Skip to main content

Prospective View on Sound Synthesis BCI Control in Light of Two Paradigms of Cognitive Neuroscience

  • Chapter
  • First Online:
Guide to Brain-Computer Music Interfacing

Abstract

Different trends and perspectives on sound synthesis control issues within a cognitive neuroscience framework are addressed in this article. Two approaches for sound synthesis based on the modelling of physical sources and on the modelling of perceptual effects involving the identification of invariant sound morphologies (linked to sound semiotics) are exposed. Depending on the chosen approach, we assume that the resulting synthesis models can fall under either one of the theoretical frameworks inspired by the representational-computational or enactive paradigms. In particular, a change of viewpoint on the epistemological position of the end-user from a third to a first person inherently involves different conceptualizations of the interaction between the listener and the sounding object. This differentiation also influences the design of the control strategy enabling an expert or an intuitive sound manipulation. Finally, as a perspective to this survey, explicit and implicit brain-computer interfaces (BCI) are described with respect to the previous theoretical frameworks, and a semiotic-based BCI aiming at increasing the intuitiveness of synthesis control processes is envisaged. These interfaces may open for new applications adapted to either handicapped or healthy subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term “concrete” is related to a compositional method which is based on concrete material, i.e., recorded or synthesized sounds, in opposition with “abstract” music which is composed in an abstract manner, i.e., from ideas written on a score, and becomes “concrete” afterwards.

References

  • Aramaki M, Besson M, Kronland-Martinet R, Ystad S (2009) Timbre perception of sounds from impacted materials: behavioral, electrophysiological and acoustic approaches. In: Ystad S, Kronland-Martinet R, Jensen K (eds) Computer music modeling and retrieval—genesis of meaning of sound and music, vol 5493., LNCSSpringer, Berlin, Heidelberg, pp 1–17

    Chapter  Google Scholar 

  • Aramaki M, Besson M, Kronland-Martinet R, Ystad S (2011) Controlling the perceived material in an impact sound synthesizer. IEEE Trans Audio Speech Lang Process 19(2):301–314

    Article  Google Scholar 

  • Aramaki M, Gondre C, Kronland-Martinet R, Voinier T, Ystad S (2010a) Imagine the sounds: an intuitive control of an impact sound synthesizer. In: Ystad S, Aramaki M, Kronland-Martinet R, Jensen K (eds) Auditory display, vol 5954., Lecture notes in computer scienceSpringer, Berlin, Heidelberg, pp 408–421

    Chapter  Google Scholar 

  • Aramaki M, Marie C, Kronland-Martinet R, Ystad S, Besson M (2010b) Sound categorization and conceptual priming for nonlinguistic and linguistic sounds. J Cogn Neurosci 22(11):2555–2569

    Article  Google Scholar 

  • Arfib D (1979) Digital synthesis of complex spectra by means of multiplication of non-linear distorted sine waves. J Audio Eng Soc 27:757–768

    Google Scholar 

  • Atal BS, Hanauer SL (1971) Speech analysis and synthesis by linear prediction of the speech wave. J Acoust Soc Am 50(2B):637–655

    Article  Google Scholar 

  • Avanzini F, Serafin S, Rocchesso D (2005) Interactive simulation of rigid body interaction with friction-induced sound generation. IEEE Trans Speech Audio Process 13(5):1073–1081

    Article  Google Scholar 

  • Bach-y-Rita P, Kercel W (2003) Sensory substitution and the human-machine interface. Trends in Cogn Sci 7:541–546

    Article  Google Scholar 

  • Ballas JA (1993) Common factors in the identification of an assortment of brief everyday sounds. J Exp Psychol Hum Percept Perform 19(2):250–267

    Article  Google Scholar 

  • Bensa J, Jensen K, Kronland-Martinet R (2004) A hybrid resynthesis model for hammer-strings interaction of piano tones. EURASIP J Appl Sig Process 7:1021–1035

    Article  Google Scholar 

  • Bilbao S (2009) Numerical sound synthesis: finite difference schemes and simulation in musical acoustics. Wiley, Chichester, UK

    Book  Google Scholar 

  • Castle PC, van Toller S, Milligan G (2000) The effect of odour priming on cortical EEG and visual ERP responses. Int J Psychophysiol 36:123–131

    Article  Google Scholar 

  • Chaigne A (1995) Trends and challenges in physical modeling of musical instruments, In: Proceedings of the international congress on acoustics’, Trondheim, Norway

    Google Scholar 

  • Chowning J (1973) The synthesis of complex audio spectra by means of frequency modulation. J Audio Eng Soc 21:526–534

    Google Scholar 

  • Conan S, Aramaki M, Kronland-Martinet R, Thoret E, Ystad S (2012) Perceptual differences between sounds produced by different continuous interactions. Proceedings of the 11th Congrès Français d’Acoustique. Nantes, France, pp 409–414

    Google Scholar 

  • Conan S, Aramaki M, Kronland-Martinet R, Ystad S (2013) Post-proceedings 9th International Symposium on Computer Music Modeling and Retrieval (CMMR 2012). Lecture notes in computer science, vol 7900. Springer, Berlin, Heidelberg, chapter Intuitive Control of Rolling Sound Synthesis

    Google Scholar 

  • Conan S, Thoret E, Aramaki M, Derrien O, Gondre C, Kronland-Martinet R, Ystad S (2013) Navigating in a space of synthesized interaction-sounds: rubbing, scratching and rolling sounds. In: Proceedings of the 16th international conference on digital audio effects (DAFx-13), Maynooth, Ireland

    Google Scholar 

  • Cook PR (1992) A meta-wind-instrument physical model, and a meta-controller for real-time performance control. In: Proceedings of the international computer music conference, pp 273–276

    Google Scholar 

  • Daltrozzo J, Schön D (2009) Conceptual processing in music as revealed by N400 effects on words and musical targets. J Cogn Neurosci 21:1882–1892

    Article  Google Scholar 

  • de Saussure F (1955) Cours de linguistique générale. Payot, Paris

    Google Scholar 

  • Flanagan JL, Coker CH, Rabiner LR, Schafer RW, Umeda N (1970) Synthetic voices for computer. IEEE Spectr 7:22–45

    Article  Google Scholar 

  • Gaver WW (1993a) How do we hear in the world? Explorations of ecological acoustics. Ecol Psychol 5(4):285–313

    Article  MathSciNet  Google Scholar 

  • Gaver WW (1993b) What in the world do we hear? An ecological approach to auditory source perception. Ecol Psychol 5(1):1–29

    Article  MathSciNet  Google Scholar 

  • George L, Lécuyer A (2010) An overview of research on “passive” brain-computer interfaces for implicit human-computer interaction. In: International conference on applied bionics and biomechanics ICABB 2010—workshop W1 Brain-Computer Interfacing and Virtual Reality, Venezia, Italy

    Google Scholar 

  • Gibson JJ (1986) The ecological approach to visual perception, Lawrence Erlbaum Associates

    Google Scholar 

  • Giordano BL, McAdams S (2006) Material identification of real impact sounds: effects of size variation in steel, wood, and plexiglass plates. J Acoust Soc Am 119(2):1171–1181

    Article  Google Scholar 

  • Gygi B, Kidd GR, Watson CS (2007) Similarity and categorization of environmental sounds. Percept Psychophys 69(6):839–855

    Article  Google Scholar 

  • Gygi B, Shafiro V (2007) General functions and specific applications of environmental sound research. Front Biosci 12:3152–3166

    Article  Google Scholar 

  • Hermes DJ (1998) Synthesis of the sounds produced by rolling balls. Internal IPO report no. 1226, IPO, Center for user-system interaction, Eindhoven, The Netherlands

    Google Scholar 

  • Holcomb PJ, McPherson WB (1994) Event-related brain potentials reflect semantic priming in an object decision task. Brain and Cogn 24:259–276. http://forumnet.ircam.fr/product/modalys/?lang=en (n.d.). http://www-acroe.imag.fr/produits/logiciel/cordis/cordis_en.html (n.d.)

  • Husserl E (1950) Idées directrices pour une phénoménologie, Gallimard. J New Music Res, special issue “enaction and music” (2009), 38(3), Taylor and Francis, UK

    Google Scholar 

  • Karjalainen M, Laine UK, Laakso T, Vilimtiki V (1991) Transmission-line modeling and real-time synthesis of string and wind instruments. In: I. C. M. Association (ed) Proceedings of the international computer music conference, Montreal, Canada, pp 293–296

    Google Scholar 

  • Koelsch S, Kasper E, Sammler D, Schulze K, Gunter T, Friederici A (2004) Music, language and meaning: brain signatures of semantic processing. Nat Neurosci 7(3):302–307

    Article  Google Scholar 

  • Kronland-Martinet R (1989) Digital subtractive synthesis of signals based on the analysis of natural sounds. A.R.C.A.M. (ed), Aix en Provence

    Google Scholar 

  • Kronland-Martinet R, Guillemain P, Ystad S (1997) Modelling of natural sounds by time-frequency and wavelet representations. Organ Sound 2(3):179–191

    Article  Google Scholar 

  • Kutas M, Hillyard SA (1980) Reading senseless sentences: brain potentials reflect semantic incongruity. Science 207:203–204

    Article  Google Scholar 

  • Lachaux JP, Rodriguez E, Martinerie J, Varela F (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8:194–208

    Article  Google Scholar 

  • Lalande A (1926) Vocabulaire technique et critique de la philosophie, Edition actuelle, PUF n quadrige z 2002

    Google Scholar 

  • Le Brun M (1979) Digital waveshaping synthesis. J Audio Eng Soc 27:250–266

    Google Scholar 

  • Makhoul J (1975) Linear prediction, a tutorial review. In: Proceedings of the IEEE, vol 63. pp 561–580

    Google Scholar 

  • Matyja JR, Schiavio A (2013) Enactive music cognition: background and research themes. Constr Found 8(3):351–357. http://www.univie.ac.at/constructivism/journal/8/3/351.matyja

  • McAdams S (1999) Perspectives on the contribution of timbre to musical structure. Comput Music J 23(3):85–102

    Article  Google Scholar 

  • McAdams S, Bigand E (1993) Thinking in sound: the cognitive psychology of human audition, Oxford University Press, Oxford

    Google Scholar 

  • Merer A, Ystad S, Kronland-Martinet R, Aramaki M (2011) Abstract sounds and their applications in audio and perception research. In: Ystad S, Aramaki M, Kronland-Martinet R, Jensen K (eds) Exploring music contents, vol 6684., Lecture notes in computer scienceSpringer, Berlin, Heidelberg, pp 176–187

    Chapter  Google Scholar 

  • Micoulaud-Franchi JA, Bat-Pitault F, Cermolacce M, Vion-Dury J (2011) Neurofeedback dans le trouble déficit de l’attention avec hyperactivité : de l’efficacité à la spécificité de l’effet neurophysiologique. Annales Médico-Psychologiques 169(3):200–208

    Article  Google Scholar 

  • Micoulaud-Franchi JA, Cermolacce M, Vion-Dury J, Naudin J (2013) Analyse critique et épistémologique du neurofeedback comme dispositif thérapeutique. le cas emblématique du trouble déficit de l’attention avec hyperactivité’, L’évolution psychiatrique

    Google Scholar 

  • Micoulaud-Franchi J, Lanteaume L, Pallanca O, Vion-Dury J, Bartolomei F (2014) Biofeedback et épilepsie pharmacorésistante : le retour d’une thérapeutique ancienne ? Revue Neurologique 170(3):187–196

    Article  Google Scholar 

  • Nadeau R (1999) Vocabulaire technique et analytique de l’épistémologie, PUF

    Google Scholar 

  • Nijholt A (2009) BCI for games: a ‘state of the art’ survey. In: Stevens SM, Saldamarco SJ (eds) LNCS, vol 5309. Springer, Berlin, pp 225–228

    Google Scholar 

  • O’Brien JF, Shen C, Gatchalian CM (2002) Synthesizing sounds from rigid-body simulations. In: Press A (ed) The ACM SIGGRAPH 2002 symposium on computer animation, pp 175–181

    Google Scholar 

  • Orgs G, Lange K, Dombrowski J, Heil M (2006) Conceptual priming for environmental sounds and words: An ERP study. Brain Cogn 62(3):267–272

    Article  Google Scholar 

  • Pai DK, van den Doel K, James DL, Lang J, Lloyd JE, Richmond JL, Yau SM (2001) Scanning physical interaction behavior of 3D objects. In: Proceedings of SIGGRAPH 2001, computer graphics proceedings, annual conference series, pp 87–96

    Google Scholar 

  • Petitmengin C, Bitbol M, Nissou JM, Pachoud B, Curalucci H, Cermolacce M, Vion-Dury J (2009) Listening from within. J Conscious Stud 16:252–284

    Google Scholar 

  • Rabiner LR, Gold B (1975) Theory and application of digital signal processing. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Rath M, Rocchesso D (2004) Informative sonic feedback for continuous human–machine interaction—controlling a sound model of a rolling ball. IEEE Multimedia Spec Interact Sonification 12(2):60–69

    Article  Google Scholar 

  • Risset JC (1965) Computer study of trumpet tones. J Acoust Soc Am 33:912

    Article  Google Scholar 

  • Roads C (1978) Automated granular synthesis of sound. Comput Music J 2(2):61–62

    Article  Google Scholar 

  • Rugg MD, Coles MGH (1995) Electrophysiology of mind. Event-related brain potentials and cognition, number 25. In: ‘Oxford Psychology’, Oxford University Press, chapter The ERP and Cognitive Psychology: Conceptual issues, pp 27–39

    Google Scholar 

  • Schaeffer P (1966) Traité des objets musicaux, du Seuil (ed)

    Google Scholar 

  • Schön D, Ystad S, Kronland-Martinet R, Besson M (2010) The evocative power of sounds: conceptual priming between words and nonverbal sounds. J Cogn Neurosci 22(5):1026–1035

    Article  Google Scholar 

  • Smith JO (1992) Physical modeling using digital waveguides. Comput Music J 16(4):74–87

    Article  Google Scholar 

  • Stoelinga C, Chaigne A (2007) Time-domain modeling and simulation of rolling objects. Acta Acustica united Acustica 93(2):290–304

    Google Scholar 

  • Thoret E, Aramaki M, Gondre C, Kronland-Martinet R, Ystad S (2013) Controlling a non linear friction model for evocative sound synthesis applications. In: Proceedings of the 16th international conference on digital audio effects (DAFx-13), Maynooth, Ireland

    Google Scholar 

  • Thoret E, Aramaki M, Kronland-Martinet R, Velay J, Ystad S (2014) From sound to shape: auditory perception of drawing movements. J Exp Psychol Hum Percept Perform

    Google Scholar 

  • Thoret E, Aramaki M, Kronland-Martinet R, Ystad S (2013) Post-proceedings 9th International Symposium on Computer Music Modeling and Retrieval (CMMR 2012), number 7900. In: Lecture notes in computer science, Springer, Berlin, Heidelberg, chapter reenacting sensorimotor features of drawing movements from friction sounds

    Google Scholar 

  • Väljamäe A, Steffert T, Holland S, Marimon X, Benitez R, Mealla S, Oliveira A, Jordà S (2013) A review of real-time EEG sonification research. In: Proceedings of the 19th international conference on auditory display (ICAD 2013), Lodz, Poland, pp 85–93

    Google Scholar 

  • van den Doel K, Kry PG, Pai DK (2001) Foleyautomatic: physically-based sound effects for interactive simulation and animation. In: Proceedings of SIGGRAPH 2001, computer graphics proceedings, annual conference series, pp 537–544

    Google Scholar 

  • Van Petten C, Rheinfelder H (1995) Conceptual relationships between spoken words and environmental sounds: event-related brain potential measures. Neuropsychologia 33(4):485–508

    Article  Google Scholar 

  • Vanderveer NJ (1979) Ecological acoustics: human perception of environmental sounds, PhD thesis, Georgia Inst. Technol

    Google Scholar 

  • Varela F (1989) Invitation aux sciences cognitives. Seuil, Paris

    Google Scholar 

  • Varela F (1996) Neurophenomenology: a methodological remedy for the hard problem. J Conscious Stud 3:330–335

    Google Scholar 

  • Varela F, Thompson E, Rosch E (1991) The embodied mind: cognitive science and human experience. MIT Press, Cambridge, MA, USA

    Google Scholar 

  • Verron C, Aramaki M, Kronland-Martinet R, Pallone G (2010) A 3D immersive synthesizer for environmental sounds. IEEE Trans Audio Speech Lang Process 18(6):1550–1561

    Article  Google Scholar 

  • Verron C, Pallone G, Aramaki M, Kronland-Martinet R (2009) Controlling a spatialized environmental sound synthesizer. Proceedings of the IEEE workshop on applications of signal processing to audio and acoustics (WASPAA). New Paltz, NY, pp 321–324

    Google Scholar 

  • Viviani P (2002) Motor competence in the perception of dynamic events: a tutorial. In: Prinz W, Hommel B (eds) Common mechanisms in perception and action. Oxford University Press, New York, NY, pp 406–442

    Google Scholar 

  • Viviani P, Redolfi M, Baud-Bovy G (1997) Perceiving and tracking kinaesthetic stimuli: further evidence for motor-perceptual interactions. J Exp Psychol Hum Percept Perform 23:1232–1252

    Article  Google Scholar 

  • Viviani P, Stucchi N (1992) Biological movements look uniform: evidence of motor-perceptual interactions. J Exp Psychol Hum Percept Perform 18:603–623

    Article  Google Scholar 

  • Warren WH, Verbrugge RR (1984) Auditory perception of breaking and bouncing events: a case study in ecological acoustics. J Exp Psychol Hum Percept Perform 10(5):704–712

    Article  Google Scholar 

  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neuro physiol 113:767–791

    Google Scholar 

  • Ystad S, Voinier T (2001) A virtually-real flute. Comput Music J 25(2):13–24

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuko Aramaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Aramaki, M., Kronland-Martinet, R., Ystad, S., Micoulaud-Franchi, JA., Vion-Dury, J. (2014). Prospective View on Sound Synthesis BCI Control in Light of Two Paradigms of Cognitive Neuroscience. In: Miranda, E., Castet, J. (eds) Guide to Brain-Computer Music Interfacing. Springer, London. https://doi.org/10.1007/978-1-4471-6584-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6584-2_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6583-5

  • Online ISBN: 978-1-4471-6584-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics