Advertisement

Introduction

Chapter
Part of the Springer Finance book series (FINANCE)

Abstract

This study initially stemmed from my general interest in incomplete markets, which then shifted more specifically to the issue of unobservable and/or unrepresented state variables and dynamics, before settling on the more general notion of model risk. Also, underlying the obvious academic potential was a more practical focus on how the calibration and the hedging algorithms should be managed and coordinated, in order to mitigate that model risk.

Keywords

Market Model Stochastic Volatility Implied Volatility Stochastic Volatility Model European Option 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Breeden, D., Litzenberger, R.: Prices of state-contingent claims implicit in option prices. J. Bus. 51, 621–651 (1978)CrossRefGoogle Scholar
  2. 2.
    Dupire, B.: Pricing and Hedging with Smiles. Working Paper, Paribas Capital Markets (1993)Google Scholar
  3. 3.
    Stein, E.M., Stein, J.C.: Stock price distributions with stochastic volatility: an analytic approach. Rev. Financ. Stud. 4(4), 727–752 (1991)CrossRefGoogle Scholar
  4. 4.
    Hull, J., White, A.: The pricing of options on assets with stochastic volatilities. J. Finance 42, 281–300 (1987)Google Scholar
  5. 5.
    Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)CrossRefGoogle Scholar
  6. 6.
    Hagan, P.S., Kumar, D., Lesniewski, A.S., Woodward, D.E.: Managing smile risk. Wilmott Mag. 1(September), 84–108 (2002)Google Scholar
  7. 7.
    Andersen, L., Brotherton-Ratcliffe, R.: Extended Libor Market Models with Stochastic Volatility. Technical Report, Bank of America (2001)Google Scholar
  8. 8.
    Heath, D., Jarrow, R.A., Morton, A.: Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. Econometrica 60, 77–105 (1992)CrossRefMATHGoogle Scholar
  9. 9.
    Cont, R., da Fonseca, J.: Dynamics of implied volatility surfaces. Quant. Finance 2, 45–60 (2002)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Cont, R., da Fonseca, J., Durrleman, V.: Stochastic models of implied volatility surfaces. Econ. Notes 31(2), 361–377 (2002)Google Scholar
  11. 11.
    Lyons, T.J.: Derivatives as tradeable assets. Seminario de Matematica Financiera 98–99(2), 213–232 (1997)MathSciNetGoogle Scholar
  12. 12.
    Schönbucher, P.J.: A market model for stochastic implied volatility. Philos. Trans. R. Soc. 357(1758), 2071–2092 (1999)Google Scholar
  13. 13.
    Brace, A., Goldys, B., Klebaner, F., Womersley, R.: Market Model of Stochastic Implied Volatility with Application to the BGM Model. Technical Report, University of New South Wales (2001)Google Scholar
  14. 14.
    Babbar, K.A.: Aspects of stochastic implied volatility in financial markets. Ph.D. thesis, Imperial College London (2001)Google Scholar
  15. 15.
    Ledoit, O., Santa-Clara, P., Yan, S.: Relative Pricing of Options with Stochastic Volatility. Technical Report, Anderson Graduate School of Management (UCLA) (2002)Google Scholar
  16. 16.
    Davis, M.H.A.: Complete-market models of stochastic volatility. In: Proceedings of the Royal Society, pp. 11–26 (2004)Google Scholar
  17. 17.
    Wissel, J.: Arbitrage-Free Market Models for Option Prices. Technical Report, NCCR FINRISK No. 428 (2007)Google Scholar
  18. 18.
    Schweiser, M., Wissel, J.: Term structures of implied volatilities: absence of arbitrage and existence results. Math. Finance 18(1), 77–114 (2008)Google Scholar
  19. 19.
    Schweiser, M., Wissel, J.: Arbitrage-free market models for option prices: the multi-strike case. Finance Stochast. 12, 469–505 (2008)Google Scholar
  20. 20.
    Jacod, J., Protter, P.: Risk neutral compatibility with option prices. Finance Stochast. 14(2), 285–315 (2010)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Davis, M., Obloj, J.: Market Completion Using Options. Technical Report, Imperial College London (2008)Google Scholar
  22. 22.
    Balland, P.: Deterministic implied volatility models. Quant. Finance 2, 31–44 (2002)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Rousseau, N.: How to keep the smile? Dynamic vega hedges and volatility derivatives. Ph.D. thesis, Universite de Nice Sophia Antipolis (2007)Google Scholar
  24. 24.
    Rogers, L.C.G., Tehranchi, M.R.: Can the implied volatility surface move by parallel shifts? Finance Stochast. 14(2), 235–248 (2010)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Hafner, R.: Stochastic implied volatility: A data based model. In: Lecture Notes in Economics and Mathematical Systems, vol. 545. Springer, Berlin (2004)Google Scholar
  26. 26.
    Hafner, R., Schmid, B.: A Factor-Based Stochastic Implied Volatility Model. Technical Report, Risklab Germany (2005)Google Scholar
  27. 27.
    Fengler, M.R.: Semiparametric modeling of implied volatility. In: Springer Finance Lecture Notes. Springer, Berlin (2005)Google Scholar
  28. 28.
    Zilber, A.: A Market Model for Stochastic Smiles. Working Paper, University of Twente (2006)Google Scholar
  29. 29.
    Derman, E., Kani, I.: Stochastic implied trees: arbitrage pricing with stochastic term and strike structure of volatility. Int. J. Theor. Appl. Finance 1(1), 61–110 (1998)CrossRefMATHGoogle Scholar
  30. 30.
    Alexander, C., Nogueira, L.M.: Hedging with Stochastic and Local Volatility. Working Paper 2004–2011, ISMA Centre, University of Reading (2004)Google Scholar
  31. 31.
    Alexander, C., Nogueira, L. M.: Stochastic local volatility. In: Proceedings of the Second IASTED International Conference, pp. 136–141 (2004)Google Scholar
  32. 32.
    Carmona, R., Nadtochiy, S.: An infinite dimensional stochastic analysis approach to local volatility models. Commun. Stochast. Anal. 2(1), 109–123 (2008)MathSciNetGoogle Scholar
  33. 33.
    Carmona, R., Nadtochiy, S.: Local volatility dynamic models. Finance Stochast. 13(1), 1–48 (2009)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Ren, Y., Madan, D., Qian, M.Q.: Calibrating and pricing with embedded local volatility models. Risk Magazine, 120(9), 138 (2007)Google Scholar
  35. 35.
    Potter, C.W.: Complete Stochastic Volatility Models with Variance Swaps. Technical Report, Oxford University (2004)Google Scholar
  36. 36.
    Bergomi, L.: Smile dynamics. Risk 117–123 (2004)Google Scholar
  37. 37.
    Bergomi, L.: Smile dynamics II. Risk 67–73 (2005)Google Scholar
  38. 38.
    Bergomi, L.: Smile dynamics III. Risk 90–96 (2008)Google Scholar
  39. 39.
    Bergomi, L.: Smile dynamics IV. Risk 94–100 (2009)Google Scholar
  40. 40.
    Buhler, H.: Consistent variance curve models. Finance Stochast. 10(2), 178–203 (2006)Google Scholar
  41. 41.
    Buhler, H.: Volatility markets: consistent modeling, hedging and practical implementation of variance swap market models. Ph.D. thesis, Technical University Berlin (2006)Google Scholar
  42. 42.
    Piterbarg, V.V.: Stochastic volatility model with time-dependent skew. Appl. Math. Finance 12, 147–185 (2005)Google Scholar
  43. 43.
    Piterbarg, V.V.: Markovian projection for volatility calibration. Risk Mag. 20, 84–89 (2007)Google Scholar
  44. 44.
    Fouque, J.-P., Papanicolau, G., Sircar, K.R.: Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press, Cambridge (2000)Google Scholar
  45. 45.
    Lesniewski, A.: WKB Method for Swaption Smile. Technical Report, BNP Paribas (2002)Google Scholar
  46. 46.
    Berestycki, H., Busca, J., Florent I.: Asymptotics and calibration of local volatility models. Quant. Finance 2(1), 61–69 (2002)Google Scholar
  47. 47.
    Varadhan, S.R.S.: Large deviations. Ann. Probab. 36(2), 397–419 (2008)Google Scholar
  48. 48.
    Hagan, P.S., Woodward, D.E.: Equivalent black volatilities. Appl. Math. Finance 6, 147–157 (1999)CrossRefMATHGoogle Scholar
  49. 49.
    Benhamou, E., Gobet, E., Miri, M.: Expansion formulas for European options in a local volatility model. Int. J. Theor. Appl. Finance 13(4), 603 (2010)Google Scholar
  50. 50.
    Benhamou, E., Gobet, E., Miri, M.: Analytical Formulas for Local Volatility Model with Stochastic Rates. Technical Report, Universite de Grenoble (2009)Google Scholar
  51. 51.
    Kunita, H.: Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, Cambridge (1990)Google Scholar
  52. 52.
    Benhamou, E., Gobet, E., Miri, M.: Time Dependent Heston Model. Technical Report, Universite de Grenoble (2009)Google Scholar
  53. 53.
    Gatheral, J., Hsu, E.P., Laurence, P., Ouyang, C., Wang, T.H.: Asymptotics of Implied Volatility in Local Volatility Models. Technical Report, City University of New York (2010)Google Scholar
  54. 54.
    Gatheral, J., Hsu, E., Laurence, P., Ouyang, C., Wang, T.-H.: Asymptotics of implied volatility in local volatility models. Math. Finance 22, 591–620 (2012)Google Scholar
  55. 55.
    Beresticki, H., Busca, J., Florent, I.: Computing the implied volatility in stochastic volatility models. Commun. Pure Appl. Math. LVII, 1352–1373 (2004)Google Scholar
  56. 56.
    Hagan, P.S., Lesniewski, A.S., Woodward, D.E.: Probability Distribution in the SABR Model of Stochastic Volatility. Report, Bloomberg LP (2005)Google Scholar
  57. 57.
    Obloj, J.: Fine-Tune Your Smile: Correction to Hagan et al. Technical Report, Imperial College London (March) (2008)Google Scholar
  58. 58.
    Fouque, J.-P., Papanicolau, G., Sircar, K.R., Solna, K.: Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives. Cambridge University Press, Cambridge (2011)Google Scholar
  59. 59.
    Fouque, J.-P., Papanicolau, G., Sircar, K.R.: Financial modeling in a fast mean-reverting stochastic volatility environment. Asia-Pacific Financ. Markets 6, 37–48 (1999)Google Scholar
  60. 60.
    Fouque, J.-P., Papanicolau, G., Sircar, K.R.: Mean-reverting stochastic volatility. SIAM J. Control Optim. 31, 470–493 (2000)Google Scholar
  61. 61.
    Medvedev, A.: Asymptotic Methods for Computing Implied Volatilities Under Stochastic Volatility. Technical Report, National Center of Competence in Research (2004)Google Scholar
  62. 62.
    Medvedev, A.: Implied Volatility at Expiration. Technical Report, Swiss Finance Institute (2008)Google Scholar
  63. 63.
    Medvedev, A., Scaillet, O.: A Simple Calibration Procedure of Stochastic Volatility Models with Jumps by Short Term Asymptotics. Technical Report, University of Geneva (2003)Google Scholar
  64. 64.
    Medvedev, A., Scaillet, O.: Approximation and Calibration of Short-Term Implied Volatilities Under Jump-Diffusion Stochastic Volatility. Technical Report, University of Geneva (2006)Google Scholar
  65. 65.
    Lee, R.W.: Implied volatility: statics, dynamics, and probabilistic interpretation. In: Baeza-Yates R., et al. (eds), Recent Advances in Applied Probability, pp. 241–268. Springer, New York (2005)Google Scholar
  66. 66.
    Fournie, E., Lebuchoux, J., Touzi, N.: Small noise expansion and importance sampling. Asymptot. Anal. 14(4), 361–376 (1997)MATHMathSciNetGoogle Scholar
  67. 67.
    Henry-Labordere, P.: In: Analysis, Geometry and Modeling in Finance—Advanced Methods in Option Pricing. CRC Financial Mathematics Series. Chapman & Hall, London (2008)Google Scholar
  68. 68.
    Henry-Labordere, P.: A General Asymptotic Implied Volatility for Stochastic Volatility Models. Technical Report, Barclays Capital (2005)Google Scholar
  69. 69.
    Henry-Labordere, P.: Unifying the BGM and SABR Models: A Short Ride in Hyperbolic Geometry. Technical Report, Societe Generale (2006)Google Scholar
  70. 70.
    Forde, M., Jacquier, A.: Small-Time Asymptotics for Implied Volatility Under a General Local-stochastic Volatility Model. Technical Report, Imperial College London (2009)Google Scholar
  71. 71.
    Osajima, Y.: General Asymptotics of Wiener Functionals and Application to Mathematical Finance. Report, Graduate School of Mathematical Sciences, University of Tokyo (2007)Google Scholar
  72. 72.
    Osajima, Y.: The Asymptotic Expansion Formula of Implied Volatility for Dynamic SABR Model and FX Hybrid Model. Report, Graduate School of Mathematical Sciences, University of Tokyo (2006)Google Scholar
  73. 73.
    Kunitomo, N., Takahashi, A.: Applications of the Asymptotic Expansion Approach Based on Malliavin-Watanabe Calculus in Financial Problems. Report, Graduate School of Mathematical Sciences, University of Tokyo (2003)Google Scholar
  74. 74.
    Kunitomo, N., Takahashi, A.: The asymptotic expansion approach to the valuation of interest rate contingent claims. Math. Finance 11(1), 117–151 (2001)CrossRefMATHMathSciNetGoogle Scholar
  75. 75.
    Jaeckel, P., Kawai, A.: An asymptotic FX option formula in the cross currency Libor market model. Wilmott Mag. 74–84 (2007)Google Scholar
  76. 76.
    Daniels, H.E.: Saddlepoint approximations in statistics. Ann. Math. Stat. 25, 631–650 (1954)CrossRefMATHMathSciNetGoogle Scholar
  77. 77.
    Jensen, J.: Saddlepoint Approximations. Oxford University Press, Oxford (1995)Google Scholar
  78. 78.
    Butler, R.W.: Saddlepoint Approximations with Applications. Cambridge University Press, Cambridge (2007)Google Scholar
  79. 79.
    Forde, M., Jacquier, A.: Small-time asymptotics for implied volatility under the Heston model. Int. J. Theor. Appl. Finance 12, 861–876 (2009)CrossRefMATHMathSciNetGoogle Scholar
  80. 80.
    Forde, M., Jacquier, A., Mijatovic, A.: Asymptotic Formulae for Implied Volatility in the Heston Model. Technical Report, Imperial College London (2010)Google Scholar
  81. 81.
    Forde, M., Jacquier, A., Lee, R.: The Small-Time Smile and Term Structure of Implied Volatility Under the Heston Model. Technical Report, Imperial College London (2012)Google Scholar
  82. 82.
    Rogers, L.C.G., Zane, O.: Saddlepoint approximations to option prices. Ann. Appl. Probab. 9(2), 493–503 (1999)CrossRefMATHMathSciNetGoogle Scholar
  83. 83.
    Carr, P., Madan, D.: Saddlepoint methods for option pricing. J. Comput. Finance 13(1), 49–61 (2009)MATHMathSciNetGoogle Scholar
  84. 84.
    Jacquier, A.: Asymptotic Skew Under Stochastic Volatility. Technical Report, Birkbeck University (2007)Google Scholar
  85. 85.
    Ait-Sahalia, Y., Yu, J.: Saddlepoint approximations for continuous-time Markov processes. J. Econ. 134, 507–551 (2006)Google Scholar
  86. 86.
    Kristensen, D., Mele, A.: Adding and subtracting Black-Scholes: a new approach to approximating derivative prices in continuous-time models. J. Financial Econ. 102, 390–415 (2011)Google Scholar
  87. 87.
    Lee, R.W.: The moment formula for implied volatility at extreme strikes. Math. Finance 14(3), 469–480 (2004)CrossRefMATHMathSciNetGoogle Scholar
  88. 88.
    Benaim, S., Friz, P.: Regular variation and smile asymptotics. Math. Finance 19, 1–12 (2009)Google Scholar
  89. 89.
    Benaim, S., Friz, P.: Smile Asymptotics II: Models with Known Moment Generating Function. Technical Report, University of Cambridge (2008)Google Scholar
  90. 90.
    Benaim, S., Friz, P., Lee, R.: On the Black-Scholes Implied Volatility at Extreme Strikes. Technical Report, University of Cambridge, University of Chicago (2008)Google Scholar
  91. 91.
    Tehranchi, M.: Asymptotics of implied volatility far from maturity. J. Appl. Probab. 46(3), 629–650 (2009)CrossRefMATHMathSciNetGoogle Scholar
  92. 92.
    Gao, K., Lee, R.: Asymptotics of Implied Volatility to Arbitrary Order. Technical Report, University of Chicago (2011)Google Scholar
  93. 93.
    Engulatov, A., Gonzalez, R., Scaillet, O.: Recovering Nonlinear Dynamics from Option Prices. Technical Report, University of Geneva (2011)Google Scholar
  94. 94.
    Durrleman, V.: From implied to spot volatilities. Ph.D. thesis, Princeton University (2003)Google Scholar
  95. 95.
    Durrleman, V.: From implied to spot volatilities. Finance Stochast. 14(2), 157–177 (2010)Google Scholar
  96. 96.
    Durrleman, V., El Karoui, N.: Coupling smiles. Quant. Finance 8, 573–590 (2008)Google Scholar
  97. 97.
    Durrleman, V.: Convergence of At-the-Money Implied Volatilities to the Spot Volatility. Technical Report, CMAP, Ecole Polytechnique (2007)Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.LondonUK

Personalised recommendations