Can We Use Metabolomics to Understand Changes to Gut Microbiota Populations and Function? A Nutritional Perspective

  • Sofia MocoEmail author
  • Alastair B. Ross
Part of the Molecular and Integrative Toxicology book series (MOLECUL)


Food is an integral part of human life, and the composition of our diet is an important determinant of our health and well-being. Food is also the main source of energy and nutrients for the gut microbiota, the 100 trillion cells that coexist inside us. The impact of macronutrients (protein, fat, carbohydrates, and fiber) and specific non-nutrient food components (polyphenols) will be reviewed in the context of gut microbial function and interaction with the host. Colonic microbiota provides diverse enzymatic activities differing from our own, which lead to the production of metabolites essential for key metabolic functions, including carbohydrate and amino acid metabolism. Certain gut metabolites are specific to microbial activity and confer functionalities beyond energy production, such as signalling cascades across cells, tissues, and organs. Metabolomics has proven to be a useful tool to measure the effects of food on the gut microbiota and its interaction with host metabolism.


Nutrition Gut Metabolomics Digestion Phase II metabolism Food One carbon metabolism Polyphenols Fiber Microbiota Diet Fat Protein Carbohydrate Choline Short-chain fatty acids Phenolic and phenyl metabolites Indole metabolites Hippurate p-Cresol sulfate Trimethylamine oxide Metabolism Metabolomics Colon Intestine Butyrate Gut-liver Gut-brain Pathways Chocolate Whole-grain cereals Carnitine Branched-chain fatty acids Prebiotics 


  1. 1.
    Salminen S, Bouley C, Boutron-Ruault MC, Cummings JH, Franck A, Gibson GR, Isolauri E, Moreau MC, Roberfroid M, Rowland I. Functional food science and gastrointestinal physiology and function. Br J Nutr. 1998;80 Suppl 1:S147–71.CrossRefPubMedGoogle Scholar
  2. 2.
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Macfarlane GT, Cummings JH, Allison C. Protein degradation by human intestinal bacteria. J Gen Microbiol. 1986;132(6):1647–56.PubMedGoogle Scholar
  5. 5.
    Kruis W, Forstmaier G, Scheurlen C, Stellaard F. Effect of diets low and high in refined sugars on gut transit, bile acid metabolism, and bacterial fermentation. Gut. 1991;32(4):367–71.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    van der Kamp JW, Poutanen K, Seal CJ, Richardson DP. The HEALTHGRAIN definition of ‘whole grain’. Food Nutr Res. 2014;58:22100.Google Scholar
  7. 7.
    Costabile A, Klinder A, Fava F, Napolitano A, Fogliano V, Leonard C, Gibson GR, Tuohy KM. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. Br J Nutr. 2008;99(1):110–20.CrossRefPubMedGoogle Scholar
  8. 8.
    Ross AB, Bruce SJ, Blondel-Lubrano A, Oguey-Araymon S, Beaumont M, Bourgeois A, Nielsen-Moennoz C, Vigo M, Fay LB, Kochhar S, Bibiloni R, Pittet AC, Emady-Azar S, Grathwohl D, Rezzi S. A whole-grain cereal-rich diet increases plasma betaine, and tends to decrease total and LDL-cholesterol compared with a refined-grain diet in healthy subjects. Br J Nutr. 2011;105(10):1492–502.CrossRefPubMedGoogle Scholar
  9. 9.
    Martínez I, Lattimer JM, Hubach KL, Case JA, Yang J, Weber CG, Louk JA, Rose DJ, Kyureghian G, Peterson DA, Haub MD, Walter J. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 2012;7(2):269–80.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    McIntosh GH, Noakes M, Royle PJ, Foster PR. Whole-grain rye and wheat foods and markers of bowel health in overweight middle-aged men. Am J Clin Nutr. 2003;77(4):967–74.PubMedGoogle Scholar
  11. 11.
    Ross AB, Pere-Trepat E, Montoliu I, Martin FP, Collino S, Moco S, Godin JP, Cleroux M, Guy PA, Breton I, Bibiloni R, Thorimbert A, Tavazzi I, Tornier L, Bebuis A, Bruce SJ, Beaumont M, Fay LB, Kochhar S. A whole-grain-rich diet reduces urinary excretion of markers of protein catabolism and gut microbiota metabolism in healthy men after one week. J Nutr. 2013;143(6):766–73.CrossRefPubMedGoogle Scholar
  12. 12.
    Fardet A, Canlet C, Gottardi G, Lyan B, Llorach R, Remesy C, Mazur A, Paris A, Scalbert A. Whole-grain and refined wheat flours show distinct metabolic profiles in rats as assessed by a 1H NMR-based metabonomic approach. J Nutr. 2007;137(4):923–9.PubMedGoogle Scholar
  13. 13.
    Lappi J, Kolehmainen M, Mykkanen H, Poutanen K. Do large intestinal events explain the protective effects of whole grain foods against type 2 diabetes? Crit Rev Food Sci Nutr. 2013;53(6):631–40.CrossRefPubMedGoogle Scholar
  14. 14.
    Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–81.CrossRefPubMedGoogle Scholar
  15. 15.
    Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Zhang AQ, Mitchell SC, Smith RL. Dietary precursors of trimethylamine in man: a pilot study. Food Chem Toxicol. 1999;37(5):515–20.CrossRefPubMedGoogle Scholar
  18. 18.
    Takata Y, Zhang X, Li H, Gao YT, Yang G, Gao J, Cai H, Xiang YB, Zheng W, Shu XO. Fish intake and risks of total and cause-specific mortality in 2 population-based cohort studies of 134,296 men and women. Am J Epidemiol. 2013;178(1):46–57.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Li YH, Zhou CH, Pei HJ, Zhou XL, Li LH, Wu YJ, Hui RT. Fish consumption and incidence of heart failure: a meta-analysis of prospective cohort studies. Chi Med J. 2013;126(5):942–8.Google Scholar
  20. 20.
    Raatz SK, Silverstein JT, Jahns L, Picklo MJ. Issues of fish consumption for cardiovascular disease risk reduction. Nutrients. 2013;5(4):1081–97.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Konstantinova SV, Tell GS, Vollset SE, Nygård O, Bleie Ø, Ueland PM. Divergent associations of plasma choline and betaine with components of metabolic syndrome in middle age and elderly men and women. J Nutr. 2008;138(5):914–20.PubMedGoogle Scholar
  22. 22.
    Bruce SJ, Guy PA, Rezzi S, Ross AB. Quantitative measurement of betaine and free choline in plasma, cereals and cereal products by isotope dilution LC-MS/MS. J Agric Food Chem. 2010;58(4):2055–61.CrossRefPubMedGoogle Scholar
  23. 23.
    Zeisel SH, Caudill MA. Choline. Adv Nutr. 2010;1:46–8.CrossRefGoogle Scholar
  24. 24.
    Olthof MR, Van Vliet T, Boelsma E, Verhoef P. Low dose betaine supplementation leads to immediate and long term lowering of plasma homocysteine in healthy men and women. J Nutr. 2003;133(12):4135–8.PubMedGoogle Scholar
  25. 25.
    Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Ross AB. Present status and perspectives on the use of alkylresorcinols as biomarkers of wholegrain wheat and rye intake. J Nutr Metab. 2012;12:46297.Google Scholar
  27. 27.
    Markhus MW, Graff IE, Dahl L, Seldal CF, Skotheim S, Braarud HC, Stormark KM, Malde MK. Establishment of a seafood index to assess the seafood consumption in pregnant women. Food Nutr Res. 2013;57:19272.Google Scholar
  28. 28.
    Chien KL, Lee MS, Tsai YT, Chen PR, Lin HJ, Hsu HC, Lee YT, Chen MF. A Taiwanese food frequency questionnaire correlates with plasma docosahexaenoic acid but not with plasma eicosapentaenoic acid levels: questionnaires and plasma biomarkers. BMC Med Res Methodol. 2013;13:23.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, Didonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WH, Bushman FD, Lusis AJ, Hazen SL. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Geypens B, Claus D, Evenepoel P, Hiele M, Maes B, Peeters M, Rutgeerts P, Ghoos Y. Influence of dietary protein supplements on the formation of bacterial metabolites in the colon. Gut. 1997;41(1):70–6.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Windey K, de Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res. 2012;56(1):184–96.CrossRefPubMedGoogle Scholar
  32. 32.
    Le Leu RK, Brown IL, Hu Y, Morita T, Esterman A, Young GP. Effect of dietary resistant starch and protein on colonic fermentation and intestinal tumourigenesis in rats. Carcinogenesis. 2007;28(2):240–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Russell WR, Gratz SW, Duncan SH, Holtrop G, Ince J, Scobbie L, Duncan G, Johnstone AM, Lobley GE, Wallace RJ, Duthie GG, Flint HJ. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr. 2011;93(5):1062–72.CrossRefPubMedGoogle Scholar
  34. 34.
    Moco S, Martin FP, Rezzi S. Metabolomics view on gut microbiome modulation by polyphenol-rich foods. J Proteome Res. 2012;11(10):4781–90.CrossRefPubMedGoogle Scholar
  35. 35.
    Martin FPJ, Montoliu I, Nagy K, Moco S, Collino S, Guy P, Redeuil K, Scherer M, Rezzi S, Kochhar S. Specific dietary preferences are linked to differing gut microbial metabolic activity in response to dark chocolate intake. J Proteome Res. 2012;11(12):6252–63.PubMedGoogle Scholar
  36. 36.
    Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JP. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr. 2011;93(1):62–72.CrossRefPubMedGoogle Scholar
  37. 37.
    Massot-Cladera M, Perez-Berezo T, Franch A, Castell M, Perez-Cano FJ. Cocoa modulatory effect on rat faecal microbiota and colonic crosstalk. Arch Biochem Biophys. 2012;527(2):105–12.CrossRefPubMedGoogle Scholar
  38. 38.
    Fogliano V, Corollaro ML, Vitaglione P, Napolitano A, Ferracane R, Travaglia F, Arlorio M, Costabile A, Klinder A, Gibson G. In vitro bioaccessibility and gut biotransformation of polyphenols present in the water-insoluble cocoa fraction. Mol Nutr Food Res. 2011;55 Suppl 1:S44–55.CrossRefPubMedGoogle Scholar
  39. 39.
    Lees HJ, Swann JR, Wilson ID, Nicholson JK, Holmes E. Hippurate: the natural history of a mammalian-microbial cometabolite. J Proteome Res. 2013;12(4):1527–46.CrossRefPubMedGoogle Scholar
  40. 40.
    Mitjavila MT, Moreno JJ. The effects of polyphenols on oxidative stress and the arachidonic acid cascade. Implications for the prevention/treatment of high prevalence diseases. Biochem Pharmacol. 2012;84(9):1113–22.CrossRefPubMedGoogle Scholar
  41. 41.
    Brandt LJ, Aroniadis OC. An overview of fecal microbiota transplantation: techniques, indications, and outcomes. Gastrointest Endosc. 2013;78(2):240–249.CrossRefPubMedGoogle Scholar
  42. 42.
    Moco S, Bino RJ, De Vos RCH, Vervoort J. Metabolomics technologies and metabolite identification. Trends Anal Chem. 2007;26:855–66.CrossRefGoogle Scholar
  43. 43.
    Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106(10):3698–703.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Zheng X, Xie G, Zhao A, Zhao L, Yao C, Chiu NH, Zhou Z, Bao Y, Jia W, Nicholson JK. The footprints of gut microbial-mammalian co-metabolism. J Proteome Res. 2011;10(12):5512–22.CrossRefPubMedGoogle Scholar
  45. 45.
    Dixon E, Clubb C, Pittman S, Ammann L, Rasheed Z, Kazmi N, Keshavarzian A, Gillevet P, Rangwala H, Couch RD. Solid-phase microextraction and the human fecal VOC metabolome. PLoS One. 2011;6(4):e18471.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Parra MD, Martinez JA. Nutritional aspects of breath testing based on stable isotopes. Nutr Rev. 2006;64(7 Pt 1):338–47.CrossRefPubMedGoogle Scholar
  47. 47.
    Rosén LAH, Silva LOB, Andersson UK, Holm C, Östman EM, Björck IM. Endosperm and whole grain rye breads are characterized by low post-prandial insulin response and a beneficial blood glucose profile. Nutr J. 2009;8:42.CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Roediger WE, Moore A. Effect of short-chaim fatty acid on sodium absorption in isolated human colon perfused through the vascular bed. Dig Dis Sci. 1981;26(2):100–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, Bultman SJ. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13(5):517–26.CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Mansour A, Hosseini S, Larijani B, Pajouhi M, Mohajeri-Tehrani MR. Nutrients related to GLP1 secretory responses. Nutrition. 2013;29(6):813–20.CrossRefPubMedGoogle Scholar
  51. 51.
    Viladomiu M, Hontecillas R, Yuan L, Lu P, Bassaganya-Riera J. Nutritional protective mechanisms against gut inflammation. J Nutr Biochem. 2013;24(6):929–39.CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Kaczmarczyk MM, Miller MJ, Freund GG. The health benefits of dietary fiber: beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metab Clin Exp. 2012;61(8):1058–66.CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013;5(4):1417–35.CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Caricilli AM, Saad MJA. The role of gut microbiota on insulin resistance. Nutrients. 2013;5(3):829–51.CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci. 2008;105(43):16767–72.CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Cummings JH, Hill MJ, Bone ES, Branch WJ, Jenkins DJ. The effect of meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in feces and urine. Am J Clin Nutr. 1979;32(10):2094–101.PubMedGoogle Scholar
  57. 57.
    Lord RS, Bralley JA. Clinical applications of urinary organic acids. Part 2: Dysbiosis markers. Alternat Med Rev. 2008;13(4):292–306.Google Scholar
  58. 58.
    Bone E, Tamm A, Hill M. The production of urinary phenols by gut bacteria and their possible role in the causation of large bowel cancer. Am J Clin Nutr. 1976;29(12):1448–54.PubMedGoogle Scholar
  59. 59.
    Dawson LF, Donahue EH, Cartman ST, Barton RH, Bundy J, McNerney R, Minton NP, Wren BW. The analysis of para-cresol production and tolerance in clostridium difficile 027 and 012 strains. BMC Microbiol. 2011;11:86.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci U S A. 2009;106(34):14728–33.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Schepers E, Meert N, Glorieux G, Goeman J, Van der Eycken J, Vanholder R. P-cresylsulphate, the main in vivo metabolite of p-cresol, activates leucocyte free radical production. Nephrol Dial Transplant. 2007;22(2):592–6.CrossRefPubMedGoogle Scholar
  62. 62.
    DeWolf WE, Carr SA, Varrichio A, Goodhart PJ, Mentzer MA, Roberts GD, Southan C, Dolle RE, Kruse LI. Inactivation of dopamine Beta-hydroxylase by p-cresol: isolation and characterization of covalently modified active site peptides. Biochemistry. 1988;27(26):9093–101.CrossRefPubMedGoogle Scholar
  63. 63.
    Seakins JW. The determination of urinary phenylacetylglutamine as phenylacetic acid. Studies on its origin in normal subjects and children with cystic fibrosis. Clin Chem Acta. 1971;35(1):121–31.CrossRefGoogle Scholar
  64. 64.
    Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK. Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol. 2011;19(7):349–59.CrossRefPubMedGoogle Scholar
  65. 65.
    Lee JH, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev. 2010;34(4):426–44.PubMedGoogle Scholar
  66. 66.
    Bansal T, Alaniz RC, Wood TK, Jayaraman A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci U S A. 2010;107(1):228–33.CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Coppen A, Shaw DM, Malleson A, Eccleston E, Gundy G. Tryptamine metabolism in depression. Br J Psychiatry J Ment Sci. 1965;111(479):993–8.CrossRefGoogle Scholar
  68. 68.
    Metzner L, Kottra G, Neubert K, Daniel H, Brandsch M. Serotonin, l-tryptophan, and tryptamine are effective inhibitors of the amino acid transport system PAT1. FASEB J. 2005;19(11):1468–73.CrossRefPubMedGoogle Scholar
  69. 69.
    Bommarius B, Anyanful A, Izrayelit Y, Bhatt S, Cartwright E, Wang W, Swimm AI, Benian GM, Schroeder FC, Kalman D. A family of indoles regulate virulence and Shiga toxin production in pathogenic E. coli. PLoS One. 2013;8(1):e54456.CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    Bianco C, Imperlini E, Calogero R, Senatore B, Amoresano A, Carpentieri A, Pucci P, Defez R. Indole-3-acetic acid improves Escherichia coli’s defences to stress. Arch Microbiol. 2006;185(5):373–82.CrossRefPubMedGoogle Scholar
  71. 71.
    Chyan YJ, Poeggeler B, Omar RA, Chain DG, Frangione B, Ghiso J, Pappolla MA. Potent neuroprotective properties against the Alzheimer beta-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid. J Biol Chem. 1999;274(31):21937–42.CrossRefPubMedGoogle Scholar
  72. 72.
    Collins SM, Bercik P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology. 2009;136(6):2003–14.CrossRefPubMedGoogle Scholar
  73. 73.
    Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, Fearnside J, Tatoud R, Blanc V, Lindon JC, Mitchell SC, Holmes E, McCarthy MI, Scott J, Gauguier D, Nicholson JK. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A. 2006;103(33):12511–6.CrossRefPubMedCentralPubMedGoogle Scholar
  74. 74.
    Weickert MO, Arafat AM, Blaut M, Alpert C, Becker N, Leupelt V, Rudovich N, Möhlig M, Pfeiffer AF. Changes in dominant groups of the gut microbiota do not explain cereal-fiber induced improvement of whole-body insulin sensitivity. Nutr Metab. 2011;8:90.CrossRefGoogle Scholar
  75. 75.
    Ward LA, Johnson KA, Robinson IM, Yokoyama MT. Isolation from swine feces of a bacterium which decarboxylates p-hydroxyphenylacetic acid to 4-methylphenol (p-cresol). Appl Environ Microbiol. 1987;53(1):189–92.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Yokoyama MT, Carlson JR. Production of Skatole and para-Cresol by a Rumen Lactobacillus sp. Appl Environ Microbiol. 1981;41(1):71–6.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Smith EA, Macfarlane GT. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol. 1996;81(3):288–302.CrossRefPubMedGoogle Scholar
  78. 78.
    Keszthelyi D, Troost FJ, Masclee AA. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterol Motil. 2009;21(12):1239–49.CrossRefPubMedGoogle Scholar
  79. 79.
    Allison C, Macfarlane GT. Influence of pH, nutrient availability, and growth rate on amine production by Bacteroides fragilis and Clostridium perfringens. Appl Environ Microbiol. 1989;55(11):2894–8.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Decroos K, Vanhemmens S, Cattoir S, Boon N, Verstraete W. Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Arch Microbiol. 2005;183(1):45–55.CrossRefPubMedGoogle Scholar
  81. 81.
    Nyangale EP, Mottram DS, Gibson GR. Gut microbial activity, implications for health and disease: the potential role of metabolite analysis. J Proteome Res. 2012;11(12):5573–85.PubMedGoogle Scholar
  82. 82.
    Allison MJ. Production of branched-chain volatile fatty acids by certain anaerobic bacteria. Appl Environ Microbiol. 1978;35(5):872–7.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Saxholt E, Christensen AT, Møller A, Hartkopp HB, Hess Ygil K, Hels OH. Fødevaredatabanken, version 7 (Danish Food Database, version 7). Afdelning for Enæring, Fødevareinstituttet, Danmarks Tekniske Universitet (2008). Accessed 6 May 2013.Google Scholar
  84. 84.
    Cooper KA, Campos-Gimenez E, Jimenez Alvarez D, Rytz A, Nagy K, Williamson G. Predictive relationship between polyphenol and nonfat cocoa solids content of chocolate. J Agric Food Chem. 2008;56(1):260–5.CrossRefPubMedGoogle Scholar
  85. 85.
    Actis-Goretta L, Ottaviani JI, Fraga CG. Inhibition of angiotensin converting enzyme activity by flavanol-rich foods. J Agric Food Chem. 2006;54(1):229–34.CrossRefPubMedGoogle Scholar
  86. 86.
    Irakli MN, Samanidou VF, Biliaderis CG, Papadoyannis IN. Simultaneous determination of phenolic acids and flavonoids in rice using solid-phase extraction and RP-HPLC with photodiode array detection. J Sep Sci. 2012;35(13):1603–11.CrossRefPubMedGoogle Scholar
  87. 87.
    Mattila P, Hellstrom J, Torronen R. Phenolic acids in berries, fruits, and beverages. J Agric Food Chem. 2006;54(19):7193–9.CrossRefPubMedGoogle Scholar
  88. 88.
    Renouf M, Marmet C, Guy P, Fraering AL, Longet K, Moulin J, Enslen M, Barron D, Cavin C, Dionisi F, Rezzi S, Kochhar S, Steiling H, Williamson G. Nondairy creamer, but not milk, delays the appearance of coffee phenolic acid equivalents in human plasma. J Nutr. 2010;140(2):259–63.CrossRefPubMedGoogle Scholar
  89. 89.
    Kyle JA, Morrice PC, McNeill G, Duthie GG. Effects of infusion time and addition of milk on content and absorption of polyphenols from black tea. J Agric Food Chem. 2007;55(12):4889–94.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Natural Bioactives and ScreeningNestlé Institute of Health SciencesLausanneSwitzerland
  2. 2.Food and Nutrition Science, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden

Personalised recommendations