Mitral Valves: A Computational Framework

  • Chung-Hao Lee
  • Rouzbeh Amini
  • Yusuke Sakamoto
  • Christopher A. Carruthers
  • Ankush Aggarwal
  • Robert C. Gorman
  • Joseph H. GormanIII
  • Michael S. Sacks


The mitral valve (MV) is one of the four heart valves which locates in between the left atrium and left ventricle and regulates the unidirectional blood flow and normal functioning of the heart during cardiac cycles. Alternation of any component of the MV apparatus will typically lead to abnormal MV function. Currently, 40,000 patients in the United States receive MV repair or replacement annually according to the American Heart Association. Clinically, this can be achieved iteratively by surgical repair that reinstates normal annular geometry (size and shape) and restores mobile leaflet tissue, resulting in reduced annular and chordae force distribution. High-fidelity computer simulations provide a means to connect the cellular function with the organ-level MV tissue mechanical responses, and to help the design of optimal MV repair strategies. As in many physiological systems, one can approach heart valve biomechanics from using multiscale modeling (MSM) methodologies, since mechanical stimuli occur and have biological impact at the organ, tissue, and cellular levels. Yet, MSM approaches of heart valves are scarce, largely due to the major difficulties in adapting conventional methods to the areas where we simply do not have requisite data. There also remains both theoretical and computational challenges to applying traditional MSM techniques to heart valves. Moreover, existing physiologically realistic computational models of heart valve function make many assumptions, such as a simplified microstructural and anatomical representation of the MV apparatus, and thorough validations with in-vitro or in-vivo data are still limited. In the following, we present the details of the state of the art of mitral valve modeling techniques, with an emphasis on what is known and investigated at various length scales.


Mitral Valve Representative Volume Element Mitral Valve Repair Mitral Valve Leaflet Elastin Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The funding from the National Institutes of Health (NIH) grants R01 HL119297, HL108330, HL63054, HL73021, and F32 HL110651 was greatly appreciated. Dr. C.H. Lee was supported in part by the American Heart Association Southwest Affiliate Postdoctoral Fellowship (14POST18160013) and the ICES Postdoctoral Fellowship. Dr. A. Aggarwal was supported by the American Heart Association Southwest Affiliate Postdoctoral Fellowship (14POST18720037).


  1. 1.
    Adams, D.H., Rosenhek, R., Falk, V. (2010) Degenerative mitral valve regurgitation: best practice revolution. Eur Heart J 31 (16):1958–1966.Google Scholar
  2. 2.
    Aggarwal, A., Ferrari, G., Joyce, E., Daniels, M. J., Sainger, R., Gorman I.I.I., J. H., Gorma, R.C., Sacks, M. S. (2014) Architectural trends in the human normal and bicuspid aortic valve leaflet and its relevance to valve disease. Ann Biomed Eng 42 (5):986–998.Google Scholar
  3. 3.
    Amini, R., Eckert, C.E., Koomalsingh, K., McGarvey, J., Minakawa, M., Gorman, J.H., Gorman, R.C., Sacks, M.S. (2012) On the in vivo deformation of the mitral valve anterior leaflet: effects of annular geometry and referential configuration. Ann Biomed Eng 40 (7):1455–1467.Google Scholar
  4. 4.
    Aspden, R.M., Bornstein, N.H., Hukins, D.W. (1987) Collagen organisation in the interspinous ligament and its relationship to tissue function. J Anat 155:141–151.Google Scholar
  5. 5.
    Bairati, A., DeBiasi, S. (1981) Presence of a smooth muscle system in aortic valve leaflets. Anatomy and Embryology 161 (3):329–340.Google Scholar
  6. 6.
    Bigi, A., Incerti, A., Leonardi, L., Miccoli, G., Re, G., Roveri, N. (1980) Role of the orientation of the collagen fibers on the mechanical properties of the carotid wall. Boll Soc Ital Biol Sper 56 (4):380–384.Google Scholar
  7. 7.
    Billiar, K.L., Sacks, M.S. (1997) A method to quantify the fiber kinematics of planar tissues under biaxial stretch. J Biomech 30 (7):753–756.Google Scholar
  8. 8.
    Billiar, K.L., Sacks, M.S. (2000a) Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp-Part I: Experimental results. Journal of Biomechanical Engineering 122 (1):23–30.Google Scholar
  9. 9.
    Billiar, K.L., Sacks, M.S. (2000b) Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part II-A structural constitutive model. Journal of Biomechanical Engineering 122 (4):327–335.Google Scholar
  10. 10.
    Bouxsein, M.L., Boyd, S.K., Christiansen, B.A., Guldberg, R.E., Jepsen, K.J., Müller, R. (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25 (7):1468–1486.Google Scholar
  11. 11.
    Braunberger, E., Deloche, A., Berrebi, A., Abdallah, F., Celestin, J.A., Meimoun, P., Chatellier, G., Chauvaud, S., Fabiani, J.N., Carpentier, A. (2001) Very long-term results (more than 20 years) of valve repair with carpentier’s techniques in nonrheumatic mitral valve insufficiency. Circulation 104 (12 Suppl 1):I8–11.Google Scholar
  12. 12.
    Buchanan, R.M., Sacks, M.S. (2013) Interlayer micromechanics of the aortic heart valve leaflet. Biomech Model Mechanobiol 3 (4):1–4.Google Scholar
  13. 13.
    Butcher, J.T., Penrod, A.M., Garcia, A.J., Nerem, R.M. (2004) Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. Arterioscler Thromb Vasc Biol 24 (8):1429–1434.Google Scholar
  14. 14.
    Carpentier, A., Chauvaud, S., Fabiani, J.N., Deloche, A., Relland, J., Lessana, A., D’Allaines, C., Blondeau, P., Piwnica, A., Dubost, C. (1980) Reconstructive surgery of mitral valve incompetence: ten-year appraisal. J Thorac Cardiovasc Surg 79 (3):338–348.Google Scholar
  15. 15.
    Cavalcante, F.S., Ito, S., Brewer, K., Sakai, H., Alencar, A.M., Almeida, M.P., Andrade, J.S., Jr., Majumdar, A., Ingenito, E.P., Suki, B. (2005) Mechanical interactions between collagen and proteoglycans: implications for the stability of lung tissue. J Appl Physiol 98 (2):672–679.Google Scholar
  16. 16.
    Chapman, J.A., Hulmes, D.J.S. (1984) Electron microscopy of the collagen fibril. In: Ruggeri, A., Motto, P.M. (eds) Ultrastructure of the Connective Tissue Matrix. Martinus Nijhoff, Boston, pp 1–33.Google Scholar
  17. 17.
    Chen, H., Liu, Y., Zhao, X., Lanir, Y., Kassab, G.S. (2011) A micromechanics finite-strain constitutive model of fibrous tissue. J Mech Phys Solids 59 (9):1823–1837.Google Scholar
  18. 18.
    Condado, J.A., Velez-Gimon, M. (2003) Catheter-Based Approach to Mitral Regurgitation. Journal of interventional cardiology 16 (6):523–534.Google Scholar
  19. 19.
    Dal Pan, F., Donzella, G., Fucci, C., Schreiber, M. (2005) Structural effects of an innovative surgical technique to repair heart valve defects. J Biomech 38 (12):2460–2471.Google Scholar
  20. 20.
    de Varennes, B., Chaturvedi, R., Sidhu, S., Cote, A.V., Shan, W.L., Goyer, C., Hatzakorzian, R., Buithieu, J., Sniderman, A. (2009) Initial results of posterior leaflet extension for severe type IIIb ischemic mitral regurgitation. Circulation 119 (21):2837–2843.Google Scholar
  21. 21.
    Einstein, D.R., Del Pin, F., Jiao, X., Kuprat, A.P., Carson, J.P., Kunzelman, K.S., Cochran, R.P., Guccione, J.M., Ratcliffe, M.B. (2010) Fluid-Structure Interactions of the Mitral Valve and Left Heart: Comprehensive Strategies, Past, Present and Future. International journal for numerical methods in engineering 26 (3–4):348–380.Google Scholar
  22. 22.
    Einstein, D.R., Kunzelman, K.S., Reinhall, P.G., Cochran, R.P., Nicosia, M.A. (2004) Haemodynamic determinants of the mitral valve closure sound: a finite element study. Med Biol Eng Comput 42 (6):832–846.Google Scholar
  23. 23.
    Einstein, D.R., Kunzelman, K.S., Reinhall, P.G., Nicosia, M.A., Cochran, R.P. (2005) The relationship of normal and abnormal microstructural proliferation to the mitral valve closure sound. J Biomech Eng 127 (1):134–147.Google Scholar
  24. 24.
    Elliott, D.M., Robinson, P.S., Gimbel, J.A., Sarver, J.J., Abboud, J.A., Iozzo, R.V., Soslowsky, L.J. (2003) Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Ann Biomed Eng 31 (5):599–605.Google Scholar
  25. 25.
    Farkasjahnke, M., Synećek, V. (1965) Small-angle x-ray diffraction studies on rat-tail tendon. Acta Physiol Acad Sci 28 (1):1–17.Google Scholar
  26. 26.
    Fata, B., Carruthers, C.A., Gibson, G., Watkins, S.C., Gottlieb, D., Mayer, J.E., Sacks, M.S. (2013) Regional structural and biomechanical alterations of the ovine main pulmonary artery during postnatal growth. J Biomech Eng 135 (2):021022.Google Scholar
  27. 27.
    Fata, B., Gottlieb, D., Mayer, J.E., Sacks, M.S. (2013) Estimated in vivo postnatal surface growth patterns of the ovine main pulmonary artery and ascending aorta. J Biomech Eng 135 (7):71010–71012.Google Scholar
  28. 28.
    Filip, D.A., Radu, A., Simionescu, M. (1986) Interstitial cells of the heart valve possess characteristics similar to smooth muscle cells. Circulation Research 59 (3):310–320.Google Scholar
  29. 29.
    Flameng, W., Herijgers, P., Bogaerts, K. (2003) Recurrence of mitral valve regurgitation after mitral valve repair in degenerative valve disease. Circulation 107 (12):1609–1613.Google Scholar
  30. 30.
    Flameng, W., Meuris, B., Herijgers, P., Herregods, M.-C. (2008) Durability of mitral valve repair in Barlow disease versus fibroelastic deficiency. The Journal of thoracic and cardiovascular surgery 135 (2):274–282.Google Scholar
  31. 31.
    Folkhard, W., Geercken, W., Knorzer, E., Mosler, E., Nemetschek-Gansler, H., Nemetschek, T., Koch, M.H. (1987) Structural dynamic of native tendon collagen. J Mol Biol 193 (2):405–407.Google Scholar
  32. 32.
    Fratzl, P., Misof, K., Zizak, I., Rapp, G., Amenitsch, H., Bernstorff, S. (1998) Fibrillar structure and mechanical properties of collagen. J Struct Biol 122 (1–2):119–122.Google Scholar
  33. 33.
    Fung, Y.C. (1993) Biomechanics: Mechanical Properties of Living Tissues. 2nd edn. Springer Verlag, New York.Google Scholar
  34. 34.
    Gilbert, T.W., Wognum, S., Joyce, E.M., Freytes, D.O., Sacks, M.S., Badylak, S.F. (2008) Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix. Biomaterials 29 (36):4775–4782.Google Scholar
  35. 35.
    Grande-Allen, K.J., Griffin, B.P., Calabro, A., Ratliff, N.B., Cosgrove, D.M., 3rd, Vesely, I. (2001) Myxomatous mitral valve chordae. II: Selective elevation of glycosaminoglycan content. J Heart Valve Dis 10 (3):325–332; discussion 332–323.Google Scholar
  36. 36.
    Grashow, J.S., Sacks, M.S., Liao, J., Yoganathan, A.P. (2006) Planar biaxial creep and stress relaxation of the mitral valve anterior leaflet. Ann Biomed Eng 34 (10):1509–1518.Google Scholar
  37. 37.
    Grashow, J.S., Yoganathan, A.P., Sacks, M.S. (2006) Biaixal stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann Biomed Eng 34 (2):315–325.Google Scholar
  38. 38.
    Hansen, K.A., Weiss, J.A., Barton, J.K. (2002) Recruitment of tendon crimp with applied tensile strain. J Biomech Eng 124 (1):72–77.Google Scholar
  39. 39.
    Hilbert, S.L., Sword, L.C., Batchelder, K.F., Barrick, M.K., Ferrans, V.J. (1996) Simultaneous assessment of bioprosthetic heart valve biomechanical properties and collagen crimp length. J Biomed Mater Res 31 (4):503–509.Google Scholar
  40. 40.
    Hodge, A.J., Petruska, J.A. (1963) Recent studies with the electron microscope on ordered aggregates of the tropocollagen molecule, vol 289–300. Aspects of Protein Chemistry. Academic Press, London.Google Scholar
  41. 41.
    Hunter, K.S., Lanning, C.J., Chen, S.Y., Zhang, Y., Garg, R., Ivy, D.D., Shandas, R. (2006) Simulations of congenital septal defect closure and reactivity testing in patient-specific models of the pediatric pulmonary vasculature: A 3D numerical study with fluid-structure interaction. J Biomech Eng 128 (4):564–572.Google Scholar
  42. 42.
    Kao, P.H., Lammers, S., Tian, L., Hunter, K., Stenmark, K.R., Shandas, R., Qi, H.J. (2011) A microstructurally-driven model for pulmonary artery tissue. Journal of biomechanical engineering 133 (5):051002.Google Scholar
  43. 43.
    Kastelic, J., Galeski, A., Baer, E. (1978) The multicomposite structure of tendon. Connect Tissue Res 6 (1):11–23.Google Scholar
  44. 44.
    Kincaid, E.H., Riley, R.D., Hines, M.H., Hammon, J.W., Kon, N.D. (2004) Anterior leaflet augmentation for ischemic mitral regurgitation. Ann Thorac Surg 78 (2):564–568; discussion 568.Google Scholar
  45. 45.
    Krishnamurthy, G., Ennis, D.B., Itoh, A., Bothe, W., Swanson, J.C., Karlsson, M., Kuhl, E., Miller, D.C., Ingels, N.B., Jr. (2008) Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis. Am J Physiol Heart Circ Physiol 295 (3):H1141–H1149.Google Scholar
  46. 46.
    Krishnamurthy, G., Itoh, A., Bothe, W., Swanson, J.C., Kuhl, E., Karlsson, M., Craig Miller, D., Ingels, N.B., Jr. (2009) Stress-strain behavior of mitral valve leaflets in the beating ovine heart. J Biomech 42 (12):1909–1916.Google Scholar
  47. 47.
    Kronick, P.L., Buechler, P.R. (1986) Fiber Orientation in Calfskin by Laser Light Scattering or X-ray Diffraction and Quantitative Relation to Mechanical Properties. Journal of the American Leather Chemists Association 81:221–229.Google Scholar
  48. 48.
    Kunzelman, K.S., Cochran, R.P., Chuong, C., Ring, W.S., Verrier, E.D., Eberhart, R.D. (1993) Finite element analysis of the mitral valve. J Heart Valve Dis 2 (3):326–340.Google Scholar
  49. 49.
    Kunzelman, K.S., Cochran, R.P., Murphree, S.S., Ring, W.S., Verrier, E.D., Eberhart, R.C. (1993) Differential collagen distribution in the mitral valve and its influence on biomechanical behaviour. J Heart Valve Dis 2 (2):236–244.Google Scholar
  50. 50.
    Kunzelman, K.S., Quick, D.W., Cochran, R.P. (1998) Altered collagen concentration in mitral valve leaflets: biochemical and finite element analysis. Ann Thorac Surg 66 (6 Suppl):S198–205.Google Scholar
  51. 51.
    Kunzelman, K.S., Reimink, M.S., Cochran, R.P. (1997) Annular dilatation increases stress in the mitral valve and delays coaptation: a finite element computer model. Cardiovasc Surg 5 (4):427–434.Google Scholar
  52. 52.
    Lee, C.H., Amini, R., Gorman, R.C., Gorman, J.H., Sacks, M.S. (2014) An inverse modeling approach for stress estimation in mitral valve anterior leaflet valvuloplasty for in-vivo valvular biomaterial assessment. J Biomech 47 (9):2055–2063.Google Scholar
  53. 53.
    Liao, J., Yang, L., Grashow, J., Sacks, M.S. (2005) Molecular orientation of collagen in intact planar connective tissues under biaxial stretch. Acta Biomaterialia 1 (1):45–54.Google Scholar
  54. 54.
    Lim, K.H., Yeo, J.H., Duran, C.M. (2005) Three-dimensional asymmetrical modeling of the mitral valve: a finite element study with dynamic boundaries. J Heart Valve Dis 14 (3):386–392.Google Scholar
  55. 55.
    Lis, Y., Burleigh, M.C., Parker, D.J., Child, A.H., Hogg, J., Davies, M.J. (1987) Biochemical characterization of individual normal, floppy and rheumatic human mitral valves. Biochem J 244 (3):597–603.Google Scholar
  56. 56.
    Lopez-Pamies, O., Castañeda, P.P. (2004) Second-order homogenization estimates incorporating field fluctuations in finite elasticity. Mathematics and Mechanics of Solids 9 (3):243–270.Google Scholar
  57. 57.
    Mahmood, F., Gorman, J.H., 3rd, Subramaniam, B., Gorman, R.C., Panzica, P.J., Hagberg, R.C., Lerner, A.B., Hess, P.E., Maslow, A., Khabbaz, K.R. (2010) Changes in mitral valve annular geometry after repair: saddle-shaped versus flat annuloplasty rings. Ann Thorac Surg 90 (4):1212–1220.Google Scholar
  58. 58.
    Mahmood, F., Subramaniam, B., Gorman, J.H., 3rd, Levine, R.M., Gorman, R.C., Maslow, A., Panzica, P.J., Hagberg, R.M., Karthik, S., Khabbaz, K.R. (2009) Three-dimensional echocardiographic assessment of changes in mitral valve geometry after valve repair. Ann Thorac Surg 88 (6):1838–1844.Google Scholar
  59. 59.
    Maas, S.A., Ellis, B.J., Ateshian, G.A., Weiss, J.A. (2012) FEBio: finite elements for biomechanics. J Biomech Eng 134:011005.Google Scholar
  60. 60.
    May-Newman, K., Yin, F.C. (1998) A constitutive law for mitral valve tissue. J Biomech Eng 120 (1):38–47.Google Scholar
  61. 61.
    Merryman, W.D., Bieniek, P.D., Guilak, F., Sacks, M.S. (2009) Viscoelastic properties of the aortic valve interstitial cell. J Biomech Eng 131 (4):041005.Google Scholar
  62. 62.
    Merryman, W.D., Youn, I., Lukoff, H.D., Krueger, P.M., Guilak, F., Hopkins, R.A., Sacks, M.S. (2006) Correlation between heart valve interstitial cell stiffness and transvalvular pressure: implications for collagen biosynthesis. Am J Physiol Heart Circ Physiol 290 (1):H224–231.Google Scholar
  63. 63.
    Messier, R.H., Jr., Bass, B.L., Aly, H.M., Jones, J.L., Domkowski, P.W., Wallace, R.B., Hopkins, R.A. (1994) Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast. Journal of Surgical Research 57 (1):1–21.Google Scholar
  64. 64.
    Mulholland, D.L., Gotlieb, A.I. (1996) Cell biology of valvular interstitial cells. Canadian Journal of Cardiology 12 (3):231–236.Google Scholar
  65. 65.
    Nimni, M.E. (1980) The molecular organization of collgen and its role in determining the biophysical properties of the connective tissues. Biorheology 17:51–82.Google Scholar
  66. 66.
    Nowicki, E.R., Weintraub, R.W., Birkmeyer, N.J., Sanders, J.H., Dacey, L.J., Lahey, S.J., Leavitt, B., Clough, R.A., Quinn, R.D., O’Connor G, T. (2003) Mitral valve repair and replacement in northern New England. Am Heart J 145 (6):1058–1062.Google Scholar
  67. 67.
    Ponte Castañeda, P. (2002) Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I–theory. J Mech Phys Solids 50 (4):737–757.Google Scholar
  68. 68.
    Ponte Castañeda, P., Tiberio, E. (2000) A second-order homogenization method in finite elasticity and applications to black-filled elastomers. J Mech Phys Solids 48 (6):1389–1411.Google Scholar
  69. 69.
    Prot, V., Skallerud, B. (2009) Nonlinear solid finite element analysis of mitral valves with heterogeneous leaflet layers. Comput Mech 43 (3):353–368.Google Scholar
  70. 70.
    Prot, V., Skallerud, B., Holzapfel, G. (2007) Transversely isotropic membrane shells with application to mitral valve mechanics. Constitutive modelling and finite element implementation. Int J Numer Methods Eng 71 (8):987–1008.Google Scholar
  71. 71.
    Purslow, P.P., Wess, T.J., Hukins, D.W. (1998) Collagen orientation and molecular spacing during creep and stress-relaxation in soft connective tissues. J Exp Biol 201 (Pt 1):135–142.Google Scholar
  72. 72.
    Rabbah, J.-P., Saikrishnan, N., Yoganathan, A.P. (2013) A novel left heart simulator for the multi-modality characterization of native mitral valve geometry and fluid mechanics. Ann Biomed Eng 41 (2):305–315.Google Scholar
  73. 73.
    Rabkin-Aikawa, E., Farber, M., Aikawa, M., Schoen, F.J. (2004) Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. J Heart Valve Dis 13 (5):841–847.Google Scholar
  74. 74.
    Rabkin, E., Hoerstrup, S.P., Aikawa, M., Mayer, J.E., Jr., Schoen, F.J. (2002) Evolution of cell phenotype and extracellular matrix in tissue-engineered heart valves during in-vitro maturation and in-vivo remodeling. Journal of Heart Valve Disease 11 (3):308–314; discussion 314.Google Scholar
  75. 75.
    Reimink, M.S., Kunzelman, K.S., Cochran, R.P. (1996) The effect of chordal replacement suture length on function and stresses in repaired mitral valves: a finite element study. J Heart Valve Dis 5 (4):365–375.Google Scholar
  76. 76.
    Reimink, M.S., Kunzelman, K.S., Verrier, E.D., Cochran, R.P. (1995) The effect of anterior chordal replacement on mitral valve function and stresses. A finite element study. Asaio J 41 (3):M754–762.Google Scholar
  77. 77.
    Robb, J.D., Minakawa, M., Koomalsingh, K.J., Shuto, T., Jassar, A.S., Ratcliffe, S.J., Gorman, R.C., Gorman, J.H., 3rd (2011) Posterior leaflet augmentation improves leaflet tethering in repair of ischemic mitral regurgitation. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.Google Scholar
  78. 78.
    Sacks, M.S. A structural model for natural and chemically treated bovine pericardium. In: Atluri, S., O’Donoghue, P. (eds) Modeling and simulation based engineering, Atlanta, GA, 1998. Tech Science Press, pp 1574–1579.Google Scholar
  79. 79.
    Sacks, M.S. (2003) Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J Biomech Eng 125 (2):280–287.Google Scholar
  80. 80.
    Sacks, M.S., Chuong, C.J. (1992) Characterization of Collagen Fiber Architecture in the Canine Central Tendon. Journal of Biomechanical Engineering 114:183–190.Google Scholar
  81. 81.
    Sacks, M.S., Merryman, W.D., Schmidt, D.E. (2009) On the biomechanics of heart valve function. J Biomech 42 (12):1804–1824.Google Scholar
  82. 82.
    Sacks, M.S., Smith, D.B., Hiester, E.D. (1997) A small angle light scattering device for planar connective tissue microstructural analysis. Ann Biomed Eng 25 (4):678–689.Google Scholar
  83. 83.
    Sacks, M.S., Smith, D.B., Hiester, E.D. (1998) The aortic valve microstructure: effects of transvalvular pressure. Journal of Biomedical Materials Research 41 (1):131–141.Google Scholar
  84. 84.
    Sasaki, N., Odajima, S. (1996) Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J Biomech 29 (9):1131–1136.Google Scholar
  85. 85.
    Sasaki, N., Odajima, S. (1996) Stress-strain curve and Young’s modulus of a collagen molecule as determined by the X-ray diffraction technique. Journal of Biomechanics 29:655–658.Google Scholar
  86. 86.
    Sasaki, N., Shukunami, N., Matsushima, N., Izumi, Y. (1999) Time resolved X-ray diffraction from tendon collagen during creep using synchrotron radiation. Journal of Biomechanics 32:285–292.Google Scholar
  87. 87.
    Schoen, F. (1997) Aortic valve structure-function correlations: Role of elastic fibers no longer a stretch of the imagination. Journal of Heart Valve Disease 6:1–6.Google Scholar
  88. 88.
    Scott, J.E. (1991) Proteoglycan: collagen interactions in connective tissues. Ultrastructural, biochemical, functional and evolutionary aspects. Int J Biol Macromol 13 (3):157–161.Google Scholar
  89. 89.
    Silver, F.H. (1987) Biological Materials: Structure, Mechanical Properties, and Modeling of Soft Tissues. New York University Press, New York and London.Google Scholar
  90. 90.
    Silver, F.H., Freeman, J.W., Seehra, G.P. (2003) Collagen self-assembly and the development of tendon mechanical properties. J Biomech 36 (10):1529–1553.Google Scholar
  91. 91.
    Silverman, M.E., Hurst, J.W. (1968) The mitral complex. Interaction of the anatomy, physiology, and pathology of the mitral annulus, mitral valve leaflets, chordae tendineae, and papillary muscles. Am Heart J 76 (3):399–418.Google Scholar
  92. 92.
    Stella, J.A., Sacks, M.S. (2007) On the biaxial mechanical properties of the layers of the aortic valve leaflet. J Biomech Eng 129 (5):757–766.Google Scholar
  93. 93.
    Storn, R., Price, K. (1997) Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11 (4):341–359.Google Scholar
  94. 94.
    Taylor, P.M., Batten, P., Brand, N.J., Thomas, P.S., Yacoub, M.H. (2003) The cardiac valve interstitial cell. International Journal of Biochemistry and Cell Biology 35 (2):113–118.Google Scholar
  95. 95.
    Theret, D.P., Levesque, M.J., Sato, M., Nerem, R.M., Wheeler, T. (1988) The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. J Biomech Eng 110:190–199.Google Scholar
  96. 96.
    Trotter, J.A., Koob, T.J. (1989) Collagen and proteoglycan in a sea urchin ligament with mutable mechanical properties. Cell Tissue Res 258 (3):527–539.Google Scholar
  97. 97.
    Trotter, J.A., Thurmond, F.A., Koob, T.J. (1994) Molecular structure and functional morphology of echinoderm collagen fibrils. Cell Tissue Res 275 (3):451–458.Google Scholar
  98. 98.
    Votta, E., Le, T.B., Stevanella, M., Fusini, L., Caiani, E.G., Redaelli, A., Sotiropoulos, F. (2013) Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J Biomech 46 (2):217–228.Google Scholar
  99. 99.
    Votta, E., Caiani, E., Veronesi, F., Soncini, M., Montevecchi, F.M., Redaelli, A. (2008) Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Philos Transact A Math Phys Eng Sci 366 (1879):3411–3434.Google Scholar
  100. 100.
    Weber, I.T., Harrison, R.W., Iozzo, R.V. (1996) Model structure of decorin and implications for collagen fibrillogenesis. J Biol Chem 271 (50):31767–31770.Google Scholar
  101. 101.
    Xing, Y., Warnock, J.N., He, Z., Hilbert, S.L., Yoganathan, A.P. (2004) Cyclic pressure affects the biological properties of porcine aortic valve leaflets in a magnitude and frequency dependent manner. Ann Biomed Eng 32 (11):1461–1470.Google Scholar
  102. 102.
    Zhang, Y., Dunn, M.L., Hunter, K.S., Lanning, C., Ivy, D.D., Claussen, L., Chen, S.J., Shandas, R. (2007) Application of a microstructural constitutive model of the pulmonary artery to patient-specific studies: validation and effect of orthotropy. J Biomech Eng 129 (2):193–201.Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Chung-Hao Lee
    • 1
  • Rouzbeh Amini
    • 2
  • Yusuke Sakamoto
    • 1
  • Christopher A. Carruthers
    • 3
  • Ankush Aggarwal
    • 1
  • Robert C. Gorman
    • 4
  • Joseph H. GormanIII
    • 4
  • Michael S. Sacks
    • 1
  1. 1.Department of Biomedical Engineering, Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences (ICES)The University of Texas at AustinAustinUSA
  2. 2.Department of Biomedical EngineeringUniversity of AkronAkronUSA
  3. 3.Department of BioengineeringUniversity of PittsburghPittsburghUSA
  4. 4.Gorman Cardiovascular Research GroupUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations