Skip to main content

Abstract

Chondrosarcoma (CHS) represents 20–30 % of all malignant bone neoplasms and is the second most common solid malignant tumor of bone after ostegosarcoma. CHS is classified as primary or secondary if the tumor arises de novo or develops in a preexisting benign cartilage neoplasm (enchondroma or osteochondroma), respectively. By the same token, CHS is classified according to its anatomic location within a bone as central when it is located in the medullary cavity of a long bone (80–85 % of cases) or peripheral (about 10–15 % of cases) or juxtacortical or periosteal when the tumor is located on the surface of a bone (<1 % of cases). Microscopically, CHS is a group of different clinicopathological entities in which the common denominator is the presence of hyaline cartilage. The most common is the primary or conventional CHS that represents 85 % of all the CHSs and is a tumor composed predominantly of hyaline cartilage in various stages of differentiation. Its variants include a specific cell component such as a high-grade sarcoma component in dedifferentiated CHS, clear cells in clear-cell CHS, and a small-cell component in mesenchymal CHS. Each one of these subtypes has distinct clinical, radiological, histological, and genetic features.

Secondary chondrosarcoma may arise in a sporadic osteochondroma, in a genetic syndrome characterized by multiple osteochondromas (hereditary multiple exostosis), or in skeletal enchondromatosis (Ollier or Maffucci diseases). The prognosis of CHS depends on the histological grade, stage, and location of the tumor. According to the National Cancer Data Base Report, the relative 5-year survival rate of CHS is approximately 75 %, and patients who survive the first 10 years after diagnosis of conventional CHS will die of other causes rather than from CHS-related events. High-grade (grade 3) conventional CHS and dedifferentiated and mesenchymal CHSs account for those cases with less favorable prognosis.

Dedifferentiated chondrosarcoma is a rare malignant neoplasm characterized by a high-grade, nonchondroid sarcoma such as malignant fibrous histiocytoma, osteosarcoma, fibrosarcoma, rhabdomyosarcoma, or angiosarcoma associated with and apparently arising from a low-grade cartilage-forming tumor. Slightly more males than females are affected. The age range is wide, but the majority of tumors occur in patients over the fourth decade. The peak age incidence is the sixth decade of life. Sites of involvement are similar to ordinary chondrosarcoma. Radiographically, the existence of the two components (low- and high-grade) of dedifferentiated chondrosarcoma can frequently be recognized. Histologically, the hallmark of dedifferentiated chondrosarcoma is the coexistence of its two components: a low-grade cartilaginous precursor lesion and a high-grade sarcoma. Treatment: In general, the dedifferentiated component is more resistant to chemotherapy and radiation therapy than de novo malignant fibrous histiocytoma or osteosarcoma.

Mesenchymal chondrosarcoma is a rare distinct malignant neoplasm characterized by the presence of solid, highly cellular areas composed of round or slightly spindled primitive mesenchymal cells with foci of cartilaginous differentiation. The noncartilaginous elements usually predominate, and such lesions can be confused histologically with Ewing’s sarcoma, malignant lymphoma, or hemangiopericytoma. There is no sex predilection. Usually, it affects young adults and teenagers. The peak incidence is during the fourth followed by the third decade of life but can be seen at any age. Sites of involvement: It favors the maxilla, mandible, ribs, and vertebrae. Radiologically, a lytic defect that often contains stippled densities corresponding to small islands of mineralized cartilage is present. Radical surgery is the best therapy.

Clear-cell chondrosarcoma is a rare low-grade malignancy characterized by rounded cells with conspicuous clear or vacuolated cytoplasm and by a cartilaginous or chondroid matrix in at least some areas. Scattered osteoclast-type giant cells, occasional bone trabeculae, and aneurysmal bone cyst–like areas may also be present. It is a rare tumor that accounts for less than 2 % of all chondrosarcomas. The reported sex ratio, male to female, is 2:1. The peak incidence is in the fourth and fifth decades of life; however, individual cases are reported from the second to the seventh decades. The most common location is distal femur, followed by proximal humerus, proximal femur, proximal tibia, vertebrae, and ribs. Radiographically, one of the most constant findings is the propensity for the tumor to involve the epiphysis of a long bone and extend to the articular cartilage. The most common roentgenographic pattern is that of a purely lucent lesion. En bloc resection including a margin of normal bone and soft tissue is the treatment of choice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  • Ahmed AR, Tan TS, Unni KK, Collins MS, Wenger DE, Sim FH. Secondary chondrosarcoma in osteochondroma: report of 107 patients. Clin Orthop Relat Res. 2003;411:193–206.

    PubMed  Google Scholar 

  • Aigner T, Muller S, Neureiter D, Illstrup DM, Kirchner T, Bjornsson J. Prognostic relevance of cell biologic and biochemical features in conventional chondrosarcomas. Cancer. 2002;94(8):2273–81.

    PubMed  Google Scholar 

  • Amary MF, Bacsi K, Maggiani F, et al. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondroma but not in other mesenchymal tumours. J Pathol. 2011;224(3):334–43.

    CAS  PubMed  Google Scholar 

  • Andreou D, Ruppin S, Fehlberg S, Pink D, Werner M, Tunn PU. Survival and prognostic factors in chondrosarcoma: results in 115 patients with long-term follow-up. Acta Orthop. 2011;82(6):749–55.

    PubMed Central  PubMed  Google Scholar 

  • Angelini A, Guerra G, Mavrogenis AF, Pala E, Picci P, Ruggieri P. Clinical outcome of central conventional chondrosarcoma. J Surg Oncol. 2012;106(8):929–37.

    PubMed  Google Scholar 

  • Arai M, Nobusawa S, Ikota H, Takemura S, Nakazato Y. Frequent IDH1/2 mutations in intracranial chondrosarcoma: a possible diagnostic clue for its differentiation from chordoma. Brain Tumor Pathol. 2012;29(4):201–6.

    CAS  PubMed  Google Scholar 

  • Ayala A, Ro J, Han W, Sahin A, Raymond A. Chondrosarcoma (Chs): a clinicopathologic study of 173 cases with a minimal 5 years follow-up. Lab Invest. 1991;64(2A)(Abst 3).

    Google Scholar 

  • Ayala AG, Czerniak B, Raymond AK, Knuutila S. Periosteal osteosarcoma. In: Fletcher CM, Unni KK, Mertens F, editors. World Health Organization classification of tumors. Pathology and genetics of tumors of soft tissue and bone. Lyon: IARC Press; 2002. p. 282–3.

    Google Scholar 

  • Bernard SA, Murphey MD, Flemming DJ, Kransdorf MJ. Improved differentiation of benign osteochondromas from secondary chondrosarcomas with standardized measurement of cartilage cap at CT and MR imaging. Radiology. 2010;255(3):857–65.

    PubMed  Google Scholar 

  • Bertoni F, Boriani S, Laus M, Campanacci M. Periosteal chondrosarcoma and periosteal osteosarcoma. Two distinct entities. J Bone Joint Surg Br. 1982;64(3):370–6.

    CAS  PubMed  Google Scholar 

  • Bertoni F, Present D, Bacchini P, et al. Dedifferentiated peripheral chondrosarcomas. A report of seven cases. Cancer. 1989;63(10):2054–9.

    CAS  PubMed  Google Scholar 

  • Bertoni F, Bacchini P, Hogendoorn PC. Chondrosarcoma. In: Fletcher CM, Unni KK, Mertens F, editors. World Health Organization classification of tumors. Pathology and genetics of tumors of soft tissue and bone. Lyon: IARC Press; 2002. p. 247–51.

    Google Scholar 

  • Bierry G, Feydy A, Larousserie F, et al. Dedifferentiated chondrosarcoma: radiologic-pathologic correlation. J Radiol. 2010;91(3 Pt 1):271–9.

    CAS  PubMed  Google Scholar 

  • Bjornsson J, Unni KK, Dahlin DC, Beabout JW, Sim FH. Clear cell chondrosarcoma of bone. Observations in 47 cases. Am J Surg Pathol. 1984;8(3):223–30.

    CAS  PubMed  Google Scholar 

  • Bjornsson J, McLeod RA, Unni KK, Ilstrup DM, Pritchard DJ. Primary chondrosarcoma of long bones and limb girdles. Cancer. 1998;83(10):2105–19.

    CAS  PubMed  Google Scholar 

  • Blackwell JB. Mesenchymal chondrosarcoma arising in fibrous dysplasia of the femur. J Clin Pathol. 1993;46(10):961–2.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bloch O, Parsa AT. Skull base chondrosarcoma: evidence-based treatment paradigms. Neurosurg Clin N Am. 2013;24(1):89–96.

    PubMed  Google Scholar 

  • Bloch O, Sughrue ME, Mills SA, Parsa AT. Signaling pathways in cranial chondrosarcoma: potential molecular targets for directed chemotherapy. J Clin Neurosci. 2011;18(7):881–5.

    CAS  PubMed  Google Scholar 

  • Boeuf S, Kunz P, Hennig T, et al. A chondrogenic gene expression signature in mesenchymal stem cells is a classifier of conventional central chondrosarcoma. J Pathol. 2008;216(2):158–66.

    CAS  PubMed  Google Scholar 

  • Boeuf S, Bovee JV, Lehner B, et al. BMP and TGFbeta pathways in human central chondrosarcoma: enhanced endoglin and Smad 1 signaling in high grade tumors. BMC Cancer. 2012;12:488.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bovee JV. EXTra hit for mouse osteochondroma. Proc Natl Acad Sci U S A. 2010;107(5):1813–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bovee JV, van der Heul RO, Taminiau AH, Hogendoorn PC. Chondrosarcoma of the phalanx: a locally aggressive lesion with minimal metastatic potential: a report of 35 cases and a review of the literature. Cancer. 1999a;86(9):1724–32.

    CAS  PubMed  Google Scholar 

  • Bovee JV, Cleton-Jansen AM, Kuipers-Dijkshoorn NJ, et al. Loss of heterozygosity and DNA ploidy point to a diverging genetic mechanism in the origin of peripheral and central chondrosarcoma. Genes Chromosom Cancer. 1999b;26(3):237–46.

    CAS  PubMed  Google Scholar 

  • Bovee JV, Cleton-Jansen AM, Wuyts W, et al. EXT-mutation analysis and loss of heterozygosity in sporadic and hereditary osteochondromas and secondary chondrosarcomas. Am J Hum Genet. 1999c;65(3):689–98.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bovee JV, Cleton-Jansen AM, Rosenberg C, Taminiau AH, Cornelisse CJ, Hogendoorn PC. Molecular genetic characterization of both components of a dedifferentiated chondrosarcoma, with implications for its histogenesis. J Pathol. 1999d;189(4):454–62.

    CAS  PubMed  Google Scholar 

  • Bovee JV, van den Broek LJ, Cleton-Jansen AM, Hogendoorn PC. Up-regulation of PTHrP and Bcl-2 expression characterizes the progression of osteochondroma towards peripheral chondrosarcoma and is a late event in central chondrosarcoma. Lab Invest. 2000;80(12):1925–34.

    CAS  PubMed  Google Scholar 

  • Bovee JV, Cleton-Jansen AM, Taminiau AH, Hogendoorn PC. Emerging pathways in the development of chondrosarcoma of bone and implications for targeted treatment. Lancet Oncol. 2005;6(8):599–607.

    CAS  PubMed  Google Scholar 

  • Bovee JV, Hogendoorn PC, Wunder JS, Alman BA. Cartilage tumours and bone development: molecular pathology and possible therapeutic targets. Nat Rev Cancer. 2010;10(7):481–8.

    CAS  PubMed  Google Scholar 

  • Brien EW, Mirra JM, Luck Jr JV. Benign and malignant cartilage tumors of bone and joint: their anatomic and theoretical basis with an emphasis on radiology, pathology and clinical biology. II. Juxtacortical cartilage tumors. Skelet Radiol. 1999;28(1):1–20.

    CAS  Google Scholar 

  • Cesari M, Bertoni F, Bacchini P, Mercuri M, Palmerini E, Ferrari S. Mesenchymal chondrosarcoma. An analysis of patients treated at a single institution. Tumori. 2007;93(5):423–7.

    PubMed  Google Scholar 

  • Chaabane S, Bouaziz MC, Drissi C, Abid L, Ladeb MF. Periosteal chondrosarcoma. AJR Am J Roentgenol. 2009;192(1):W1–6.

    PubMed  Google Scholar 

  • Choi BB, Jee WH, Sunwoo HJ, et al. MR differentiation of low-grade chondrosarcoma from enchondroma. Clin Imaging. 2013;37(3):542–7.

    PubMed  Google Scholar 

  • Chow WA. Update on chondrosarcomas. Curr Opin Oncol. 2007;19(4):371–6.

    CAS  PubMed  Google Scholar 

  • Collins MS, Koyama T, Swee RG, Inwards CY. Clear cell chondrosarcoma: radiographic, computed tomographic, and magnetic resonance findings in 34 patients with pathologic correlation. Skelet Radiol. 2003;32(12):687–94.

    Google Scholar 

  • Couvineau A, Wouters V, Bertrand G, et al. PTHR1 mutations associated with Ollier disease result in receptor loss of function. Hum Mol Genet. 2008;17(18):2766–75.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dahlin DC, Beabout JW. Dedifferentiation of low-grade chondrosarcomas. Cancer. 1971;28(2):461–6.

    CAS  PubMed  Google Scholar 

  • Damron TA, Ward WG, Stewart A. Osteosarcoma, chondrosarcoma, and Ewing’s sarcoma: National Cancer Data Base Report. Clin Orthop Relat Res. 2007;459:40–7.

    PubMed  Google Scholar 

  • de Andrea CE, Hogendoorn PC. Epiphyseal growth plate and secondary peripheral chondrosarcoma: the neighbours matter. J Pathol. 2012;226(2):219–28.

    PubMed  Google Scholar 

  • de Andrea CE, Wiweger M, Prins F, Bovee JV, Romeo S, Hogendoorn PC. Primary cilia organization reflects polarity in the growth plate and implies loss of polarity and mosaicism in osteochondroma. Lab Invest. 2010;90(7):1091–101.

    PubMed  Google Scholar 

  • de Andrea CE, Kroon HM, Wolterbeek R, et al. Interobserver reliability in the histopathological diagnosis of cartilaginous tumors in patients with multiple osteochondromas. Mod Pathol. 2012;25(9):1275–83.

    PubMed Central  PubMed  Google Scholar 

  • del Rosario AD, Bui HX, Singh J, Ginsburg R, Ross JS. Intracytoplasmic eosinophilic hyaline globules in cartilaginous neoplasms: a surgical, pathological, ultrastructural, and electron probe x-ray microanalytic study. Hum Pathol. 1994;25(12):1283–9.

    PubMed  Google Scholar 

  • Devoe K, Weidner N. Immunohistochemistry of small round-cell tumors. Semin Diagn Pathol. 2000;17(3):216–24.

    CAS  PubMed  Google Scholar 

  • Dickey ID, Rose PS, Fuchs B, et al. Dedifferentiated chondrosarcoma: the role of chemotherapy with updated outcomes. J Bone Joint Surg Am. 2004;86-A(11):2412–8.

    PubMed  Google Scholar 

  • Endo M, Matsumura T, Yamaguchi T, et al. Cyclooxygenase-2 overexpression associated with a poor prognosis in chondrosarcomas. Hum Pathol. 2006;37(4):471–6.

    CAS  PubMed  Google Scholar 

  • Evans HL, Ayala AG, Romsdahl MM. Prognostic factors in chondrosarcoma of bone: a clinicopathologic analysis with emphasis on histologic grading. Cancer. 1977;40(2):818–31.

    CAS  PubMed  Google Scholar 

  • Fanburg JC, Meis-Kindblom JM, Rosenberg AE. Multiple enchondromas associated with spindle-cell hemangioendotheliomas. An overlooked variant of Maffucci’s syndrome. Am J Surg Pathol. 1995;19(9):1029–38.

    CAS  PubMed  Google Scholar 

  • Fanburg-Smith JC, Auerbach A, Marwaha JS, et al. Immunoprofile of mesenchymal chondrosarcoma: aberrant desmin and EMA expression, retention of INI1, and negative estrogen receptor in 22 female-predominant central nervous system and musculoskeletal cases. Ann Diagn Pathol. 2010;14(1):8–14.

    PubMed  Google Scholar 

  • Flemming DJ, Murphey MD. Enchondroma and chondrosarcoma. Semin Musculoskelet Radiol. 2000;4(1):59–71.

    CAS  PubMed  Google Scholar 

  • Franchi A, Baroni G, Sardi I, Giunti L, Capanna R, Campanacci D. Dedifferentiated peripheral chondrosarcoma: a clinicopathologic, immunohistochemical, and molecular analysis of four cases. Virchows Arch. 2012;460(3):335–42.

    PubMed  Google Scholar 

  • Geirnaerdt MJ, Bloem JL, Eulderink F, Hogendoorn PC, Taminiau AH. Cartilaginous tumors: correlation of gadolinium-enhanced MR imaging and histopathologic findings. Radiology. 1993;186(3):813–7.

    CAS  PubMed  Google Scholar 

  • Geirnaerdt MJ, Hermans J, Bloem JL, et al. Usefulness of radiography in differentiating enchondroma from central grade 1 chondrosarcoma. AJR Am J Roentgenol. 1997;169(4):1097–104.

    CAS  PubMed  Google Scholar 

  • Giuffrida AY, Burgueno JE, Koniaris LG, Gutierrez JC, Duncan R, Scully SP. Chondrosarcoma in the United States (1973 to 2003): an analysis of 2890 cases from the SEER database. J Bone Joint Surg Am. 2009;91(5):1063–72.

    PubMed  Google Scholar 

  • Grimer RJ, Gosheger G, Taminiau A, et al. Dedifferentiated chondrosarcoma: prognostic factors and outcome from a European group. Eur J Cancer. 2007;43(14):2060–5.

    PubMed  Google Scholar 

  • Hameed M, Ulger C, Yasar D, et al. Genome profiling of chondrosarcoma using oligonucleotide array-based comparative genomic hybridization. Cancer Genet Cytogenet. 2009;192(2):56–9.

    CAS  PubMed  Google Scholar 

  • Hameetman L, Szuhai K, Yavas A, et al. The role of EXT1 in nonhereditary osteochondroma: identification of homozygous deletions. J Natl Cancer Inst. 2007;99(5):396–406.

    CAS  PubMed  Google Scholar 

  • Helfenstein A, Frahm SO, Krams M, Drescher W, Parwaresch R, Hassenpflug J. Minichromosome maintenance protein (MCM6) in low-grade chondrosarcoma: distinction from enchondroma and identification of progressive tumors. Am J Clin Pathol. 2004;122(6):912–8.

    CAS  PubMed  Google Scholar 

  • Jennes I, Pedrini E, Zuntini M, et al. Multiple osteochondromas: mutation update and description of the multiple osteochondromas mutation database (MOdb). Hum Mutat. 2009;30(12):1620–7.

    CAS  PubMed  Google Scholar 

  • Jones KB, Piombo V, Searby C, et al. A mouse model of osteochondromagenesis from clonal inactivation of Ext1 in chondrocytes. Proc Natl Acad Sci U S A. 2010;107(5):2054–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kalil RK, Inwards CY, Unni KK, et al. Dedifferentiated clear cell chondrosarcoma. Am J Surg Pathol. 2000;24(8):1079–86.

    CAS  PubMed  Google Scholar 

  • Kawaguchi S, Weiss I, Lin PP, Huh WW, Lewis VO. Radiation therapy is associated with fewer recurrences in mesenchymal chondrosarcoma. Clin Orthop Relat Res. 2014;472(3):856–64. doi: 10.1007/s11999-013-3064-x.

    Google Scholar 

  • Kenan S, Abdelwahab IF, Klein MJ, Hermann G, Lewis MM. Lesions of juxtacortical origin (surface lesions of bone). Skelet Radiol. 1993;22(5):337–57.

    CAS  Google Scholar 

  • Kerr DA, Lopez HU, Deshpande V, et al. Molecular distinction of chondrosarcoma from chondroblastic osteosarcoma through IDH1/2 mutations. Am J Surg Pathol. 2013;37(6):787–95.

    PubMed  Google Scholar 

  • Khan MN, Husain Q, Kanumuri VV, et al. Management of sinonasal chondrosarcoma: a systematic review of 161 patients. Int Forum Allergy Rhinol. 2013;3(8):670–7.

    PubMed  Google Scholar 

  • Kubo T, Sugita T, Shimose S, Matsuo T, Arihiro K, Ochi M. Expression of hypoxia-inducible factor-1alpha and its relationship to tumour angiogenesis and cell proliferation in cartilage tumours. J Bone Joint Surg Br. 2008;90(3):364–70.

    CAS  PubMed  Google Scholar 

  • Kumta SM, Griffith JF, Chow LT, Leung PC. Primary juxtacortical chondrosarcoma dedifferentiating after 20 years. Skelet Radiol. 1998;27(10):569–73.

    CAS  Google Scholar 

  • Lechler P, Renkawitz T, Campean V, et al. The antiapoptotic gene survivin is highly expressed in human chondrosarcoma and promotes drug resistance in chondrosarcoma cells in vitro. BMC Cancer. 2011;11:120.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lichtenstein L. Tumors of periosteal origin. Cancer. 1955;8(5):1060–9.

    CAS  PubMed  Google Scholar 

  • Lichtenstein L, Bernstein D. Unusual benign and malignant chondroid tumors of bone. A survey of some mesenchymal cartilage tumors and malignant chondroblastic tumors, including a few multicentric ones, as well as many atypical benign chondroblastomas and chondromyxoid fibromas. Cancer. 1959;12:1142–57.

    Google Scholar 

  • Lichtenstein L, Jaffe HL. Chondrosarcoma of bone. Am J Pathol. 1943;19(4):553–89.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Logie CI, Walker EA, Forsberg JA, Potter BK, Murphey MD. Chondrosarcoma: a diagnostic imager’s guide to decision making and patient management. Semin Musculoskelet Radiol. 2013;17(2):101–15.

    PubMed  Google Scholar 

  • Mandahl N, Gustafson P, Mertens F, et al. Cytogenetic aberrations and their prognostic impact in chondrosarcoma. Genes Chromosom Cancer. 2002;33(2):188–200.

    PubMed  Google Scholar 

  • Martin JA, DeYoung BR, Gitelis S, et al. Telomerase reverse transcriptase subunit expression is associated with chondrosarcoma malignancy. Clin Orthop Relat Res. 2004;426:117–24.

    PubMed  Google Scholar 

  • Masciocchi C, Sparvoli L, Barile A. Diagnostic imaging of malignant cartilage tumors. Eur J Radiol. 1998;27 Suppl 1:S86–90.

    PubMed  Google Scholar 

  • Matsuura S, Oda Y, Matono H, et al. Overexpression of A disintegrin and metalloproteinase 28 is correlated with high histologic grade in conventional chondrosarcoma. Hum Pathol. 2010;41(3):343–51.

    CAS  PubMed  Google Scholar 

  • Meijer D, de Jong D, Pansuriya TC, et al. Genetic characterization of mesenchymal, clear cell, and dedifferentiated chondrosarcoma. Genes Chromosom Cancer. 2012;51(10):899–909.

    CAS  PubMed  Google Scholar 

  • Mirra JM, Gold R, Downs J, Eckardt JJ. A new histologic approach to the differentiation of enchondroma and chondrosarcoma of the bones. A clinicopathologic analysis of 51 cases. Clin Orthop Relat Res. 1985;201:214–37.

    PubMed  Google Scholar 

  • Mitchell A, Rudan JR, Fenton PV. Juxtacortical dedifferentiated chondrosarcoma from a primary periosteal chondrosarcoma. Mod Pathol. 1996;9(3):279–83.

    CAS  PubMed  Google Scholar 

  • Mitchell AD, Ayoub K, Mangham DC, Grimer RJ, Carter SR, Tillman RM. Experience in the treatment of dedifferentiated chondrosarcoma. J Bone Joint Surg Br. 2000;82(1):55–61.

    CAS  PubMed  Google Scholar 

  • Mokhtari S, Mirafsharieh A. Clear cell chondrosarcoma of the head and neck. Head Neck Oncol. 2012;4:13.

    PubMed Central  PubMed  Google Scholar 

  • Murphey MD, Flemming DJ, Boyea SR, Bojescul JA, Sweet DE, Temple HT. Enchondroma versus chondrosarcoma in the appendicular skeleton: differentiating features. Radiographics. 1998;18(5):1213–37. quiz 1244–1215.

    CAS  PubMed  Google Scholar 

  • Murphey MD, Choi JJ, Kransdorf MJ, Flemming DJ, Gannon FH. Imaging of osteochondroma: variants and complications with radiologic-pathologic correlation. Radiographics. 2000;20(5):1407–34.

    CAS  PubMed  Google Scholar 

  • Murphey MD, Walker EA, Wilson AJ, Kransdorf MJ, Temple HT, Gannon FH. From the archives of the AFIP: imaging of primary chondrosarcoma: radiologic-pathologic correlation. Radiographics. 2003;23(5):1245–78.

    PubMed  Google Scholar 

  • Nakashima Y, Unni KK, Shives TC, Swee RG, Dahlin DC. Mesenchymal chondrosarcoma of bone and soft tissue. A review of 111 cases. Cancer. 1986;57(12):2444–53.

    CAS  PubMed  Google Scholar 

  • Naumann S, Krallman PA, Unni KK, Fidler ME, Neff JR, Bridge JA. Translocation der(13;21)(q10;q10) in skeletal and extraskeletal mesenchymal chondrosarcoma. Mod Pathol. 2002;15(5):572–6.

    PubMed  Google Scholar 

  • Nishio J, Reith JD, Ogose A, Maale G, Neff JR, Bridge JA. Cytogenetic findings in clear cell chondrosarcoma. Cancer Genet Cytogenet. 2005;162(1):74–7.

    CAS  PubMed  Google Scholar 

  • Nojima T, Unni KK, McLeod RA, Pritchard DJ. Periosteal chondroma and periosteal chondrosarcoma. Am J Surg Pathol. 1985;9(9):666–77.

    CAS  PubMed  Google Scholar 

  • Nyquist KB, Panagopoulos I, Thorsen J, et al. Whole-transcriptome sequencing identifies novel IRF2BP2-CDX1 fusion gene brought about by translocation t(1;5)(q42;q32) in mesenchymal chondrosarcoma. PLoS One. 2012;7(11):e49705.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ogose A, Unni KK, Swee RG, May GK, Rowland CM, Sim FH. Chondrosarcoma of small bones of the hands and feet. Cancer. 1997;80(1):50–9.

    CAS  PubMed  Google Scholar 

  • Olsson L, Paulsson K, Bovee JV, Nord KH. Clonal evolution through loss of chromosomes and subsequent polyploidization in chondrosarcoma. PLoS One. 2011;6(9):e24977.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ostrowski ML, Spjut HJ. Lesions of the bones of the hands and feet. Am J Surg Pathol. 1997;21(6):676–90.

    CAS  PubMed  Google Scholar 

  • Panda NK, Jain A, Eshwara Reddy CE. Osteosarcoma and chondrosarcoma of the maxilla. Br J Oral Maxillofac Surg. 2003;41(5):329–33.

    CAS  PubMed  Google Scholar 

  • Pannier S, Legeai-Mallet L. Hereditary multiple exostoses and enchondromatosis. Best Pract Res Clin Rheumatol. 2008;22(1):45–54.

    CAS  PubMed  Google Scholar 

  • Pansuriya TC, Kroon HM, Bovee JV. Enchondromatosis: insights on the different subtypes. Int J Clin Exp Pathol. 2010;3(6):557–69.

    PubMed Central  PubMed  Google Scholar 

  • Pansuriya TC, van Eijk R, d’Adamo P, et al. Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat Genet. 2011;43(12):1256–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Papachristou DJ, Goodman MA, Cieply K, Hunt JL, Rao UN. Comparison of allelic losses in chondroblastoma and primary chondrosarcoma of bone and correlation with fluorescence in situ hybridization analysis. Hum Pathol. 2006;37(7):890–8.

    CAS  PubMed  Google Scholar 

  • Papagelopoulos PJ, Galanis EC, Mavrogenis AF, et al. Survivorship analysis in patients with periosteal chondrosarcoma. Clin Orthop Relat Res. 2006;448:199–207.

    PubMed  Google Scholar 

  • Park YK, Park HR, Chi SG, et al. Overexpression of p53 and rare genetic mutation in mesenchymal chondrosarcoma. Oncol Rep. 2000;7(5):1041–7.

    CAS  PubMed  Google Scholar 

  • Park YK, Park HR, Chi SG, Ushigome S, Unni KK. Overexpression of p53 and absent genetic mutation in clear cell chondrosarcoma. Int J Oncol. 2001;19(2):353–7.

    CAS  PubMed  Google Scholar 

  • Prado FO, Nishimoto IN, Perez DE, Kowalski LP, Lopes MA. Head and neck chondrosarcoma: analysis of 16 cases. Br J Oral Maxillofac Surg. 2009;47(7):555–7.

    PubMed  Google Scholar 

  • Reijnders CM, Waaijer CJ, Hamilton A, et al. No haploinsufficiency but loss of heterozygosity for EXT in multiple osteochondromas. Am J Pathol. 2010;177(4):1946–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rosenberg AE, Nielsen GP, Keel SB, et al. Chondrosarcoma of the base of the skull: a clinicopathologic study of 200 cases with emphasis on its distinction from chordoma. Am J Surg Pathol. 1999;23(11):1370–8.

    CAS  PubMed  Google Scholar 

  • Rozeman LB, Hogendoorn PC, Bovee JV. Diagnosis and prognosis of chondrosarcoma of bone. Expert Rev Mol Diagn. 2002;2(5):461–72.

    PubMed  Google Scholar 

  • Rozeman LB, Sangiorgi L, Briaire-de Bruijn IH, et al. Enchondromatosis (Ollier disease, Maffucci syndrome) is not caused by the PTHR1 mutation p.R150C. Hum Mutat. 2004;24(6):466–73.

    CAS  PubMed  Google Scholar 

  • Rozeman LB, Hameetman L, Cleton-Jansen AM, Taminiau AH, Hogendoorn PC, Bovee JV. Absence of IHH and retention of PTHrP signalling in enchondromas and central chondrosarcomas. J Pathol. 2005a;205(4):476–82.

    CAS  PubMed  Google Scholar 

  • Rozeman LB, Hameetman L, van Wezel T, et al. cDNA expression profiling of chondrosarcomas: Ollier disease resembles solitary tumours and alteration in genes coding for components of energy metabolism occurs with increasing grade. J Pathol. 2005b;207(1):61–71.

    CAS  PubMed  Google Scholar 

  • Rozeman LB, Szuhai K, Schrage YM, et al. Array-comparative genomic hybridization of central chondrosarcoma: identification of ribosomal protein S6 and cyclin-dependent kinase 4 as candidate target genes for genomic aberrations. Cancer. 2006;107(2):380–8.

    CAS  PubMed  Google Scholar 

  • Rozeman LB, de Bruijn IH, Bacchini P, et al. Dedifferentiated peripheral chondrosarcomas: regulation of EXT-downstream molecules and differentiation-related genes. Mod Pathol. 2009;22(11):1489–98.

    CAS  PubMed  Google Scholar 

  • Salvador AH, Beabout JW, Dahlin DC. Mesenchymal chondrosarcoma – observations on 30 new cases. Cancer. 1971;28(3):605–15.

    CAS  PubMed  Google Scholar 

  • Schajowicz F. Juxtacortical chondrosarcoma. J Bone Joint Surg Br. 1977;59-B(4):473–80.

    CAS  PubMed  Google Scholar 

  • Schrage YM, Briaire-de Bruijn IH, de Miranda NF, et al. Kinome profiling of chondrosarcoma reveals SRC-pathway activity and dasatinib as option for treatment. Cancer Res. 2009;69(15):6216–22.

    CAS  PubMed  Google Scholar 

  • Schrage YM, Machado I, Meijer D, et al. COX-2 expression in chondrosarcoma: a role for celecoxib treatment? Eur J Cancer. 2010;46(3):616–24.

    CAS  PubMed  Google Scholar 

  • Shakked RJ, Geller DS, Gorlick R, Dorfman HD. Mesenchymal chondrosarcoma: clinicopathologic study of 20 cases. Arch Pathol Lab Med. 2012;136(1):61–75.

    PubMed  Google Scholar 

  • Silve C, Juppner H. Ollier disease. Orphanet J Rare Dis. 2006;1:37.

    PubMed Central  PubMed  Google Scholar 

  • Skeletal Lesions Interobserver Correlation among Expert Diagnosticians (SLICED) Study Group. Reliability of histopathologic and radiologic grading of cartilaginous neoplasms in long bones. J Bone Joint Surg Am. 2007;89(10):2113–23.

    Google Scholar 

  • Soder S, Oliveira AM, Inwards CY, Muller S, Aigner T. Type II collagen, but not aggrecan expression, distinguishes clear cell chondrosarcoma and chondroblastoma. Pathology. 2006;38(1):35–8.

    CAS  PubMed  Google Scholar 

  • Soderstrom M, Palokangas T, Vahlberg T, Bohling T, Aro H, Carpen O. Expression of ezrin, Bcl-2, and Ki-67 in chondrosarcomas. APMIS. 2010;118(10):769–76.

    PubMed  Google Scholar 

  • Steiner GC, Schweitzer ME, Kenan S, Abdelwahab IF. Chondrosarcoma of the femur with histology-imaging correlation of tumor growth–preliminary observations concerning periosteal new bone formation and soft tissue extension. Bull NYU Hosp Jt Dis. 2011;69(2):158–67.

    PubMed  Google Scholar 

  • Stone E, Bernier V, Rabinovich S, From GL. Oncogenic osteomalacia associated with a mesenchymal chondrosarcoma. Clin Invest Med. 1984;7(3):179–85.

    CAS  PubMed  Google Scholar 

  • Swanson PE. Clear cell tumors of bone. Semin Diagn Pathol. 1997;14(4):281–91.

    CAS  PubMed  Google Scholar 

  • Tarpey PS, Behjati S, Cooke SL, et al. Frequent mutation of the major cartilage collagen gene COL2A1 in chondrosarcoma. Nat Genet. 2013;45(8):923–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Terek RM. Recent advances in the basic science of chondrosarcoma. Orthop Clin N Am. 2006;37(1):9–14.

    Google Scholar 

  • Terek RM, Healey JH, Garin-Chesa P, Mak S, Huvos A, Albino AP. p53 mutations in chondrosarcoma. Diagn Mol Pathol. 1998;7(1):51–6.

    CAS  PubMed  Google Scholar 

  • Unni KK, Dahlin DC, Beabout JW. Periosteal osteogenic sarcoma. Cancer. 1976a;37(5):2476–85.

    CAS  PubMed  Google Scholar 

  • Unni KK, Dahlin DC, Beabout JW, Sim FH. Chondrosarcoma: clear-cell variant. A report of sixteen cases. J Bone Joint Surg Am. 1976b;58(5):676–83.

    CAS  PubMed  Google Scholar 

  • Uppin SG, Sundaram C, Umamahesh M, Chandrashekar P, Rani YJ, Prasad VB. Lesions of the bones of the hands and feet: a study of 50 cases. Arch Pathol Lab Med. 2008;132(5):800–12.

    PubMed  Google Scholar 

  • van Beerendonk HM, Rozeman LB, Taminiau AH, et al. Molecular analysis of the INK4A/INK4A-ARF gene locus in conventional (central) chondrosarcomas and enchondromas: indication of an important gene for tumour progression. J Pathol. 2004;202(3):359–66.

    PubMed  Google Scholar 

  • van Oosterwijk JG, van Ruler MA, Briaire-de Bruijn IH, et al. Src kinases in chondrosarcoma chemoresistance and migration: dasatinib sensitises to doxorubicin in TP53 mutant cells. Br J Cancer. 2013;109(5):1214–22.

    PubMed Central  PubMed  Google Scholar 

  • Verdegaal SH, Bovee JV, Pansuriya TC, et al. Incidence, predictive factors, and prognosis of chondrosarcoma in patients with Ollier disease and Maffucci syndrome: an international multicenter study of 161 patients. Oncologist. 2011;16(12):1771–9.

    PubMed Central  PubMed  Google Scholar 

  • Wang L, Motoi T, Khanin R, et al. Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Genes Chromosom Cancer. 2012;51(2):127–39.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wehrli BM, Huang W, De Crombrugghe B, Ayala AG, Czerniak B. Sox9, a master regulator of chondrogenesis, distinguishes mesenchymal chondrosarcoma from other small blue round cell tumors. Hum Pathol. 2003;34(3):263–9.

    CAS  PubMed  Google Scholar 

  • Wuisman PI, Jutte PC, Ozaki T. Secondary chondrosarcoma in osteochondromas. Medullary extension in 15 of 45 cases. Acta Orthop Scand. 1997;68(4):396–400.

    CAS  PubMed  Google Scholar 

  • Yokota K, Sakamoto A, Matsumoto Y, et al. Clinical outcome for patients with dedifferentiated chondrosarcoma: a report of 9 cases at a single institute. J Orthop Surg Res. 2012;7:38.

    PubMed Central  PubMed  Google Scholar 

  • Yoshitaka T, Kawai A, Miyaki S, et al. Analysis of microRNAs expressions in chondrosarcoma. J Orthop Res. 2013;31:1992–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto G. Ayala MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Piña-Oviedo, S., Ro, J.Y., Ayala, A.G., Park, YK. (2015). Chondrosarcoma. In: Santini-Araujo, E., Kalil, R., Bertoni, F., Park, YK. (eds) Tumors and Tumor-Like Lesions of Bone. Springer, London. https://doi.org/10.1007/978-1-4471-6578-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6578-1_23

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6577-4

  • Online ISBN: 978-1-4471-6578-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics