Scholar
  258. 258.
    Reese SP, Weiss JA, editors. Multiscale micromechanical model of a collagen-based composite: development and validation. Multiscale Methods and Validation in Medicine and Biology; 2012.Google Scholar
  259. 259.
    Ateshian GA, Nims RJ, Maas SA, Weiss JA. Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules. Biomechanics and Modeling in Mechanobiology. 2014; In Press.Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Department of BioengineeringScientific Computing and Imaging InstituteSalt Lake CityUSA
  2. 2.Department of Orthopaedics and School of ComputingUniversity of UtahSalt Lake CityUSA

Personalised recommendations