Databases for Pediatric Cardiac Transplantation: The United Network for Organ Sharing/Scientific Registry of Transplant Recipients (UNOS/SRTR) and the Pediatric Heart Transplant Study (PHTS)

  • Ryan R. DaviesEmail author


Collection, analysis, and dissemination of data have been part of the transplantation since its earliest days. The two largest databases containing information on pediatric cardiac transplant patients are the United Network for Organ Sharing/Scientific Registry of Transplant Recipients (UNOS/SRTR) database and the Pediatric Heart Transplant Study (PHTS). These data have enabled examination of patients undergoing transplantation, including modeling of outcomes, analysis of allocation decisions, and the examination of criteria for listing. Extensive literature exists utilizing this data, but must be read critically, recognizing the limitations presented by missing variables (whether uncollected or collected but left blank), reproducibility, and small sample sizes among pediatric patients. However, despite these limitations, these datasets provide an important resource in the ongoing examination of cardiac transplantation in children.


Transplantation Cardiac failure Pediatric cardiac transplantation Pediatric cardiac failure Pediatric cardiac disease Congenital cardiac disease United Network for Organ Sharing/Scientific Registry of Transplant Recipients (UNOS/SRTR) database Pediatric Heart Transplant Study (PHTS) 


  1. 1.
    Davies RR, Pizarro C. Using the UNOS/SRTR and PHTS databases to improve quality in pediatric cardiac transplantation. World J Pediatr Congenit Heart Surg. 2012;3(4):421–32. doi: 10.1177/2150135112443971.PubMedCrossRefGoogle Scholar
  2. 2.
    Organ Procurement and Transplantation Network (OPTN) Data, based on OPTN data as of May 17 2013. optntransplanthrsagov. Available at: Accessed 23 May 2013.
  3. 3.
    Murray JE, Merrill JP, Harrison JH, Wilson RE, Dammin GJ. Prolonged survival of human-kidney homografts by immunosuppressive drug therapy. N Engl J Med. 1963;268:1315–23. doi: 10.1056/NEJM196306132682401.PubMedCrossRefGoogle Scholar
  4. 4.
    Merrill JP, Murray JE, Harrison JH, Guild WR. Successful homotransplantation of the human kidney between identical twins. J Am Med Assoc. 1956;160(4):277–82.PubMedCrossRefGoogle Scholar
  5. 5.
    National Organ Transplant Act. 42 U.S.C. 273 et seq; 1984.Google Scholar
  6. 6.
    OPTN Final Rule. 42 C.F.R. Part 121.Google Scholar
  7. 7.
    OPTN Final Rule. 42 C.F.R. Part 121.11 (b) (2).Google Scholar
  8. 8.
    Davies RR, Russo MJ, Yang J, Quaegebeur JM, Mosca RS, Chen JM. Listing and transplanting adults with congenital heart disease. Circulation. 2011;123(7):759–67. doi: 10.1161/CIRCULATIONAHA.110.960260.PubMedCrossRefGoogle Scholar
  9. 9.
    Karamlou T, Hirsch J, Welke K, et al. A United Network for Organ Sharing analysis of heart transplantation in adults with congenital heart disease: outcomes and factors associated with mortality and retransplantation. J Thorac Cardiovasc Surg. 2010;140(1):161–8. doi: 10.1016/j.jtcvs.2010.03.036.PubMedCrossRefGoogle Scholar
  10. 10.
    Davies RR, Russo MJ, Mital S, et al. Predicting survival among high-risk pediatric cardiac transplant recipients: an analysis of the United Network for Organ Sharing database. J Thorac Cardiovasc Surg. 2008;135(1):147–55, 155.e1–2. doi: 10.1016/j.jtcvs.2007.09.019.
  11. 11.
    Chen JM, Davies RR, Mital SR, et al. Trends and outcomes in transplantation for complex congenital heart disease: 1984 to 2004. Ann Thorac Surg. 2004;78(4):1352–61. doi: 10.1016/j.athoracsur.2004.04.012; discussion 1352–61.PubMedCrossRefGoogle Scholar
  12. 12.
    Lytrivi ID, Blume ED, Rhodes J, Dillis S, Gauvreau K, Singh TP. Prognostic value of exercise testing during heart transplant evaluation in children. Circ Heart Fail. 2013;6(4):792–9. doi: 10.1161/CIRCHEARTFAILURE.112.000103.PubMedCrossRefGoogle Scholar
  13. 13.
    Kanter KR, Mahle WT, Vincent RN, Berg AM, Kogon BE, Kirshbom PM. Heart transplantation in children with a Fontan procedure. Ann Thorac Surg. 2011;91(3):823–9. doi: 10.1016/j.athoracsur.2010.11.031; discussion 829–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Bernstein D, Naftel DC, Chin C, et al. Outcome of listing for cardiac transplantation for failed Fontan: a multi-institutional study. Circulation. 2006;114(4):273–80.PubMedCrossRefGoogle Scholar
  15. 15.
    Khairy P, Fernandes SM, Mayer JE, et al. Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation. 2008;117(1):85–92. doi: 10.1161/CIRCULATIONAHA.107.738559.PubMedCrossRefGoogle Scholar
  16. 16.
    Davies RR, Sorabella RA, Yang J, Mosca RS, Chen JM, Quaegebeur JM. Outcomes after transplantation for “failed” Fontan: a single-institution experience. J Thorac Cardiovasc Surg. 2012;143(5):1183–92.e4. doi: 10.1016/j.jtcvs.2011.12.039.PubMedCrossRefGoogle Scholar
  17. 17.
    Weiss ES, Nwakanma LU, Russell SB, Conte JV, Shah AS. Outcomes in bicaval versus biatrial techniques in heart transplantation: an analysis of the UNOS database. J Heart Lung Transplant. 2008;27(2):178–83. doi: 10.1016/j.healun.2007.11.003.PubMedCrossRefGoogle Scholar
  18. 18.
    Davies RR, Russo MJ, Morgan JA, Sorabella RA, Naka Y, Chen JM. Standard versus bicaval techniques for orthotopic heart transplantation: an analysis of the United Network for Organ Sharing database. J Thorac Cardiovasc Surg. 2010;140(3):700–8, 708.e1–2. doi: 10.1016/j.jtcvs.2010.04.029.
  19. 19.
    Russo MJ, Hong KN, Davies RR, et al. Posttransplant survival is not diminished in heart transplant recipients bridged with implantable left ventricular assist devices. J Thorac Cardiovasc Surg. 2009;138(6):1425–32.e1–3. doi: 10.1016/j.jtcvs.2009.07.034.PubMedCrossRefGoogle Scholar
  20. 20.
    Bull DA, Reid BB, Selzman CH, et al. The impact of bridge-to-transplant ventricular assist device support on survival after cardiac transplantation. J Thorac Cardiovasc Surg. 2010;140(1):169–73. doi: 10.1016/j.jtcvs.2010.03.026.PubMedCrossRefGoogle Scholar
  21. 21.
    Hsu DT, Naftel DC, Webber SA, et al. Lessons learned from the pediatric heart transplant study. Congenit Heart Dis. 2006;1(3):54–62. doi: 10.1111/j.1747-0803.2006.00011.x.PubMedCrossRefGoogle Scholar
  22. 22.
    Pediatric Heart Transplant Study. University of Alabama – Birmingham. Available at: Accessed Dec 2011.
  23. 23.
    Pediatric Heart Transplant Study (PHTS) – forms. University of Alabama (UAB). Available at: Accessed 1 Sept 2011.
  24. 24.
    Davies RR, Russo MJ, Hong KN, et al. Increased short- and long-term mortality at low-volume pediatric heart transplant centers: should minimum standards be set? Retrospective data analysis. Ann Surg. 2011;253(2):393–401. doi: 10.1097/SLA.0b013e31820700cc.PubMedCrossRefGoogle Scholar
  25. 25.
    International Society for Heart and Lung Transplantation. ISHLT registries – heart/lung registries. ishltorg. Available at: Accessed 24 May 2013.
  26. 26.
    CMS Centers for Medicare and Medicaid Services. National coverage determination. 5th ed. 2010. Available at:
  27. 27.
    Blume ED, Naftel DC, Bastardi HJ, et al. Outcomes of children bridged to heart transplantation with ventricular assist devices: a multi-institutional study. Circulation. 2006;113(19):2313–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Williams ML, Trivedi JR, McCants KC, et al. Heart transplant vs left ventricular assist device in heart transplant-eligible patients. Ann Thorac Surg. 2011;91(5):1330–3. doi: 10.1016/j.athoracsur.2011.01.062; discussion 1333–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Egan TM, Murray S, Bustami RT, et al. Development of the new lung allocation system in the United States. Am J Transplant. 2006;6(5 Pt 2):1212–27. doi: 10.1111/j.1600-6143.2006.01276.x.PubMedCrossRefGoogle Scholar
  30. 30.
    Everitt MD, Donaldson AE, Casper TC, et al. Effect of ABO-incompatible listing on infant heart transplant waitlist outcomes: analysis of the United Network for Organ Sharing (UNOS) database. J Heart Lung Transplant. 2009;28(12):1254–60. doi: 10.1016/j.healun.2009.06.024.PubMedCrossRefGoogle Scholar
  31. 31.
    Pietra BA, Kantor PF, Bartlett HL, et al. Early predictors of survival to and after heart transplantation in children with dilated cardiomyopathy. Circulation. 2012. doi: 10.1161/CIRCULATIONAHA.110.011999.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Singh TP, Almond CS, Piercey G, Gauvreau K. Trends in wait-list mortality in children listed for heart transplantation in the United States: era effect across racial/ethnic groups. Am J Transplant. 2011;11(12):2692–9. doi: 10.1111/j.1600-6143.2011.03723.x.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Almond CSD, Thiagarajan RR, Piercey GE, et al. Waiting list mortality among children listed for heart transplantation in the United States. Circulation. 2009;119(5):717–27. doi: 10.1161/CIRCULATIONAHA.108.815712.PubMedCrossRefGoogle Scholar
  34. 34.
    Davies RR, Russo MJ, Reinhartz O, et al. 483 Lower socioeconomic status predicts poor waitlist and post-heart transplant survival in children. J Heart Lung Transplant. 2011;30(4S):S164.CrossRefGoogle Scholar
  35. 35.
    Singh TP, Almond CS, Taylor DO, Graham DA. Decline in heart transplant wait list mortality in the United States following broader regional sharing of donor hearts. Circ Heart Fail. 2012;5(2):249–58. doi: 10.1161/CIRCHEARTFAILURE.111.964247.PubMedCrossRefGoogle Scholar
  36. 36.
    Davies RR, Russo MJ, Hong KN, et al. The use of mechanical circulatory support as a bridge to transplantation in pediatric patients: an analysis of the United Network for Organ Sharing database. J Thorac Cardiovasc Surg. 2008;135(2):421–7, 427.e1. doi: 10.1016/j.jtcvs.2007.09.048.
  37. 37.
    Singh TP, Gauvreau K, Thiagarajan R, Blume ED, Piercey G, Almond CS. Racial and ethnic differences in mortality in children awaiting heart transplant in the United States. Am J Transplant. 2009;9(12):2808–15. doi: 10.1111/j.1600-6143.2009.02852.x.PubMedCrossRefGoogle Scholar
  38. 38.
    Kirk R, Naftel D, Hoffman TM, et al. Outcome of pediatric patients with dilated cardiomyopathy listed for transplant: a multi-institutional study. J Heart Lung Transplant. 2009;28(12):1322–8. doi: 10.1016/j.healun.2009.05.027.PubMedCrossRefGoogle Scholar
  39. 39.
    Davies RR. Multiple high risk criteria predict poor survival among pediatric heart transplant recipients. J Heart Lung Transplant. 2008;27(2):255–6.Google Scholar
  40. 40.
    Naftel DC. Fourteen years of improving results illustrated by patient specific predictions. J Heart Lung Transplant. 2008;27(2):253–4.Google Scholar
  41. 41.
    Auerbach SR, Richmond ME, Chen JM, et al. Multiple risk factors before pediatric cardiac transplantation are associated with increased graft loss. Pediatr Cardiol. 2011;32(5):615–20. doi: 10.1007/s00246-011-0077-7.CrossRefGoogle Scholar
  42. 42.
    Cook NR. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation. 2007;115(7):928–35. doi: 10.1161/CIRCULATIONAHA.106.672402.PubMedCrossRefGoogle Scholar
  43. 43.
    Weiss ES, Allen JG, Arnaoutakis GJ, et al. Creation of a quantitative recipient risk index for mortality prediction after cardiac transplantation (IMPACT). Ann Thorac Surg. 2011;92(3):914–21. doi: 10.1016/j.athoracsur.2011.04.030; discussion 921–2.PubMedCrossRefGoogle Scholar
  44. 44.
    Wendt D, Osswald BR, Kayser K, et al. Society of Thoracic Surgeons score is superior to the EuroSCORE determining mortality in high risk patients undergoing isolated aortic valve replacement. Ann Thorac Surg. 2009;88(2):468–74. doi: 10.1016/j.athoracsur.2009.04.059; discussion 474–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Murtuza B, Fenton M, Burch M, et al. Pediatric heart transplantation for congenital and restrictive cardiomyopathy. Ann Thorac Surg. 2013. doi: 10.1016/j.athoracsur.2013.01.014.PubMedGoogle Scholar
  46. 46.
    Rajagopal SK, Yarlagadda VV, Thiagarajan RR, Singh TP, Givertz MM, Almond CSD. Pediatric heart failure and worsening renal function: association with outcomes after heart transplantation. J Heart Lung Transplant. 2011. doi: 10.1016/j.healun.2011.08.018.PubMedGoogle Scholar
  47. 47.
    Joffe AR, Quiñonez LG, Robertson CMT, et al. Outcomes after heart transplantation in children under six years of age. Ann Thorac Surg. 2011;92(1):174–82. doi: 10.1016/j.athoracsur.2011.02.038.PubMedCrossRefGoogle Scholar
  48. 48.
    Dipchand A, Cecere R, Delgado DH, et al. Canadian Consensus on cardiac transplantation in pediatric and adult congenital heart disease patients 2004: executive summary. Can J Cardiol. 2005;21(13):1145–7.PubMedGoogle Scholar
  49. 49.
    Kirk RC, Edwards LB, Aurora P, et al. Registry of the International Society for Heart and Lung Transplantation: eleventh official pediatric heart transplantation report–2008. J Heart Lung Transplant. 2008;27(9):970–7. doi: 10.1016/j.healun.2008.06.016.PubMedCrossRefGoogle Scholar
  50. 50.
    Singh TP, Edwards LB, Kirk R, Boucek MM. Era effect on post-transplant survival adjusted for baseline risk factors in pediatric heart transplant recipients. J Heart Lung Transplant. 2009;28(12):1285–91. doi: 10.1016/j.healun.2009.05.003.PubMedCrossRefGoogle Scholar
  51. 51.
    Jacobs JP, O’Brien SM, Pasquali SK, et al. Variation in outcomes for benchmark operations: an analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Ann Thorac Surg. 2011;92(6):2184–91. doi: 10.1016/j.athoracsur.2011.06.008; discussion 2191–2.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Scientific Registry of Transplant Recipients. Available at: Accessed 7 Sept 2011.
  53. 53.
    Mehra MR, Kobashigawa J, Starling R, et al. Listing criteria for heart transplantation: International Society for Heart and Lung Transplantation guidelines for the care of cardiac transplant candidates–2006. J Heart Lung Transplant. 2006;25(9):1024–42. doi: 10.1016/j.healun.2006.06.008.PubMedCrossRefGoogle Scholar
  54. 54.
    Russo MJ, Hong KN, Davies RR, et al. The effect of body mass index on survival following heart transplantation: do outcomes support consensus guidelines? Ann Surg. 2010;251(1):144–52. doi: 10.1097/SLA.0b013e3181b5db3c.PubMedCrossRefGoogle Scholar
  55. 55.
    Dipchand AI, Pollock BarZiv SM, Manlhiot C, West LJ, VanderVliet M, McCrindle BW. Equivalent outcomes for pediatric heart transplantation recipients: ABO-blood group incompatible versus ABO-compatible. Am J Transplant. 2010;10(2):389–97. doi: 10.1111/j.1600-6143.2009.02934.x.PubMedCrossRefGoogle Scholar
  56. 56.
    Patel ND, Weiss ES, Scheel J, Cameron DE, Vricella LA. ABO-incompatible heart transplantation in infants: analysis of the united network for organ sharing database. J Heart Lung Transplant. 2008;27(10):1085–9. doi: 10.1016/j.healun.2008.07.001.PubMedCrossRefGoogle Scholar
  57. 57.
    Almond CS, Almond CS, Gauvreau K, et al. Impact of ABO-incompatible listing on wait-list outcomes among infants listed for heart transplantation in the United States: a propensity analysis. Circulation. 2010;121(17):1926–33. doi: 10.1161/CIRCULATIONAHA.109.885756.PubMedCrossRefGoogle Scholar
  58. 58.
    Chiu P, Russo MJ, Davies RR, Addonizio LJ, Richmond ME, Chen JM. What is high risk? Redefining elevated pulmonary vascular resistance index in pediatric heart transplantation. J Heart Lung Transplant. 2012;31(1):61–6. doi: 10.1016/j.healun.2011.08.021.PubMedCrossRefGoogle Scholar
  59. 59.
    Richmond ME, Law YM, Das B, Everitt MD. Elevated pre-transplant pulmonary vascular resistance is not associated with mortality in children without congenital heart disease: a multi-center study. J Heart Lung Transplant. 2013;31(4 Suppl):S35.CrossRefGoogle Scholar
  60. 60.
    Buddhe S, Du W, L’ecuyer T. Impact of pulmonary hypertension on transplant outcomes in pediatric cardiomyopathy patients. Pediatr Transplant. 2012;16(4):367–72. doi: 10.1111/j.1399-3046.2012.01678.x.PubMedCrossRefGoogle Scholar
  61. 61.
    Singh TP, Almond CS, Piercey G, Gauvreau K. Risk stratification and transplant benefit in children listed for heart transplant in the United States. Circ Heart Fail. 2013;6(4):800–8. doi: 10.1161/CIRCHEARTFAILURE.112.000280.PubMedCrossRefGoogle Scholar
  62. 62.
    Donders ART, van der Heijden GJMG, Stijnen T, Moons KGM. Review: a gentle introduction to imputation of missing values. J Clin Epidemiol. 2006;59(10):1087–91. doi: 10.1016/j.jclinepi.2006.01.014.PubMedCrossRefGoogle Scholar
  63. 63.
    Greenland S, Finkle WD. A critical look at methods for handling missing covariates in epidemiologic regression analyses. Am J Epidemiol. 1995;142(12):1255–64.PubMedGoogle Scholar
  64. 64.
    Rubin D. Multiple imputation for non-response in surveys. New York: Wiley; 1987.CrossRefGoogle Scholar
  65. 65.
    de Leval MR, Francois K, Bull C, Brawn W, Spiegelhalter D. Analysis of a cluster of surgical failures. Application to a series of neonatal arterial switch operations. J Thorac Cardiovasc Surg. 1994;107(3):914–23; discussion 923–4.PubMedGoogle Scholar
  66. 66.
    Axelrod DA, Guidinger MK, Metzger RA, Wiesner RH, Webb RL, Merion RM. Transplant center quality assessment using a continuously updatable, risk-adjusted technique (CUSUM). Am J Transplant. 2006;6(2):313–23. doi: 10.1111/j.1600-6143.2005.01191.x.PubMedCrossRefGoogle Scholar
  67. 67.
    Holzhey DM, Jacobs S, Walther T, Mochalski M, Mohr FW, Falk V. Cumulative sum failure analysis for eight surgeons performing minimally invasive direct coronary artery bypass. J Thorac Cardiovasc Surg. 2007;134(3):663–9. doi: 10.1016/j.jtcvs.2007.03.029.PubMedCrossRefGoogle Scholar
  68. 68.
    Bolsin S, Colson M. The use of the Cusum technique in the assessment of trainee competence in new procedures. Int J Qual Health Care. 2000;12(5):433–8.PubMedCrossRefGoogle Scholar
  69. 69.
    McPherson K. Statistics: the problem of examining accumulating data more than once. N Engl J Med. 1974;290(9):501–2. doi: 10.1056/NEJM197402282900907.PubMedCrossRefGoogle Scholar
  70. 70.
    Jacobs JP, Haan CK, Edwards FH, et al. The rationale for incorporation of HIPAA compliant unique patient, surgeon, and hospital identifier fields in the STS database. Ann Thorac Surg. 2008;86(3):695–8. doi: 10.1016/j.athoracsur.2008.04.075.PubMedCrossRefGoogle Scholar
  71. 71.
    Pasquali SK, Jacobs JP, Shook GJ, et al. Linking clinical registry data with administrative data using indirect identifiers: implementation and validation in the congenital heart surgery population. Am Heart J. 2010;160(6):1099–104. doi: 10.1016/j.ahj.2010.08.010.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Nemours Cardiac Center, A.I. duPont Hospital for Children and Department of SurgeryThomas Jefferson UniversityWilmingtonUSA

Personalised recommendations