Skip to main content

The Value of National Institutes of Health (NIH) Registry-Based Research in Identifying Childhood Cardiac Disease Outcomes: The Pediatric Cardiomyopathy Registry Experience

  • Chapter
  • First Online:
Pediatric and Congenital Cardiac Care

Abstract

Cardiomyopathy is a serious, but rare, disease of the heart muscle. Cardiomyopathy commonly results in heart failure and is the leading cause of heart transplantation in children older than 1 year of age. The Pediatric Cardiomyopathy Registry (PCMR), which has been funded by the National Heart Lung and Blood Institute (NHBLI) since 1994, has enrolled and followed more than 3,500 children with cardiomyopathy in the US and Canada. Results from the registry have established the incidence of pediatric cardiomyopathy in North America, determined the prevalence of heart failure, have identified causes of cardiomyopathy, as well as transplant and survival patterns. In this chapter, we will describe the design and operation of the PCMR and present a summary of results. The PCMR is an example of how a well-designed and well-conducted patient registry can provide important insights into the etiologies, clinical course, and patient outcomes for a rare disease, in this case cardiomyopathy in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gliklich RE, Dreyer NA, editors. Registries for evaluating patient outcomes: a user’s guide. 2nd ed. Rockville: Agency for Healthcare Research and Quality; 2010. AHRQ publication No. 10-EHC049.

    Google Scholar 

  2. Richesson R, Vehik K. Patient registries: utility, validity, and inference. In: Rare diseases epidemiology. Dordrecht: Springer; 2010. p. 87–104.

    Chapter  Google Scholar 

  3. Griggs RC, Batshaw M, Dunkle M, et al. Clinical research for rare diseases: opportunities, challenges, and solutions. Mol Genet Metab. 2009;96:20–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Dreyer NA, Garner S. Registries for robust evidence. JAMA. 2009;302:790–1.

    Article  CAS  PubMed  Google Scholar 

  5. Towbin JA, Lowe AM, Colan SD, et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA. 2006;296:1867–76.

    Article  CAS  PubMed  Google Scholar 

  6. Webber SA. New-onset heart failure in children in the absence of structural congenital heart disease. Circulation. 2008;117:11–2.

    Article  PubMed  Google Scholar 

  7. Andrews RE, Fenton MJ, Ridout DA, Burch M. New-onset heart failure due to heart muscle disease in childhood: a prospective study in the United kingdom and Ireland. Circulation. 2008;117:79–84.

    Article  PubMed  Google Scholar 

  8. Massin MM, Astadicko I, Dessy H. Epidemiology of heart failure in a tertiary pediatric center. Clin Cardiol. 2008;31:388–91.

    Article  PubMed  Google Scholar 

  9. Grenier MA, Osganian SK, Cox GF, et al. Design and implementation of the North American Pediatric Cardiomyopathy Registry. Am Heart J. 2000;139:S86–95.

    Article  CAS  PubMed  Google Scholar 

  10. Bione S, D’Adamo P, Maestrini E, Gedeon AK, Bolhuis PA, Toniolo D. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat Genet. 1996;12:385–9.

    Article  CAS  PubMed  Google Scholar 

  11. Schlame M, Towbin JA, Heerdt PM, Jehle R, DiMauro S, Blanck TJ. Deficiency of tetralinoleoyl-cardiolipin in Barth syndrome. Ann Neurol. 2002;51:634–7.

    Article  CAS  PubMed  Google Scholar 

  12. Kelley RI, Cheatham JP, Clark BJ, et al. X-linked dilated cardiomyopathy with neutropenia, growth retardation, and 3-methylglutaconic aciduria. J Pediatr. 1991;119:738–47.

    Article  CAS  PubMed  Google Scholar 

  13. Lipshultz SE, Sleeper LA, Towbin JA, et al. The incidence of pediatric cardiomyopathy in two regions of the United States. N Engl J Med. 2003;348:1647–55.

    Article  PubMed  Google Scholar 

  14. Arola A, Jokinen E, Ruuskanen O, et al. Epidemiology of idiopathic cardiomyopathies in children and adolescents. A nationwide study in Finland. Am J Epidemiol. 1997;146:385–93.

    Article  CAS  PubMed  Google Scholar 

  15. Nugent AW, Daubeney PE, Chondros P, et al. The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med. 2003;348:1639–46.

    Article  PubMed  Google Scholar 

  16. Towbin JA, Sleeper L, Jefferies JL, et al. Genetic and viral genome analysis of childhood cardiomyopathy: the PCMR/PCSR experience [abstract]. J Am Coll Cardiol. 2010;55:E409.

    Article  Google Scholar 

  17. Alvarez JA, Orav EJ, Wilkinson JD, et al. Competing risks for death and cardiac transplantation in children with dilated cardiomyopathy: results from the pediatric cardiomyopathy registry. Circulation. 2011;124:814–23.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kantor PF, Orav E, Wilkinson J, et al. Progressive left ventricular changes predict the likelihood of survival in pediatric dilated cardiomyopathy: findings from the Pediatric Cardiomyopathy Registry [abstract]. J Am Coll Cardiol. 2012;59:E740.

    Article  Google Scholar 

  19. Everitt MD, Sleeper LA, Lu M, et al. Recovery of echocardiographic function in children with IDCM: results from the Pediatric Cardiomyopathy Registry. J Am Coll Cardiol. 2014;36:1405–13.

    Google Scholar 

  20. Pahl E, Sleeper LA, Canter CE, et al. Incidence of and risk factors for sudden cardiac death in children with dilated cardiomyopathy: a report from the Pediatric Cardiomyopathy Registry. J Am Coll Cardiol. 2012;59:607–15.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Kadish A, Dyer A, Daubert JP, et al. Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N Engl J Med. 2004;350:2151–8.

    Article  CAS  PubMed  Google Scholar 

  22. Bansch D, Antz M, Boczor S, et al. Primary prevention of sudden cardiac death in idiopathic dilated cardiomyopathy: the Cardiomyopathy Trial (CAT). Circulation. 2002;105:1453–8.

    Article  PubMed  Google Scholar 

  23. Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352:225–37.

    Article  CAS  PubMed  Google Scholar 

  24. Colan SD, Lipshultz SE, Lowe AM, et al. Epidemiology and cause-specific outcome of hypertrophic cardiomyopathy in children: findings from the Pediatric Cardiomyopathy Registry. Circulation. 2007;115:773–81.

    Article  PubMed  Google Scholar 

  25. Lipshultz SE, Orav EJ, Wilkinson JD, et al. Risk stratification at diagnosis for children with hypertrophic cardiomyopathy: an analysis of data from the Pediatric Cardiomyopathy Registry. Lancet. 2013;382:1889–97.

    Article  PubMed  Google Scholar 

  26. Webber SA, Lipshultz SE, Sleeper LA, et al. Outcomes of restrictive cardiomyopathy in childhood and the influence of phenotype: a report from the Pediatric Cardiomyopathy Registry. Circulation. 2012;126:1237–44.

    Article  PubMed  Google Scholar 

  27. Jefferies JL, Colan SD, Sleeper LA, et al. Outcomes and risk stratification for children with left ventricular noncompaction: findings from the pediatric cardiomyopathy registry [abstract]. Circulation. 2009;120:S794.

    Google Scholar 

  28. Cox GF, Sleeper LA, Lowe AM, et al. Factors associated with establishing a causal diagnosis for children with cardiomyopathy. Pediatrics. 2006;118:1519–31.

    Article  PubMed  Google Scholar 

  29. American Academy of Pediatrics Section on Cardiology and Cardiac Surgery. Cardiovascular health supervision for individuals affected by Duchenne or Becker muscular dystrophy. Pediatrics. 2005;116:1569–73.

    Article  Google Scholar 

  30. Connuck DM, Sleeper LA, Colan SD, et al. Characteristics and outcomes of cardiomyopathy in children with Duchenne or Becker muscular dystrophy: a comparative study from the Pediatric Cardiomyopathy Registry. Am Heart J. 2008;155:998–1005.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113:1807–16.

    Article  PubMed  Google Scholar 

  32. Magnani JW, Dec GW. Myocarditis: current trends in diagnosis and treatment. Circulation. 2006;113:876–90.

    Article  PubMed  Google Scholar 

  33. Cooper Jr LT. Myocarditis. N Engl J Med. 2009;360:1526–38.

    Article  CAS  PubMed  Google Scholar 

  34. Baughman KL. Diagnosis of myocarditis: death of Dallas criteria. Circulation. 2006;113:593–5.

    Article  PubMed  Google Scholar 

  35. Foerster SR, Canter CE, Cinar A, et al. Ventricular remodeling and survival are more favorable for myocarditis than for idiopathic dilated cardiomyopathy in childhood: an outcomes study from the Pediatric Cardiomyopathy Registry. Circ Heart Fail. 2010;3:689–97.

    Article  PubMed  Google Scholar 

  36. Rusconi P, Wilkinson JD, Sleeper LA, et al. Outcomes in children with familial dilated cardiomyopathy compared to children with idiopathic dilated cardiomyopathy [abstract]. Circulation. 2010;122, A16092.

    Google Scholar 

  37. Cox GF, Colan SD, Kantor P, et al. Mitochondrial disorders: characteristics and outcomes from the pediatric cardiomyopathy registry [abstract]. In: Proceedings of the 5th World Congress of Pediatric Cardiology and Cardiac Surgery. 2009;5:134.

    Google Scholar 

  38. Roberts AE, Allanson JE, Tartaglia M, Gelb BD. Noonan syndrome. Lancet. 2013;381:333–42.

    Article  CAS  PubMed  Google Scholar 

  39. Marino B, Digilio MC, Toscano A, Giannotti A, Dallapiccola B. Congenital heart diseases in children with Noonan syndrome: an expanded cardiac spectrum with high prevalence of atrioventricular canal. J Pediatr. 1999;135:703–6.

    Article  CAS  PubMed  Google Scholar 

  40. Noonan J, O’Connor W. Noonan syndrome: a clinical description emphasizing the cardiac findings. Acta Paediatr Jpn. 1996;38:76–83.

    Article  CAS  PubMed  Google Scholar 

  41. Romano AA, Allanson JE, Dahlgren J, et al. Noonan syndrome: clinical features, diagnosis, and management guidelines. Pediatrics. 2010;126:746–59.

    Article  PubMed  Google Scholar 

  42. Wilkinson JD, Lowe AM, Salbert BA, et al. Outcomes in children with Noonan syndrome and hypertrophic cardiomyopathy: a study from the Pediatric Cardiomyopathy Registry. Am Heart J. 2012;164:442–8.

    Article  PubMed  Google Scholar 

  43. Harmon WG, Sleeper LA, Cuniberti L, et al. Treating children with idiopathic dilated cardiomyopathy (from the Pediatric Cardiomyopathy Registry). Am J Cardiol. 2009;104:281–6.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Rosenthal D, Chrisant MR, Edens E, et al. International society for heart and lung transplantation: practice guidelines for management of heart failure in children. J Heart Lung Transplant. 2004;23:1313–33.

    Article  PubMed  Google Scholar 

  45. Kirklin JK, Pearce FB, McGiffin DC, Dabal R. Surgical therapies for advanced heart failure in pediatric patients with cardiomyopathy. Prog Pediatr Cardiol. 2011;31:3–6.

    Article  Google Scholar 

  46. Zangwill SD, Naftel D, L’Ecuyer T, et al. Outcomes of children with restrictive cardiomyopathy listed for heart transplant: a multi-institutional study. J Heart Lung Transplant. 2009;28:1335–40.

    Article  PubMed  Google Scholar 

  47. Blume ED, Naftel DC, Bastardi HJ, Duncan BW, Kirklin JK, Webber SA. Outcomes of children bridged to heart transplantation with ventricular assist devices: a multi-institutional study. Circulation. 2006;113:2313–9.

    Article  PubMed  Google Scholar 

  48. Larsen RL, Canter CE, Naftel DC, et al. The impact of heart failure severity at time of listing for cardiac transplantation on survival in pediatric cardiomyopathy. J Heart Lung Transplant. 2011;30:755–60.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Lietz K, Miller LW. Improved survival of patients with end-stage heart failure listed for heart transplantation: analysis of organ procurement and transplantation network/U.S. United Network of Organ Sharing data, 1990 to 2005. J Am Coll Cardiol. 2007;50:1282–90.

    Article  PubMed  Google Scholar 

  50. Jimenez J, Bennett Edwards L, Higgins R, Bauerlein J, Pham S, Mallon S. Should stable UNOS Status 2 patients be transplanted? J Heart Lung Transplant. 2005;24:178–83.

    Article  PubMed  Google Scholar 

  51. Krakauer H, Lin MJ, Bailey RC. Projected survival benefit as criterion for listing and organ allocation in heart transplantation. J Heart Lung Transplant. 2005;24:680–9.

    Article  PubMed  Google Scholar 

  52. Canter CE, Kantor PF. Heart transplant for pediatric cardiomyopathy. Prog Pediatr Cardiol. 2007;23:67–72.

    Article  Google Scholar 

  53. Pietra BA, Kantor PF, Bartlett HL, et al. Early predictors of survival to and after heart transplantation in children with dilated cardiomyopathy. Circulation. 2012;126:1079–86.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Singh TP, Sleeper LA, Lipshultz S, et al. Association of left ventricular dilation at listing for heart transplant with postlisting and early posttransplant mortality in children with dilated cardiomyopathy. Circ Heart Fail. 2009;2:591–8.

    Article  CAS  PubMed  Google Scholar 

  55. Miller TL, Orav EJ, Wilkinson JD, et al. Nutritional status is associated with cardiac outcomes and mortality in children with idiopathic dilated cardiomyopathy [abstract]. Circulation. 2009;120:S861.

    Article  Google Scholar 

  56. Sleeper LA, Colan SD, Towbin JA, et al. Functional status is impaired and correlated with clinical status in pediatric cardiomyopathy [abstract]. In: Proceedings of the 5th World Congress of Pediatric Cardiology and Cardiac Surgery. 2009;5:134.

    Google Scholar 

  57. Lipshultz SE, Colan SD, Towbin JA, Wilkinson JD. Introduction for “idiopathic and primary cardiomyopathy in children”. Prog Pediatr Cardiol. 2007;23:3.

    Article  Google Scholar 

  58. Colan SD. Classification of the cardiomyopathies. Prog Pediatr Cardiol. 2007;23:5–15.

    Article  Google Scholar 

  59. Weintraub RG, Nugent AW, Daubeney PEF. Pediatric cardiomyopathy: the Australian experience. Prog Pediatr Cardiol. 2007;23:17–24.

    Article  Google Scholar 

  60. Alvarez JA, Wilkinson JD, Lipshultz SE. Outcome predictors for pediatric dilated cardiomyopathy: a systematic review. Prog Pediatr Cardiol. 2007;23:25–32.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Chung WK. Predictive genetic testing for cardiomyopathies. Prog Pediatr Cardiol. 2007;23:33–8.

    Article  Google Scholar 

  62. Kishnani PS, Burns Wechsler S, Li JS. Enzyme-deficiency metabolic cardiomyopathies and the role of enzyme replacement therapy. Prog Pediatr Cardiol. 2007;23:39–48.

    Article  Google Scholar 

  63. Rodrigues CO, Shehadeh LA, Webster KA, Bishopric NH. Myocyte deficiency as a target in the treatment of cardiomyopathy. Prog Pediatr Cardiol. 2007;23:49–59.

    Article  Google Scholar 

  64. Jefferies JL. Novel medical therapies for pediatric heart failure. Prog Pediatr Cardiol. 2007;23:61–6.

    Article  Google Scholar 

  65. Hsu DT. Age-related factors in child heart transplants. Prog Pediatr Cardiol. 2007;23:73–9.

    Article  Google Scholar 

  66. Lipshultz SE, Colan SD, Towbin JA, Wilkinson JD. Idiopathic and primary cardiomyopathies in children. Prog Pediatr Cardiol. 2007;24:1.

    Article  Google Scholar 

  67. Mestroni L, Miyamoto SD, Taylor MRG. Genetics of dilated cardiomyopathy conduction disease. Prog Pediatr Cardiol. 2007;24:3–13.

    Article  Google Scholar 

  68. Cox GF. Diagnostic approaches to pediatric cardiomyopathy of metabolic genetic etiologies and their relation to therapy. Prog Pediatr Cardiol. 2007;24:15–25.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Sheikh F, Chen J. Mouse models for cardiomyopathy research. Prog Pediatr Cardiol. 2007;24:27–34.

    Article  Google Scholar 

  70. Dellefave LM, McNally EM. Cardiomyopathy in neuromuscular disorders. Prog Pediatr Cardiol. 2007;24:35–46.

    Article  Google Scholar 

  71. Cooper Jr LT. Giant cell myocarditis in children. Prog Pediatr Cardiol. 2007;24:47–9.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Kaufman BD, Shaddy RE. Beta-adrenergic receptor blockade and pediatric dilated cardiomyopathy. Prog Pediatr Cardiol. 2007;24:51–7.

    Article  Google Scholar 

  73. Miller TL, Neri D, Extein J, Somarriba G, Strickman-Stein N. Nutrition in pediatric cardiomyopathy. Prog Pediatr Cardiol. 2007;24:59–71.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Alcalai R, Arad M, Depreux F, Wang L, Seidman JG, Seidman CE. Hypertrophy, electrical abnormalities, autophagic vacuoles accumulation and cardiac fibrosis in LAMP2 cardiomyopathy mouse model. Prog Pediatr Cardiol. 2007;24:73–4.

    Article  Google Scholar 

  75. Joshi VA, Roberts AE, Kucherlapati RS. Noonan syndrome associated congenital hypertrophic cardiomyopathy and the role of sarcomere gene mutations. Prog Pediatr Cardiol. 2007;24:75–6.

    Article  Google Scholar 

  76. Rossano JW, Dreyer WJ, Kim JJ, et al. Pre-transplant serum creatinine predicts long-term outcome in pediatric heart transplant patients. Prog Pediatr Cardiol. 2007;24:77–8.

    Article  Google Scholar 

  77. Taylor MRG. When echocardiogram screening “is not enough”. Prog Pediatr Cardiol. 2007;24:79–80.

    Article  Google Scholar 

  78. Ratnasamy C, Kinnamon DD, Lipshultz SE, Rusconi PG. Associations between neurohormonal and inflammatory activation and heart failure in children. Prog Pediatr Cardiol. 2007;24:81–2.

    Article  Google Scholar 

  79. Lipshultz SE, Colan SD, Towbin JA, Wilkinson JD. Introduction for “idiopathic and primary cardiomyopathy in children”. Prog Pediatr Cardiol. 2008;25:1.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Towbin JA. Molecular mechanisms of pediatric cardiomyopathies and new targeted therapies. Prog Pediatr Cardiol. 2008;25:3–21.

    Article  Google Scholar 

  81. Lipshultz SE, Wilkinson JD. Epidemiological and outcomes research in children with pediatric cardiomyopathy. Prog Pediatr Cardiol. 2008;25:23–5.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Colan SD. Clinical issues in the pediatric hypertrophic cardiomyopathies. Prog Pediatr Cardiol. 2008;25:27–9.

    Article  Google Scholar 

  83. Wilkinson JD, Sleeper LA, Alvarez JA, Bublik N, Lipshultz SE. The Pediatric Cardiomyopathy Registry: 1995–2007. Prog Pediatr Cardiol. 2008;25:31–6.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Young K, Hare JM. Stem cells in cardiopulmonary development: implications for novel approaches to therapy for pediatric cardiopulmonary disease. Prog Pediatr Cardiol. 2008;25:37–49.

    Article  Google Scholar 

  85. Negro A, Dodge-Kafka K, Kapiloff MS. Signalosomes as therapeutic targets. Prog Pediatr Cardiol. 2008;25:51–6.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Menon SC, Olson TM, Michels V. Genetics of familial dilated cardiomyopathy. Prog Pediatr Cardiol. 2008;25:57–67.

    Article  Google Scholar 

  87. Hill KD, Rizwan H, Exil VJ. Pediatric cardiomyopathies related to fatty acid metabolism. Prog Pediatr Cardiol. 2008;25:69–78.

    Article  Google Scholar 

  88. Fisher SD, Pearson GD. Peripartum cardiomyopathy: an update. Prog Pediatr Cardiol. 2008;25:79–84.

    Article  Google Scholar 

  89. Webber SA. Primary restrictive cardiomyopathy in childhood. Prog Pediatr Cardiol. 2008;25:85–90.

    Article  Google Scholar 

  90. Somarriba G, Extein J, Miller TL. Exercise rehabilitation in pediatric cardiomyopathy. Prog Pediatr Cardiol. 2008;25:91–102.

    Article  PubMed Central  PubMed  Google Scholar 

  91. Sokol KC, Armstrong FD, Rosenkranz ER, et al. Ethical issues in children with cardiomyopathy: making sense of ethical challenges in the clinical setting. Prog Pediatr Cardiol. 2007;23:81–7.

    Article  Google Scholar 

  92. Bublik N, Alvarez JA, Lipshultz SE. Pediatric cardiomyopathy as a chronic disease: a look at comprehensive care programs. Prog Pediatr Cardiol. 2008;25:103–11.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Bernstein D, Fajardo G, Zhao M. The role of β-adrenergic receptors in heart failure: differential regulation of cardiotoxicity and cardioprotection. Prog Pediatr Cardiol. 2011;31:35–8.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Colan SD. Treatment of hypertrophic cardiomyopathy in childhood. Prog Pediatr Cardiol. 2011;31:13–9.

    Article  Google Scholar 

  95. Dadlani GH, Harmon WG, Perez-Colon E, Sokoloski MC, Wilmot I, Lipshultz SE. Diagnosis and screening of hypertrophic cardiomyopathy in children. Prog Pediatr Cardiol. 2011;31:21–7.

    Article  Google Scholar 

  96. Frazier AH, Ramirez-Correa GA, Murphy AM. Molecular mechanisms of sarcomere dysfunction in dilated and hypertrophic cardiomyopathy. Prog Pediatr Cardiol. 2011;31:29–33.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Hlaing WM, Messiah SE, Lipshultz SE, Ludwig DA. Obesity and length of hospital stay in children: a retrospective review of Florida Agency for Health Care Administration data. Prog Pediatr Cardiol. 2011;31:67–72.

    Article  Google Scholar 

  98. Kantor PF, Rusconi P. Biomarkers in pediatric heart failure: their role in diagnosis and evaluating disease progression. Prog Pediatr Cardiol. 2011;31:53–7.

    Article  Google Scholar 

  99. Messiah SE, Miller TL, Lipshultz SE, Bandstra ES. Potential latent effects of prenatal cocaine exposure on growth and the risk of cardiovascular and metabolic disease in childhood. Prog Pediatr Cardiol. 2011;31:59–65.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Pincott ES, Burch M. New biomarkers in heart failure. Prog Pediatr Cardiol. 2011;31:49–52.

    Article  Google Scholar 

  101. Rampersaud E, Siegfried JD, Norton N, Li D, Martin E, Hershberger RE. Rare variant mutations identified in pediatric patients with dilated cardiomyopathy. Prog Pediatr Cardiol. 2011;31:39–47.

    Article  PubMed Central  PubMed  Google Scholar 

  102. Shaddy RE. Randomized clinical trials and the treatment of pediatric cardiomyopathy. Prog Pediatr Cardiol. 2011;31:7–11.

    Article  Google Scholar 

  103. Chung WK. Novel gene discovery in pediatric cardiomyopathy. Prog Pediatr Cardiol. 2011;31:89–91.

    Article  Google Scholar 

  104. Foerster SR, Canter CE. Contemporary etiology, outcomes, and therapy in pediatric myocarditis. Prog Pediatr Cardiol. 2011;31:123–8.

    Article  Google Scholar 

  105. Ho CY. New paradigms in hypertrophic cardiomyopathy: insights from genetics. Prog Pediatr Cardiol. 2011;31:93–8.

    Article  PubMed Central  PubMed  Google Scholar 

  106. Hollander SA, Rosenthal DN. Cardiac resynchronization therapy in pediatric heart failure. Prog Pediatr Cardiol. 2011;31:111–7.

    Article  Google Scholar 

  107. Payne RM. The heart in Friedreich’s ataxia: basic findings and clinical implications. Prog Pediatr Cardiol. 2011;31:103–9.

    Article  PubMed Central  PubMed  Google Scholar 

  108. Peter AK, Cheng H, Ross RS, Knowlton KU, Chen J. The costamere bridges sarcomeres to the sarcolemma in striated muscle. Prog Pediatr Cardiol. 2011;31:83–8.

    Article  PubMed Central  PubMed  Google Scholar 

  109. Porter Jr GA, Hom JR, Hoffman DL, Quintanilla RA, Bentley K, Sheu S-S. Bioenergetics, mitochondria, and cardiac myocyte differentiation. Prog Pediatr Cardiol. 2011;31:75–81.

    Article  PubMed Central  PubMed  Google Scholar 

  110. Wang H, Xin B. Hypertrophic cardiomyopathy in the Amish community — what we may learn from it. Prog Pediatr Cardiol. 2011;31:129–34.

    Article  Google Scholar 

  111. Ware SM. Genetic diagnosis in pediatric cardiomyopathy: clinical application and research perspectives. Prog Pediatr Cardiol. 2011;31:99–102.

    Article  PubMed Central  PubMed  Google Scholar 

  112. Weintraub RG, Nugent AW, Davis A, King I, Bharucha T, Daubeney PEF. Presentation, echocardiographic findings and long-term outcomes in children with familial dilated cardiomyopathy. Prog Pediatr Cardiol. 2011;31:119–22.

    Article  Google Scholar 

  113. Bernstein D, Webber S. New directions in basic research in hypertrophy and heart failure: relevance for pediatric cardiology. Prog Pediatr Cardiol. 2011;32:5–9.

    Article  PubMed Central  PubMed  Google Scholar 

  114. Canter CE, Cunningham MW, Cooper LT. Recent clinical and translational research on pediatric myocarditis. Prog Pediatr Cardiol. 2011;32:15–8.

    Article  PubMed Central  PubMed  Google Scholar 

  115. Chung W, Towbin J. Genetic issues in pediatric cardiomyopathy: future research directions. Prog Pediatr Cardiol. 2011;32:3–4.

    Article  Google Scholar 

  116. Conway J, Dipchand AI. Transplantation and pediatric cardiomyopathies: indications for listing and risk factors for death while waiting. Prog Pediatr Cardiol. 2011;32:51–4.

    Article  Google Scholar 

  117. Gambetta K, Tambur A, Pahl E. Immune monitoring of pediatric heart transplant recipients through serial donor specific antibody testing — an initial experience and review of the literature. Prog Pediatr Cardiol. 2011;32:43–9.

    Article  Google Scholar 

  118. Kantor PF, Rusconi P, Lipshultz S, Mital S, Wilkinson JD, Burch M. Current applications and future needs for biomarkers in pediatric cardiomyopathy and heart failure: summary from the Second International Conference on Pediatric Cardiomyopathy. Prog Pediatr Cardiol. 2011;32:11–4.

    Article  PubMed Central  PubMed  Google Scholar 

  119. Kindel SJ, Pahl E. Cardiac allograft vasculopathy in children — treatment challenges. Prog Pediatr Cardiol. 2011;32:37–42.

    Article  Google Scholar 

  120. Mital S. Biomarkers of cardiac fibrosis: new insights. Prog Pediatr Cardiol. 2011;32:35–6.

    Article  Google Scholar 

  121. Ricci M, Lincoln J. Molecular markers of cardiomyopathy in cyanotic pediatric heart disease. Prog Pediatr Cardiol. 2011;32:19–23.

    Article  Google Scholar 

  122. Wilkinson JD, Diamond M, Miller TL. The promise of cardiovascular biomarkers in assessing children with cardiac disease and in predicting cardiovascular events in adults. Prog Pediatr Cardiol. 2011;32:25–34.

    Article  Google Scholar 

  123. Wilkinson JD, Zebrowski JP, Hunter JA, et al. Assessing the global and regional impact of primary cardiomyopathies: the Global Burden of Diseases, Injuries and Risk Factors (GBD 2010) Study. Prog Pediatr Cardiol. 2011;32:55–63.

    Article  Google Scholar 

Download references

Acknowledgements

The work of the PCMR would not have been possible without the collaboration of many physicians and other health professionals, scientists, and research staff from the United States and Canada. Special acknowledgement should be given to our PCMR investigators: Steven D. Colan, MD; Gerald Cox MD, PhD; Jane Messere, RN; Lynn Sleeper, ScD; Jeffrey A. Towbin, MD; Stephanie Ware, MD, PhD; John Lynn Jefferies, MD, MPH; E. John Orav, PhD; Daphne Hsu, MD; Steven Webber, MBChB; Charles Canter, MD; Linda Addonizio, MD; Beth Kaufman, MD; Melanie Everitt, MD; Elfriede Pahl, MD; Paul Kantor, MBBCh; Paolo Rusconi, MD; Robert E. Shaddy, MD; Paul R. Lurie, MD; David Connuck, MD; April Lowe, MS; Bonnie Salbert, DO; Tajinder Singh, MD, MSc; Jorge Alvarez, AB; Biagio Pietra, MD; Ranae Larsen, MD; Jacqueline Lamour, MD; Renee Margossian, MD; Beth Kaufman, MD; Susan Foerster, MD; Wendy Chung, MD; Rakesh Singh, MD, MS; and Juanita Hunter, MD.

We would also like to acknowledge Mrs. Lisa Yue and the Children’s Cardiomyopathy Foundation for their continuing support of the PCMR.

And finally, we would like to express our most sincere gratitude to the children with cardiomyopathy and their families whose participation has made the PCMR possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven E. Lipshultz MD, FAAP, FAHA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Wilkinson, J.D., Westphal, J.A., Ross, S.W., Dauphin, D.D., Lipshultz, S.E. (2015). The Value of National Institutes of Health (NIH) Registry-Based Research in Identifying Childhood Cardiac Disease Outcomes: The Pediatric Cardiomyopathy Registry Experience. In: Barach, P., Jacobs, J., Lipshultz, S., Laussen, P. (eds) Pediatric and Congenital Cardiac Care. Springer, London. https://doi.org/10.1007/978-1-4471-6587-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6587-3_34

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6586-6

  • Online ISBN: 978-1-4471-6587-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics