Skip to main content

Vibrotactile Sensation and Softness Perception

  • Chapter
  • First Online:
Multisensory Softness

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

Abstract

Soft or deformable objects, be they rubber ducks or running shoe inserts, are rarely thought of as sources of mechanical vibrations. For similar reasons, it is often overlooked that material softness can be communicated through the vibrotactile sensory channel—that is, through the subset of the haptic perceptual system that is sensitive to mechanical vibration. In this chapter we review current knowledge about the relation between vibrotactile sensation and softness perception. It is possible to distinguish between two main types of softness perception—one pertaining to the surface material qualities of a palpated object and the other linked to volumetric compliance. This information can be obtained through four types of interactions, which will be analysed separately: direct skin contact, indirect skin contact, transient contact, frictional sliding. We review contemporary research on softness perception in these four scenarios. This research has shed light on the perceptual salience of vibrotactile stimuli and on the action-phase dependence of vibrotactile cues for softness. We also highlight the importance of the physiological and mechanical aspects of the interactions for softness perception. In most cases, vibrotactile cues have a comparatively weaker influence on perception than the cues described in other chapters produced by directly manipulating a compliant object with deformable surfaces. Nonetheless, vibrations lead to an appreciable change on perceived compliance that can be exploited in addition to other cues or when such cues are not available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akay A (2002) Acoustics of friction. J Acoust Soc Am 111:1525

    Article  Google Scholar 

  • Ben Porquis L., Konyo M, Tadokoro S (2011) Representation of softness sensation using vibrotactile stimuli under amplitude control. In: Robotics and automation (ICRA), 2011 IEEE international conference on, IEEE, pp 1380–1385

    Google Scholar 

  • Bensmaia S, Hollins M (2003) The vibrations of texture. Somatosens Mot Res 20(1):33–43

    Article  Google Scholar 

  • Bensmaia S, Hollins M (2005) Pacinian representations of fine surface texture. Percept psychophys 67(5):842

    Article  Google Scholar 

  • Bergmann Tiest WM, Kappers AML (2009) Cues for haptic perception of compliance. IEEE Trans Haptics 2(4):189–199

    Article  Google Scholar 

  • Bicchi A, Schilingo EP, De Rossi D (2000) Haptic discrimination of softness in teleoperation: the role of the contact area spread rate. IEEE Trans Rob Autom 16(5):496–504

    Article  Google Scholar 

  • Chen X, Shao F, Barnes C, Childs T, Henson B (2009) Exploring relationships between touch perception and surface physical properties. Int J Des 3(2):67–76

    MATH  Google Scholar 

  • Freeman AW, Johnson KO (1982) Cutaneous mechanoreceptors in macaque monkey: temporal discharge patterns evoked by vibration, and a receptor model. J physiol 323(1):21–41

    Google Scholar 

  • Freyberger F, Färber B (2006) Compliance discrimination of deformable objects by squeezing with one and two fingers. In: Proceedings of euroHaptics 2006, pp 271–276

    Google Scholar 

  • Friedman R, Hester K, Green B, LaMotte R (2008) Magnitude estimation of softness. Exp Brain Res 191(2):133–142

    Article  Google Scholar 

  • Fujita K, Ohmori H (2001) A new softness display interface by dynamic fingertip contact area control. In: 5th world multiconference on systemics cybernetics and informatics, pp 78–82

    Google Scholar 

  • Giordano BL, Visell Y, Yao H-Y, Hayward V, Cooperstock JR, McAdams S (2012) Identification of walked-upon materials in auditory, kinesthetic, haptic, and audio-haptic conditions. J Acoust Soc Am 131:4002

    Google Scholar 

  • Harper R, Stevens SS (1964) Subjective hardness of compliant materials. Q J Exp Psychol 16: 204–215

    Google Scholar 

  • Hollins M, Fox A, Bishop C (2000) Imposed vibration influences perceived tactile smoothness. Perception 29(12):1455–1466

    Article  Google Scholar 

  • Hollins M, Risner S (2000) Evidence for the duplex theory of tactile texture perception. Percept Psychophys 62(4):695–705

    Article  Google Scholar 

  • Hunt K, Crossley F (1975) Coefficient of restitution interpreted as damping in vibroimpact. J Appl Mech 42:440

    Article  Google Scholar 

  • Ibrahim R (1994) Friction-induced vibration, chatter, squeal, and chaos-part i: Mechanics of contact and friction. Appl Mech Rev 47(7):209–226

    Article  Google Scholar 

  • Ikeda A, Suzuki T, Takamatsu J, Ogasawara T (2013) Producing method of softness sensation by device vibration. In: 2013 IEEE international conference on systems, man, and cybernetics, pp 3384–3389

    Google Scholar 

  • Johnson KL (1995) Contact mechanics. Cambridge University, Cambridge

    Google Scholar 

  • Johnson KO (2001) The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11(4):455–461

    Article  Google Scholar 

  • Jones LA, Hunter IW (1990) A perceptual analysis of stiffness. Exp Brain Res 79:150–156

    Article  Google Scholar 

  • Jousmäki V, Hari R (1998) Parchment-skin illusion: sound-biased touch. Curr Biol 8(6):R190–R191

    Article  Google Scholar 

  • Kavounoudias A, Roll R, Roll J-P (1998) The plantar sole is a’dynamometric map’for human balance control. Neuroreport 9(14):3247–3252

    Article  Google Scholar 

  • Kavounoudias A, Roll R, Roll J-P (1999) Specific whole-body shifts induced by frequency-modulated vibrations of human plantar soles. Neurosci Lett 266(3):181–184

    Article  Google Scholar 

  • Kildal J (2010) 3D-press: haptic illusion of compliance when pressing on a rigid surface. In: International conference on multimodal interfaces and the workshop on machine learning for multimodal interaction, ACM, New York, pp 21

    Google Scholar 

  • Kildal J (2012) Kooboh: variable tangible properties in a handheld haptic-illusion box. In: haptics: perception, devices, mobility, and communication, Springer, Berlin, pp 191–194

    Google Scholar 

  • Kimura F, Yamamoto A, Higuchi T (2010) Development of a 2-Dof softness feeling display for tactile tele-presentation of deformable surfaces. In: 2010 IEEE international conference on robotics and automation, pp 1822–1827

    Google Scholar 

  • Klatzky R, Lederman S (1999) Tactile roughness perception with a rigid link interposed between skin and surface. Percept Psychophys 61(4):591–607

    Article  Google Scholar 

  • Klatzky R, Lederman S, Hamilton C, Grindley M, Swendsen R (2003) Feeling textures through a probe: effects of probe and surface geometry and exploratory factors. Percept Psychophys 65(4):613

    Article  Google Scholar 

  • Kobayashi Y, Osaka R, Hara T, Fujimoto H (2008) How accurately people can discriminate the differences of floor materials with various elasticities. IEEE Trans Neural Syst Rehabil Eng 16(1):99–105

    Article  Google Scholar 

  • Kontarinis DA, Howe RD (1995) Tactile display of vibratory information in teleoperation and virtual environments. Presence Teleoper Virtual Environ 4(4):387–402

    Google Scholar 

  • Kuchenbecker KJ, Fiene J, Niemeyer G (2006) Improving contact realism through event-based haptic feedback. IEEE Trans Visual Comput Graphics 12(2):219–230

    Article  Google Scholar 

  • LaMotte R (2000) Softness discrimination with a tool. J Neurophysiol 83(4):1777

    Google Scholar 

  • Lang J, Andrews S (2011) Measurement-based modeling of contact forces and textures for haptic rendering. IEEE Trans Visual Comput Graphics 17(3):385–391

    Google Scholar 

  • Lecuyer A, Coquillart S, Kheddar A, Richard P, Coiffet P (2000) Pseudo-haptic feedback: can isometric input devices simulate force feedback? In: Virtual reality, 2000. Proceedings. IEEE, pp 83–90

    Google Scholar 

  • Lederman SJ, Klatzky RL (1987) Hand movements: a window into haptic object recognition. Cogn Psychol 19(3):342–368

    Article  Google Scholar 

  • Massimino MJ, Sheridan TB (1993) Sensory substitution for force feedback in teleoperation. Presence Teleoper Virtual Environ 2(4):344–352

    Google Scholar 

  • Morioka M, Griffin MJ (2002) Dependence of vibrotactile thresholds on the psychophysical measurement method. Int Arch Occupational Environ Health 75(1–2):78–84

    Google Scholar 

  • Morioka M, Whitehouse DJ, Griffin MJ (2008) Vibrotactile thresholds at the fingertip, volar forearm, large toe, and heel. Somatosens Mot Res 25(2):101–112

    Article  Google Scholar 

  • Okamoto S (2010) Tactile transmission system and perceptual effects of delayed tactile feedback. PhD thesis, Tohoku University

    Google Scholar 

  • Okamura A, Dennerlein J, Howe R (1998) Vibration feedback models for virtual environments. In: 1998 IEEE international conference on robotics and automation, 1998. Proceedings, vol 1. pp 674–679

    Google Scholar 

  • Okamura AM, Cutkosky MR, Dennerlein JT (2001) Reality-based models for vibration feedback in virtual environments. IEEE/ASME Trans Mechatron 6(3):245–252

    Article  Google Scholar 

  • Pense-Lheritier A-M, Guilabert C, Bueno M, Sahnoun M, Renner M (2006) Sensory evaluation of the touch of a great number of fabrics. Food Qual Prefer 17(6):482–488

    Article  Google Scholar 

  • Ribot-Ciscar E, Vedel J, Roll J (1989) Vibration sensitivity of slowly and rapidly adapting cutaneous mechanoreceptors in the human foot and leg. Neurosci Lett 104(1):130–135

    Article  Google Scholar 

  • Rust J, Keadle T, Allen D, Shalev I, Barker R (1994) Tissue softness evaluation by mechanical stylus scanning. Text Res J 64(3):163–168

    Article  Google Scholar 

  • Scilingo EP, Bianchi M, Grioli G, Bicchi A (2010) Rendering softness: integration of kinesthetic and cutaneous information in a haptic device. IEEE Trans Haptics 3(2):109–118

    Article  Google Scholar 

  • Scott-Blair G, Coppen F (1940) The subjective judgement of the elastic and plastic properties of soft bodies. Br J Psychol 31:61–79

    Google Scholar 

  • Srinivasan M, LaMotte R (1995) Tactual discrimination of softness. J Neurophysiol 73(1):88–101

    Google Scholar 

  • Suzuki T, Mabuchi K, Nishimura H, Saito T, Kakuta N, Kunimoto M, Shimojo M, Ishikawa M (1999) The electrical control of pressure sensations: the relationship between stimulation signals and subjective intensities and areas. In: first joint BMES/EMBS conference, pp 457–457

    Google Scholar 

  • Takahiro Y, Okamoto S, Konyo M, Hidaka Y, Maeno T, Tadokoro S (2010) Real-time remote transmission of multiple tactile properties through master-slave robot system. In: 2010 IEEE international conference on robotics and automation, IEEE, pp 1753–1760

    Google Scholar 

  • Tan H, Durlach N, Beauregard G, Srinivasan M (1995) Manual discrimination of compliance using active pinch grasp: The roles of force and work cues. Percept Psychophys 57(4):495–510

    Article  Google Scholar 

  • Tiest WMB, Kappers AM (2009) Cues for haptic perception of compliance. IEEE Trans Haptics 2(4):189–199

    Article  Google Scholar 

  • Vedel J, Roll J (1982) Response to pressure and vibration of slowly adapting cutaneous mechanoreceptors in the human foot. Neurosci Lett 34(3):289–294

    Article  Google Scholar 

  • Verrillo RT (1966) Vibrotactile thresholds for hairy skin. J Exp Psychol 72(1):47

    Article  Google Scholar 

  • Visell Y (2009) Tactile sensory substitution: Models for enaction in hci. Interact Comput 21 (1–2):38–53

    Google Scholar 

  • Visell Y, Giordano BL, Millet G, Cooperstock JR (2011) Vibration influences haptic perception of surface compliance during walking. PLoS One 6(3):e17697

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yon Visell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Visell, Y., Okamoto, S. (2014). Vibrotactile Sensation and Softness Perception . In: Di Luca, M. (eds) Multisensory Softness. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-6533-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6533-0_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6532-3

  • Online ISBN: 978-1-4471-6533-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics