Passive Brain–Computer Interfaces

  • Laurent George
  • Anatole Lécuyer


Passive brain–computer interfaces (passive BCI), also named implicit BCI, provide information from user mental activity to a computerized application without the need for the user to control his brain activity. Passive BCI seem particularly relevant in the context of music creation where they can provide novel information to adapt the music creation process (e.g., user mental concentration state to adapt the music tempo). In this chapter, we present an overview of the use of passive BCI in different contexts. We describe how passive BCI are used and the commonly employed signal processing schemes.


Video Game Mental Workload Implicit Information Beta Rhythm Adaptive Automation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Berka C, Levendowski D, Lumicao M, Yau A, Davis G, Zivkovic V, Olmstead R, Tremoulet P, Craven P (2007) EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat Space Environ Med 78(Supplement 1):B231–B244Google Scholar
  2. Blankertz B, Tangermann M, Vidaurre C, Fazli S, Sannelli C, Haufe S, Maeder C, Ramsey L, Sturm I, Curio G, et al (2010) The Berlin brain-computer interface: non-medical uses of BCI technology. Front. Neurosci. 4Google Scholar
  3. Bos DPO, Reuderink B, van de Laar B, Grkk H, Mhl C, Poel M, Nijholt A, Heylen D (2010) Brain-computer interfacing and games. In: Tan DS, Nijholt A (eds) Brain-computer interfaces, human-computer interaction series. Springer, Berlin, pp 149–178 (chap 10)Google Scholar
  4. Brouwer A, Hogervorst M, Van Erp J, Heffelaar T, Zimmerman P, Oostenveld R (2012) Estimating workload using EEG spectral power and ERPs in the n-back task. J Neural Eng 9(4):045008Google Scholar
  5. Coan JA, Allen JJB (2004) Frontal EEG asymmetry as a moderator and mediator of emotion. Biol Psychol 67(1–2):7–50CrossRefGoogle Scholar
  6. Coffey E, Brouwer A, Wilschut E, Van Erp J (2010) Brain-machine interfaces in space: using spontaneous rather than intentionally generated brain signals. Acta Astronaut 67(1–2):1–11CrossRefGoogle Scholar
  7. Cutrell E, Tan D (2007) BCI for passive input in HCI. In: Proceedings of ACM CHI 2008 conference on human factors in computing systems workshop on brain-computer interfaces for HCI and gamesGoogle Scholar
  8. Dal Seno B, Matteucci M, Mainardi L (2010) Online detection of P300 and error potentials in a BCI speller. Comput Intell Neurosci 11Google Scholar
  9. Ferrez P, Millán JR (2007) Error-related EEG potentials in brain-computer interfaces. Towards Brain-Comput Interf 291–301Google Scholar
  10. Ferrez PW, Millán JR (2008) Simultaneous real-time detection of motor imagery and error-related potentials for improved BCI accuracy. In: Proceedings of the international brain-computer interface workshop and training courseGoogle Scholar
  11. Gemignani A, Santarcangelo E, Sebastiani L, Marchese C, Mammoliti R, Simoni A, Ghelarducci B (2000) Changes in autonomic and EEG patterns induced by hypnotic imagination of aversive stimuli in man. Brain Res Bull 53(1):105–111CrossRefGoogle Scholar
  12. Girouard A (2009) Adaptive brain-computer interface. In: Proceedings of the 27th international conference extended abstracts on human factors in computing systems, ACM, pp 3097–3100Google Scholar
  13. Girouard A, Solovey ET, Hirshfield LM, Chauncey K, Sassaroli A, Fantini S, Jacob RJ (2009) Distinguishing difficulty levels with non-invasive brain activity measurements. In: Proceedings of the 12th IFIP TC 13 international conference on human-computer interaction, INTERACT ‘09. Springer, Berlin, pp 440–452Google Scholar
  14. Girouard A, Solovey ET, Jacob RJ (2013) Designing a passive brain computer interface using real time classification of functional near–infrared spectroscopy. Int J Auton Adaptive Commun Syst 6(1):26–44Google Scholar
  15. Heger D, Putze F, Schultz T (2010) Online workload recognition from EEG data during cognitive tests and human-machine interaction. Adv Artif Intell 410–417Google Scholar
  16. Heraz A, Frasson C (2007) Predicting the three major dimensions of the learners emotions from brainwaves. Int J Comput SciGoogle Scholar
  17. Kapoor A, Shenoy P, Tan D (2008) Combining brain computer interfaces with vision for object categorization. In: Proceedings of the IEEE conference on computer vision and pattern recognitionGoogle Scholar
  18. Koelstra S, Mhl C, Patras I (2009) EEG analysis for implicit tagging of video data. In: Proceedings of the international conference on affective computing and intelligent interaction and workshopsGoogle Scholar
  19. Kohlmorgen J, Dornhege G, Braun M, Blankertz B, Mller KR, Curio G, Hagemann K, Bruns A, Schrauf M, Kincses W (2007) Improving human performance in a real operating environment through real-time mental workload detection. In: Dornhege G, R del Milln J, Hinterberger T, McFarland D, Mller KR (eds) Toward brain-computer interfacing. MIT press, Cambridge, pp 409–422Google Scholar
  20. Lang P, Bradley M, Cuthbert B (1997) International affective picture system (IAPS): technical manual and affective ratings. In: NIMH center for the study of emotion and attentionGoogle Scholar
  21. Lee J, Tan D (2006) Using a low-cost electroencephalograph for task classification in HCI research. In: Proceedings of the 19th annual ACM symposium on User interface software and technology, ACM, p 90Google Scholar
  22. Makeig S, Kothe C, Mullen T, Shamlo NB, Zhang Z, Kreutz-Delgado K (2012) Evolving signal processing for brain-computer interfaces. In: Proceedings of the IEEE 100(Centennial-Issue):1567–1584Google Scholar
  23. Molina GG, Tsoneva T, Nijholt A (2009) Emotional brain-computer interfaces. In: Cohn J, Nijholt A, Pantic M (eds) ACII 2009: affective computing and intelligent interaction. IEEE Computer Society Press, Los Alamitos, pp 138–146Google Scholar
  24. Moon JY, Kim Y, Lee HJ, Bae CS (2012) My own clips: automatic clip generation from watched television programs by using EEG-based user response data. In: 2012 IEEE 16th international symposium on consumer electronics (ISCE), pp 1–2Google Scholar
  25. Mhl C, Grkk H, Bos DPO, Thurlings ME, Scherffig L, Duvinage M, Elbakyan AA, Kang S, Poel M, Heylen DKJ (2010) Bacteria hunt: a multimodal, multiparadigm BCI game. In: Proceedings of the international summer workshop on multimodal interfaces, GenuaGoogle Scholar
  26. Nijholt A, Bos DPO, Reuderink B (2009) Turning shortcomings into challenges: brain computer interfaces for games. Entertain Comput 1(2):85–94CrossRefGoogle Scholar
  27. Olofsson JK, Nordin S, Sequeira H, Polich J (2008) Affective picture processing: an integrative review of ERP findings. Biol Psychol 77(3):247–265CrossRefGoogle Scholar
  28. Onton J, Makeig S (2009) High-frequency broadband modulations of electroencephalographic spectra. Front Hum Neurosci 3Google Scholar
  29. Parra LC, Spence CD, Gerson AD, Sajda P (2003) Response error correction-a demonstration of improved human-machine performance using real-time EEG monitoring. IEEE Trans Neural Syst Rehabil EngGoogle Scholar
  30. Pfurtscheller G, Scherer R (2010) Brain-computer interfaces used for virtual reality control. Proc ICABBGoogle Scholar
  31. Pope AT, Bogart EH, Bartolome DS (1995) Biocybernetic system evaluates indices of operator engagement in automated task. Biol Psychol 40(1):187–195CrossRefGoogle Scholar
  32. Reuderink B, Nijholt A, Poel M, Nijholt A, Reidsma D, Hondorp G (2009) Affective pacman: a frustrating game for brain-computer interface experiments. Intell Technol Interact Entertain 9:221–227CrossRefGoogle Scholar
  33. Schmidt N, Blankertz B, Treder M (2012) Online detection of error-related potentials boosts the performance of mental typewriters. BMC Neurosci 13(1):19CrossRefGoogle Scholar
  34. Scholler S, Bosse S, Treder M, Blankertz B, Curio G, Muller KR, Wiegand T (2012) Toward a direct measure of video quality perception using EEG. IEEE Trans Image Process 21(5):2619–2629MathSciNetCrossRefGoogle Scholar
  35. Shenoy P, Tan D (2008) Human-aided computing: utilizing implicit human processing to classify images. In: Proceeding of SIGCHI conference on human factors in computing systemsGoogle Scholar
  36. Van Erp JBF, Veltman HJA, Grootjen M (2010) Brain-based indices for user system symbiosis. In: Tan DS, Nijholt A (eds) Brain-computer interfaces., Human computer interaction seriesSpringer, London, pp 201–219CrossRefGoogle Scholar
  37. Wilson GF, Caldwell JA, Russell CA (2007) Performance and psychophysiological measures of fatigue effects on aviation related tasks of varying difficulty. Int J Aviation Psychol 17(2):219–247CrossRefGoogle Scholar
  38. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791CrossRefGoogle Scholar
  39. Zander T, Kothe C, Welke S, Roetting M (2009) Utilizing secondary input from passive brain-computer interfaces for enhancing human-machine interaction. In: Schmorrow D, Estabrooke I, Grootjen M (eds) Foundations of augmented cognition. Neuroergonomics and operational neuroscience, lecture notes in computer science, vol 5638. Springer, Berlin, pp 759–771Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.INRIARennesFrance

Personalised recommendations