Protein Crystals: Molecular to Continuum Level Models Based on Crystal Plasticity Theory

  • Suvranu De
  • Amir Reza Zamiri


Biological materials are extremely well organized in a hierarchical structure from the molecular building blocks at their first level of organization up to the tissue and organ levels with fascinating nonuniform (anisotropic) properties. Nature utilizes hierarchical structures in an intriguing way to self-assemble biomaterials based on molecular building blocks such as amino acids, nucleic acids, polysaccharides, and lipids that are organized into efficient multifunctional structures and systems ranging from the nanoscopic to the macroscopic length scales [1, 2]. The most basic properties and functions of the biomaterials are defined at the very first level of organization. Therefore, it is imperative to incorporate information from the finer scale biological processes, which often govern processes at the coarser scale, to measure the properties and analyze the functions of biological systems.


Slip System Coarse Scale Protein Crystal Critical Resolve Shear Stress Protein Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular Biology of the Cell. New York, Taylor & Francis.Google Scholar
  2. 2.
    Fratzl, P., & Weinkamer, R. (2007). Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334.Google Scholar
  3. 3.
    Gupta, H.S., et al. (2006). Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc. Natl Acad. Sci. USA 103, 17741–17746.Google Scholar
  4. 4.
    Gupta, H.S., et al. (2007). Evidence for an elementary process in bone plasticity with an activation enthalpy of 1 eV. J. R. Soc. Interf. 4, 277–282.Google Scholar
  5. 5.
    Buehler, M.J. (2006). Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. Proc. Natl Acad. Sci. USA 103, 12285–12290.Google Scholar
  6. 6.
    Chan, Hue, & SunDill, K.A. (1993). The protein folding problem. Phys. Today 46( 2), 24.Google Scholar
  7. 7.
    Chiti, F., & Dobson, C.M. (2006). Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366.Google Scholar
  8. 8.
    Mesquida, P., Riener, C.K., MacPhee, C.E., & McKendry, R.A. (2007). Morphology and mechanical stability of amyloid-like peptide fibrils. J. Mater. Sci. Mater. Med. 18, 1325–1331.Google Scholar
  9. 9.
    Iconomidou, V.A., & Hamodrakas, S.J. (2008). Natural protective amyloids. Curr. Protein Pept. Sci. 9, 291–309.Google Scholar
  10. 10.
    Hardy, J., & Selkoe, D.J. (2002). Medicine: The amyloid hypothesis of Alzheimer’sdisease. Progress and problems on the road to therapeutics. Science 297, 353–356.Google Scholar
  11. 11.
    Selkoe, D.J. (2001). Alzheimer’s disease: Genes, proteins, and therapy. Physiol. Rev. 81, 741–766.Google Scholar
  12. 12.
    Tachibana, M., Kobayashi, Y., Shimazu, T., Ataka, M., & Kojima, K. (1999). Growth and mechanical properties of lysozyme crystals. J. Crystal Growth 198, 661–664.Google Scholar
  13. 13.
    Niemela, P.S., Ollila, S., Hyvonen, M.T., Karttunen, M., & Vattulainen, I. (2007). PLoSComput. Biol. 3, 0304.Google Scholar
  14. 14.
    Snow, C.D., Sorin, E.J., Rhee, Y.M., & Pande, V.S. (2005). How well can simulation predict protein folding kinetics and thermodynamics? Annu. Rev. Biophys. Biomol. Struct. 34, 43–69.Google Scholar
  15. 15.
    Cormier, J., Rickman, J. M., Delph, T.J. (2001). Stress calculation in atomistic simulations of perfect and imperfect solids. J. Appl. Phys. 89, 99.Google Scholar
  16. 16.
    Odegard, G.M., Gates, T.S., Nicholson, L.M., & Wise, K.E. (2002). Equivalent- continuum modeling of nano-structured materials. Comp. Sci. Technol. 6214, 1869–1880.Google Scholar
  17. 17.
    Zamiri, A., & De, S. (2009). Modeling the mechanical response of tetragonal lysozyme crystals. Langmuir  26(6), 4251–4257.Google Scholar
  18. 18.
    Harata, K., Muraki, M., & Jigami, Y. (1993). Role of Arg115 in the catalytic action of human lysozyme: X-ray structure of His115 and Glu115 mutants. J. Mol. Biol. 233(3), 524–535.Google Scholar
  19. 19.
    Tait, S., White, E.T., & Litster, J.D. (2008). Mechanical characterization of protein crystals. Part. Part. Syst. Character. 25(3), 266–276.Google Scholar
  20. 20.
    Koizumi, H., Tachibana, M., Kawamoto, H., & Kojima\(\dagger \), K. (2004). Temperature dependence of microhardness of tetragonal hen-egg-white lysozyme single crystals. Philos. Mag.  84(28), 2961–2968.Google Scholar
  21. 21.
    Koizumi, H., Tachibana, M., & Kojima, K. (2006). Observation of all the components of elastic constants using tetragonal hen egg-white lysozyme crystals dehydrated at 42% relative humidity. Phys. Rev. E 73(4), 041910.Google Scholar
  22. 22.
    Koizumi, H., Kawamoto, H., Tachibana, M., & Kojima, K. (2008). Effect of intracrystalline water on micro-Vickers hardness in tetragonal hen egg-white lysozyme single crystals. J. Phys. D: Appl. Phys. 41(7), 074019.Google Scholar
  23. 23.
    Koizumi, H., Tachibana, M., & Kojima, K. (2009). Elastic constants in tetragonal hen egg-white lysozyme crystals containing large amount of water. Phys. Rev. E 79(6), 061917.Google Scholar
  24. 24.
    Alvarado-Contreras, J., Polak, M.A., & Penlidis, A. (2007). Micromechanical approach to modeling damage in crystalline polyethylene. Poly. Eng. Sci.  47(4), 410–420.Google Scholar
  25. 25.
    Tachibana, M., Koizumi, H., & Kojima, K. (2004). Effect of intracrystalline water on longitudinal sound velocity in tetragonal hen-egg-white lysozyme crystals. Phys. Rev. E 69(5), 051921.Google Scholar
  26. 26.
    Granato, A.V., Lucke, K., Schlipf, J., & Teutonico, L.J. (1964). Entropy factors for thermally activated unpinning of dislocations. J. Appl. Phys. 35(9), 2732–2745.Google Scholar
  27. 27.
    Kocks, U.F., Argon, A.S., Ashby, M.F. (1975). Thermodynamics and Kinetics of Slip. In Chalmers, B., Christian, J.W., Massalski, T.B. (Eds.). Progress in Materials Science. New York, Pergamon.Google Scholar
  28. 28.
    Bunge, H.-J. (1982). Texture Analysis in Materials Science: Mathematical Methods. London, Butterworths.Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Department of Mechanical, Aerospace and Nuclear EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations