Skip to main content

Dopamine Receptors and Levodopa-Induced Dyskinesia

  • Chapter
  • First Online:
Levodopa-Induced Dyskinesia in Parkinson's Disease

Abstract

This chapter reviews preclinical and relevant clinical studies investigating the role and contribution of dopamine (DA) receptor subtypes in the pathophysiology of L-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesias (LID) in parkinsonian patients and animal models. Altered dopaminergic neurotransmission in the basal ganglia are observed in LID. Two conditions are necessary for their appearance: (1) loss of DA in nigrostriatal pathway and (2) treatment with l-DOPA or DA agonists, the basis of replacement therapy. LID are clearly more complex than a hypersensitivity due to a simple increase in the density of striatal DA receptors. The development and expression of LID are related to increases in the activity of D1, D2, and D3 receptors, while the contribution of the activity of D4 and D5 receptors remains unexplored. In clinical trials with PD patients, some factors have been identified to increase the risk of developing LID such as high doses of l-DOPA or DA agonist treatment, abnormal and pulsatile stimulation of DA receptors, activation of a specific DA receptor subtype (D1 vs. D2/D3), and polymorphisms of the DA receptor subtypes (D1, D2). DA receptors interact with receptors of several other neurotransmitters. The implications of these interactions in the development and expression of LID in PD patients and animal models need further investigation to find novel drug targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5:525–35.

    PubMed  Google Scholar 

  2. Siderowf A, Stern M. Update on Parkinson disease. Ann Intern Med. 2003;138:651–8.

    PubMed  Google Scholar 

  3. Jellinger KA. Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol. 1991;14:153–97.

    PubMed  CAS  Google Scholar 

  4. Fabbrini G, Brotchie JM, Grandas F, Nomoto M, Goetz CG. Levodopa-induced dyskinesias. Mov Disord. 2007;22:1379–89.

    PubMed  Google Scholar 

  5. Gottwald MD, Aminoff MJ. Therapies for dopaminergic-induced dyskinesias in Parkinson disease. Ann Neurol. 2011;69:919–27.

    PubMed  CAS  Google Scholar 

  6. Meissner WG, Frasier M, Gasser T, Goetz CG, Lozano A, Piccini P, et al. Priorities in Parkinson’s disease research. Nat Rev Drug Discov. 2011;10:377–93.

    PubMed  CAS  Google Scholar 

  7. Mayeux R, Stern Y, Mulvey K, Cote L. Reappraisal of temporary levodopa withdrawal (“drug holiday”) in Parkinson’s disease. N Engl J Med. 1985;313:724–8.

    PubMed  CAS  Google Scholar 

  8. Olanow CW, Stern MB, Sethi K. The scientific and clinical basis for the treatment of Parkinson disease (2009). Neurology. 2009;72:S1–136.

    PubMed  Google Scholar 

  9. Parkinson Study Group. Pramipexole vs levodopa as initial treatment for Parkinson disease: a randomized controlled trial. JAMA. 2000;284:1931–8.

    Google Scholar 

  10. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. 056 Study Group. N Engl J Med. 2000;342:1484–91.

    PubMed  CAS  Google Scholar 

  11. Olanow CW. The scientific basis for the current treatment of Parkinson’s disease. Annu Rev Med. 2004;55:41–60.

    PubMed  CAS  Google Scholar 

  12. Parkinson Study Group. Long-term effect of initiating pramipexole vs levodopa in early Parkinson disease. Arch Neurol. 2009;66:563–70.

    Google Scholar 

  13. Katzenschlager R, Head J, Schrag A, Ben-Shlomo Y, Evans A, Lees AJ. Fourteen-year final report of the randomized PDRG-UK trial comparing three initial treatments in PD. Neurology. 2008;71:474–80.

    PubMed  CAS  Google Scholar 

  14. Morin N, Jourdain VA, Di Paolo T. Modeling dyskinesia in animal models of Parkinson disease. Exp Neurol. 2014;256:105–16.

    PubMed  CAS  Google Scholar 

  15. Martin RF, Bowden DM. Primate brain maps: structure of the macaque brain. Amsterdam: Elsevier Science B.V; 2000.

    Google Scholar 

  16. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 4th ed. London: Academic; 2007.

    Google Scholar 

  17. Parent A, Lévesque M, Parent M. A re-evaluation of the current model of the basal ganglia. Parkinsonism Relat Disord. 2001;7:193–8.

    PubMed  Google Scholar 

  18. Blanchet PJ, Calon F, Morissette M, Hadj Tahar A, Belanger N, Samadi P, et al. Relevance of the MPTP primate model in the study of dyskinesia priming mechanisms. Parkinsonism Relat Disord. 2004;10:297–304.

    PubMed  Google Scholar 

  19. Cenci MA, Ohlin KE, Rylander D. Plastic effects of L-DOPA treatment in the basal ganglia and their relevance to the development of dyskinesia. Parkinsonism Relat Disord. 2009;15 Suppl 3:S59–63.

    PubMed  Google Scholar 

  20. Levesque M, Parent A. The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies. Proc Natl Acad Sci. 2005;102:11888–93.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Nadjar A, Brotchie JM, Guigoni C, Li Q, Zhou S-B, Wang G-J, et al. Phenotype of striatofugal medium spiny neurons in parkinsonian and dyskinetic nonhuman primates: a call for a reappraisal of the functional organization of the basal ganglia. J Neurosci. 2006;26:8653–61.

    PubMed  CAS  Google Scholar 

  22. Wu Y, Richard S, Parent A. The organization of the striatal output system: a single-cell juxtacellular labeling study in the rat. Neurosci Res. 2000;38:49–62.

    PubMed  CAS  Google Scholar 

  23. Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63:182–217.

    PubMed  CAS  Google Scholar 

  24. Beaulieu JM, Gainetdinov RR, Caron MG. The Akt-GSK-3 signaling cascade in the actions of dopamine. Trends Pharmacol Sci. 2007;28:166–72.

    PubMed  CAS  Google Scholar 

  25. Civelli O, Bunzow JR, Grandy DK. Molecular diversity of the dopamine receptors. Annu Rev Pharmacol Toxicol. 1993;33:281–307.

    PubMed  CAS  Google Scholar 

  26. Gingrich JA, Caron MG. Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci. 1993;16:299–321.

    PubMed  CAS  Google Scholar 

  27. Greengard P. The neurobiology of slow synaptic transmission. Science (New York, NY). 2001;294:1024–30.

    CAS  Google Scholar 

  28. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev. 1998;78:189–225.

    PubMed  CAS  Google Scholar 

  29. Hurd YL, Suzuki M, Sedvall GC. D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J Chem Neuroanat. 2001;22:127–37.

    PubMed  CAS  Google Scholar 

  30. Sokoloff P, Schwartz JC. Novel dopamine receptors half a decade later. Trends Pharmacol Sci. 1995;16:270–5.

    PubMed  CAS  Google Scholar 

  31. Meador-Woodruff JH, Damask SP, Wang J, Haroutunian V, Davis KL, Watson SJ. Dopamine receptor mRNA expression in human striatum and neocortex. Neuropsychopharmacology. 1996;15:17–29.

    PubMed  CAS  Google Scholar 

  32. DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch Neurol. 2007;64:20–4.

    PubMed  Google Scholar 

  33. Aubert I, Ghorayeb I, Normand E, Bloch B. Phenotypical characterization of the neurons expressing the D1 and D2 dopamine receptors in the monkey striatum. J Comp Neurol. 2000;418:22–32.

    PubMed  CAS  Google Scholar 

  34. Koprich JB, Johnston TH, Huot P, Fox SH, Brotchie JM. New insights into the organization of the basal ganglia. Curr Neurol Neurosci Rep. 2009;9:298–304.

    PubMed  Google Scholar 

  35. Cepeda C, Hurst RS, Altemus KL, Flores-Hernandez J, Calvert CR, Jokel ES, et al. Facilitated glutamatergic transmission in the striatum of D2 dopamine receptor-deficient mice. J Neurophysiol. 2001;85:659–70.

    PubMed  CAS  Google Scholar 

  36. Wang H, Pickel VM. Dopamine D2 receptors are present in prefrontal cortical afferents and their targets in patches of the rat caudate-putamen nucleus. J Comp Neurol. 2002;442:392–404.

    PubMed  CAS  Google Scholar 

  37. Bezard E, Ferry S, Mach U, Stark H, Leriche L, Boraud T, et al. Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nat Med. 2003;9:762–7.

    PubMed  CAS  Google Scholar 

  38. Murray AM, Ryoo HL, Gurevich E, Joyce JN. Localization of dopamine D3 receptors to mesolimbic and D2 receptors to mesostriatal regions of human forebrain. Proc Natl Acad Sci. 1994;91:11271–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Suzuki M, Hurd YL, Sokoloff P, Schwartz JC, Sedvall G. D3 dopamine receptor mRNA is widely expressed in the human brain. Brain Res. 1998;779:58–74.

    PubMed  CAS  Google Scholar 

  40. Gurevich EV, Himes JW, Joyce JN. Developmental regulation of expression of the D3 dopamine receptor in rat nucleus accumbens and islands of Calleja. J Pharmacol Exp Ther. 1999;289:587–98.

    PubMed  CAS  Google Scholar 

  41. Bouthenet ML, Souil E, Martres MP, Sokoloff P, Giros B, Schwartz JC. Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res. 1991;564:203–19.

    PubMed  CAS  Google Scholar 

  42. Meador-Woodruff JH, Grandy DK, Van Tol HH, Damask SP, Little KY, Civelli O, et al. Dopamine receptor gene expression in the human medial temporal lobe. Neuropsychopharmacology. 1994;10:239–48.

    PubMed  CAS  Google Scholar 

  43. Kruusmägi M, Kumar S, Zelenin S, Brismar H, Aperia A, Scott L. Functional differences between D1 and D5 revealed by high resolution imaging on live neurons. Neuroscience. 2009;164:463–9.

    PubMed  Google Scholar 

  44. Khan ZU, Gutierrez A, Martin R, Penafiel A, Rivera A, de la Calle A. Dopamine D5 receptors of rat and human brain. Neuroscience. 2000;100:689–99.

    PubMed  CAS  Google Scholar 

  45. Alexander GM, Brainard DL, Gordon SW, Hichens M, Grothusen JR, Schwartzman RJ. Dopamine receptor changes in untreated and (+)-PHNO-treated MPTP parkinsonian primates. Brain Res. 1991;547:181–9.

    PubMed  CAS  Google Scholar 

  46. Alexander GM, Schwartzman RJ, Grothusen JR, Brainard L, Gordon SW. Changes in brain dopamine receptors in MPTP parkinsonian monkeys following L-dopa treatment. Brain Res. 1993;625:276–82.

    PubMed  CAS  Google Scholar 

  47. Aubert I, Guigoni C, Håkansson K, Li Q, Dovero S, Barthe N, et al. Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol. 2005;57:17–26.

    PubMed  CAS  Google Scholar 

  48. Calon F, Goulet M, Blanchet PJ, Martel JC, Piercey MF, Bédard PJ, et al. Levodopa or D2 agonist induced dyskinesia in MPTP monkeys: correlation with changes in dopamine and GABAA receptors in the striatopallidal complex. Brain Res. 1995;680:43–52.

    PubMed  CAS  Google Scholar 

  49. Goulet M, Grondin R, Blanchet PJ, Bédard PJ, Di Paolo T. Dyskinesias and tolerance induced by chronic treatment with a D1 agonist administered in pulsatile or continuous mode do not correlate with changes of putaminal D1 receptors in drug-naive MPTP monkeys. Brain Res. 1996;719:129–37.

    PubMed  CAS  Google Scholar 

  50. Graham WC, Clarke CE, Boyce S, Sambrook MA, Crossman AR, Woodruff GN. Autoradiographic studies in animal models of hemi-parkinsonism reveal dopamine D2 but not D1 receptor supersensitivity. II. Unilateral intra-carotid infusion of MPTP in the monkey (Macaca fascicularis). Brain Res. 1990;514:103–10.

    PubMed  CAS  Google Scholar 

  51. Graham WC, Sambrook MA, Crossman AR. Differential effect of chronic dopaminergic treatment on dopamine D1 and D2 receptors in the monkey brain in MPTP-induced parkinsonism. Brain Res. 1993;602:290–303.

    PubMed  CAS  Google Scholar 

  52. Guigoni C, Aubert I, Li Q, Gurevich VV, Benovic JL, Ferry S, et al. Pathogenesis of levodopa-induced dyskinesia: focus on D1 and D3 dopamine receptors. Parkinsonism Relat Disord. 2005;11 Suppl 1:S25–9.

    PubMed  Google Scholar 

  53. Przedborski S, Jackson-Lewis V, Popilskis S, Kostic V, Levivier M, Fahn S, et al. Unilateral MPTP-induced parkinsonism in monkeys. A quantitative autoradiographic study of dopamine D1 and D2 receptors and re-uptake sites. Neurochirurgie. 1991;37:377–82.

    PubMed  CAS  Google Scholar 

  54. Gagnon C, Gomez-Mancilla B, Markstein R, Bédard PJ, Di Paolo T. Effect of adding the D-1 agonist CY 208–243 to chronic bromocriptine treatment of MPTP-monkeys: regional changes of brain dopamine receptors. Prog Neuropsychopharmacol Biol Psychiatry. 1995;19:667–76.

    PubMed  CAS  Google Scholar 

  55. Gagnon C, Bedard PJ, Di Paolo T. Effect of chronic treatment of MPTP monkeys with dopamine D-1 and/or D- 2 receptor agonists. Eur J Pharmacol. 1990;178:115–20.

    PubMed  CAS  Google Scholar 

  56. Gnanalingham KK, Smith LA, Hunter AJ, Jenner P, Marsden CD. Alterations in striatal and extrastriatal D-1 and D-2 dopamine receptors in the MPTP-treated common marmoset: an autoradiographic study. Synapse. 1993;14:184–94.

    PubMed  CAS  Google Scholar 

  57. Gomez-Mancilla B, Boucher R, Gagnon C, Di Paolo T, Markstein R, Bédard PJ. Effect of adding the D1 agonist CY 208–243 to chronic bromocriptine treatment. I: Evaluation of motor parameters in relation to striatal catecholamine content and dopamine receptors. Mov Disord. 1993;8:144–50.

    PubMed  CAS  Google Scholar 

  58. Goulet M, Grondin R, Morissette M, Maltais S, Falardeau P, Bédard PJ, et al. Regulation by chronic treatment with cabergoline of dopamine D1 and D2 receptor levels and their expression in the striatum of Parkinsonian-monkeys. Prog Neuropsychopharmacol Biol Psychiatry. 2000;24:607–17.

    PubMed  CAS  Google Scholar 

  59. Rioux L, Frohna PA, Joyce JN, Schneider JS. The effects of chronic levodopa treatment on pre- and postsynaptic markers of dopaminergic function in striatum of parkinsonian monkeys. Mov Disord. 1997;12:148–58.

    PubMed  CAS  Google Scholar 

  60. Goulet M, Morissette M, Calon F, Blanchet PJ, Falardeau P, Bédard PJ, et al. Continuous or pulsatile chronic D2 dopamine receptor agonist (U91356A) treatment of drug-naive 4-phenyl-1,2,3,6-tetrahydropyridine monkeys differentially regulates brain D1 and D2 receptor expression: in situ hybridization histochemical analysis. Neuroscience. 1997;79:497–507.

    PubMed  CAS  Google Scholar 

  61. Morissette M, Goulet M, Calon F, Falardeau P, Blanchet PJ, Bédard PJ, et al. Changes of D1 and D2 dopamine receptor mRNA in the brains of monkeys lesioned with 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine: correction with chronic administration of L-3,4-dihydroxyphenylalanine. Mol Pharmacol. 1996;50:1073–9.

    PubMed  CAS  Google Scholar 

  62. Grondin R, Goulet M, Morissette M, Bédard PJ, Di Paolo T. Dopamine D1 receptor mRNA and receptor levels in the striatum of MPTP monkeys chronically treated with SKF-82958. Eur J Pharmacol. 1999;378:259–63.

    PubMed  CAS  Google Scholar 

  63. Pifl C, Nanoff C, Schingnitz G, Schütz W, Hornykiewicz O. Sensitization of dopamine-stimulated adenylyl cyclase in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys and patients with idiopathic Parkinson’s disease. J Neurochem. 1992;58:1997–2004.

    PubMed  CAS  Google Scholar 

  64. Elsworth JD, Brittan MS, Taylor JR, Sladek JR, Redmond DE, Innis RB, et al. Upregulation of striatal D2 receptors in the MPTP-treated vervet monkey is reversed by grafts of fetal ventral mesencephalon: an autoradiographic study. Brain Res. 1998;795:55–62.

    PubMed  CAS  Google Scholar 

  65. Falardeau P, Bouchard S, Bedard PJ, Boucher R, Di Paolo T. Behavioral and biochemical effect of chronic treatment with D-1 and/or D-2 dopamine agonists in MPTP monkeys. Eur J Pharmacol. 1988;150:59–66.

    PubMed  CAS  Google Scholar 

  66. Joyce JN, Marshall JF, Bankiewicz KS, Kopin IJ, Jacobowitz DM. Hemiparkinsonism in a monkey after unilateral internal carotid artery infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is associated with regional ipsilateral changes in striatal dopamine D-2 receptor density. Brain Res. 1986;382:360–4.

    PubMed  CAS  Google Scholar 

  67. Todd RD, Carl J, Harmon S, O’Malley KL, Perlmutter JS. Dynamic changes in striatal dopamine D2 and D3 receptor protein and mRNA in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) denervation in baboons. J Neurosci. 1996;16:7776–82.

    PubMed  CAS  Google Scholar 

  68. Herrero MT, Augood SJ, Asensi H, Hirsch EC, Agid Y, Obeso JA, et al. Effects of L-DOPA-therapy on dopamine D2 receptor mRNA expression in the striatum of MPTP-intoxicated parkinsonian monkeys. Brain Res Mol Brain Res. 1996;42:149–55.

    PubMed  CAS  Google Scholar 

  69. Hurley MJ, Jolkkonen J, Stubbs CM, Jenner P, Marsden CD. Dopamine D3 receptors in the basal ganglia of the common marmoset and following MPTP and L-DOPA treatment. Brain Res. 1996;709:259–64.

    PubMed  CAS  Google Scholar 

  70. Morissette M, Goulet M, Grondin R, Blanchet P, Bedard P, Di Paolo T, et al. Associative and limbic regions of monkey striatum express high levels of dopamine D3 receptors: effects of MPTP and dopamine agonist replacement therapies. Eur J Neurosci. 1998;10:2565–73.

    PubMed  CAS  Google Scholar 

  71. Quik M, Police S, He L, Di Monte DA, Langston JW. Expression of D(3) receptor messenger RNA and binding sites in monkey striatum and substantia nigra after nigrostriatal degeneration: effect of levodopa treatment. Neuroscience. 2000;98:263–73.

    PubMed  CAS  Google Scholar 

  72. Morissette M, Samadi P, Tahar AH, Bélanger N, Di Paolo T. Striatal Akt/GSK3 signaling pathway in the development of L-Dopa-induced dyskinesias in MPTP monkeys. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:446–54.

    PubMed  CAS  Google Scholar 

  73. Santini E, Sgambato-Faure V, Li Q, Savasta M, Dovero S, Fisone G, et al. Distinct changes in cAMP and extracellular signal-regulated protein kinase signalling in L-DOPA-induced dyskinesia. PLoS One. 2010;5:e12322.

    PubMed  PubMed Central  Google Scholar 

  74. Bezard E, Gross CE, Qin L, Gurevich VV, Benovic JL, Gurevich EV. L-DOPA reverses the MPTP-induced elevation of the arrestin2 and GRK6 expression and enhanced ERK activation in monkey brain. Neurobiol Dis. 2005;18:323–35.

    PubMed  CAS  Google Scholar 

  75. Petzinger GM, Fisher B, Hogg E, Abernathy A, Arevalo P, Nixon K, et al. Behavioral motor recovery in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned squirrel monkey (Saimiri sciureus): changes in striatal dopamine and expression of tyrosine hydroxylase and dopamine transporter proteins. J Neurosci Res. 2006;83:332–47.

    PubMed  CAS  Google Scholar 

  76. Doucet JP, Nakabeppu Y, Bédard PJ, Hope BT, Nestler EJ, Jasmin BJ, et al. Chronic alterations in dopaminergic neurotransmission produce a persistent elevation of deltaFosB-like protein(s) in both the rodent and primate striatum. Eur J Neurosci. 1996;8:365–81.

    PubMed  CAS  Google Scholar 

  77. Berton O, Guigoni C, Li Q, Bioulac BH, Aubert I, Gross CE, et al. Striatal overexpression of DeltaJunD resets L-DOPA-induced dyskinesia in a primate model of Parkinson disease. Biol Psychiatry. 2009;66:554–61.

    PubMed  PubMed Central  CAS  Google Scholar 

  78. Raisman R, Cash R, Ruberg M, Javoy-Agid F, Agid Y. Binding of [3H]SCH 23390 to D-1 receptors in the putamen of control and parkinsonian subjects. Eur J Pharmacol. 1985;113:467–8.

    PubMed  CAS  Google Scholar 

  79. Cash R, Raisman R, Ploska A, Agid Y. Dopamine D-1 receptor and cyclic AMP-dependent phosphorylation in Parkinson’s disease. J Neurochem. 1987;49:1075–83.

    PubMed  CAS  Google Scholar 

  80. Joyce JN. Differential response of striatal dopamine and muscarinic cholinergic receptor subtypes to the loss of dopamine. III. Results in Parkinson’s disease cases. Brain Res. 1993;600:156–60.

    PubMed  CAS  Google Scholar 

  81. Palacios JM, Camps M, Cortes R, Probst A. Mapping dopamine receptors in the human brain. J Neural Transm Suppl. 1988;27:227–35.

    PubMed  CAS  Google Scholar 

  82. Pierot L, Desnos C, Blin J, Raisman R, Scherman D, Javoy-Agid F, et al. D1 and D2-type dopamine receptors in patients with Parkinson’s disease and progressive supranuclear palsy. J Neurol Sci. 1988;86:291–306.

    PubMed  CAS  Google Scholar 

  83. Pimoule C, Schoemaker H, Reynolds GP, Langer SZ. [3H]SCH 23390 labeled D1 dopamine receptors are unchanged in schizophrenia and Parkinson’s disease. Eur J Pharmacol. 1985;114:235–7.

    PubMed  CAS  Google Scholar 

  84. Cortes R, Camps M, Gueye B, Probst A, Palacios JM. Dopamine receptors in human brain: autoradiographic distribution of D1 and D2 sites in Parkinson syndrome of different etiology. Brain Res. 1989;483:30–8.

    PubMed  CAS  Google Scholar 

  85. Rinne JO, Laihinen A, Lonnberg P, Marjamaki P, Rinne UK. A post-mortem study on striatal dopamine receptors in Parkinson’s disease. Brain Res. 1991;556:117–22.

    PubMed  CAS  Google Scholar 

  86. Piggott MA, Marshall EF, Thomas N, Lloyd S, Court JA, Jaros E, et al. Striatal dopaminergic markers in dementia with Lewy bodies, Alzheimer’s and Parkinson’s diseases: rostrocaudal distribution. Brain. 1999;122(Pt 8):1449–68.

    PubMed  Google Scholar 

  87. Rinne JO, Laihinen A, Nagren K, Bergman J, Solin O, Haaparanta M, et al. PET demonstrates different behaviour of striatal dopamine D-1 and D-2 receptors in early Parkinson’s disease. J Neurosci Res. 1990;27:494–9.

    PubMed  CAS  Google Scholar 

  88. Shinotoh H, Hirayama K, Tateno Y. Dopamine D1 and D2 receptors in Parkinson’s disease and striatonigral degeneration determined by PET. Adv Neurol. 1993;60:488–93.

    PubMed  CAS  Google Scholar 

  89. Shinotoh H, Inoue O, Hirayama K, Aotsuka A, Asahina M, Suhara T, et al. Dopamine D1 receptors in Parkinson’s disease and striatonigral degeneration: a positron emission tomography study. J Neurol Neurosurg Psychiatry. 1993;56:467–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Turjanski N, Lees AJ, Brooks DJ. In vivo studies on striatal dopamine D1 and D2 site binding in L-dopa-treated Parkinson’s disease patients with and without dyskinesias. Neurology. 1997;49:717–23.

    PubMed  CAS  Google Scholar 

  91. Lee T, Seeman P, Rajput A, Farley IJ, Hornykiewicz O. Receptor basis for dopaminergic supersensitivity in Parkinson’s disease. Nature. 1978;273:59–61.

    PubMed  CAS  Google Scholar 

  92. Bokobza B, Ruberg M, Scatton B, Javoy-Agid F, Agid Y. [3H]spiperone binding, dopamine and HVA concentrations in Parkinson’s disease and supranuclear palsy. Eur J Pharmacol. 1984;99:167–75.

    PubMed  CAS  Google Scholar 

  93. Guttman M, Seeman P. L-dopa reverses the elevated density of D2 dopamine receptors in Parkinson’s diseased striatum. J Neural Transm. 1985;64:93–103.

    PubMed  CAS  Google Scholar 

  94. Guttman M, Seeman P, Reynolds GP, Riederer P, Jellinger K, Tourtellotte WW. Dopamine D2 receptor density remains constant in treated Parkinson’s disease. Ann Neurol. 1986;19:487–92.

    PubMed  CAS  Google Scholar 

  95. Quik M, Spokes EG, Mackay AV, Bannister R. Alterations in [3H]spiperone binding in human caudate nucleus, substantia nigra and frontal cortex in the Shy-Drager syndrome and Parkinson’s disease. J Neurol Sci. 1979;43:429–37.

    PubMed  CAS  Google Scholar 

  96. Rinne UK, Lonnberg P, Koskinen V. Dopamine receptors in the Parkinsonian brain. J Neural Transm. 1981;51:97–106.

    PubMed  CAS  Google Scholar 

  97. Ryoo HL, Pierrotti D, Joyce JN. Dopamine D3 receptor is decreased and D2 receptor is elevated in the striatum of Parkinson’s disease. Mov Disord. 1998;13:788–97.

    PubMed  CAS  Google Scholar 

  98. Rinne JO, Laihinen A, Rinne UK, Nagren K, Bergman J, Ruotsalainen U. PET study on striatal dopamine D2 receptor changes during the progression of early Parkinson’s disease. Mov Disord. 1993;8:134–8.

    PubMed  CAS  Google Scholar 

  99. Rinne JO, Laihinen A, Ruottinen H, Ruotsalainen U, Nagren K, Lehikoinen P, et al. Increased density of dopamine D2 receptors in the putamen, but not in the caudate nucleus in early Parkinson’s disease: a PET study with [11C]raclopride. J Neurol Sci. 1995;132:156–61.

    PubMed  CAS  Google Scholar 

  100. Antonini A, Schwarz J, Oertel WH, Pogarell O, Leenders KL. Long-term changes of striatal dopamine D2 receptors in patients with Parkinson’s disease: a study with positron emission tomography and [11C]raclopride. Mov Disord. 1997;12:33–8.

    PubMed  CAS  Google Scholar 

  101. Thobois S, Vingerhoets F, Fraix V, Xie-Brustolin J, Mollion H, Costes N, et al. Role of dopaminergic treatment in dopamine receptor down-regulation in advanced Parkinson disease: a positron emission tomographic study. Arch Neurol. 2004;61:1705–9.

    PubMed  Google Scholar 

  102. Brooks DJ, Ibanez V, Sawle GV, Playford ED, Quinn N, Mathias CJ, et al. Striatal D2 receptor status in patients with Parkinson’s disease, striatonigral degeneration, and progressive supranuclear palsy, measured with 11C-raclopride and positron emission tomography. Ann Neurol. 1992;31:184–92.

    PubMed  CAS  Google Scholar 

  103. Kaasinen V, Ruottinen HM, Nagren K, Lehikoinen P, Oikonen V, Rinne JO. Upregulation of putaminal dopamine D2 receptors in early Parkinson’s disease: a comparative PET study with [11C] raclopride and [11C]N-methylspiperone. J Nucl Med. 2000;41:65–70.

    PubMed  CAS  Google Scholar 

  104. Hagglund J, Aquilonius SM, Eckernas SA, Hartvig P, Lundquist H, Gullberg P, et al. Dopamine receptor properties in Parkinson’s disease and Huntington’s chorea evaluated by positron emission tomography using 11C-N-methyl-spiperone. Acta Neurol Scand. 1987;75:87–94.

    PubMed  CAS  Google Scholar 

  105. Schwarz J, Tatsch K, Arnold G, Gasser T, Trenkwalder C, Kirsch CM, et al. 123I-iodobenzamide-SPECT predicts dopaminergic responsiveness in patients with de novo parkinsonism. Neurology. 1992;42:556–61.

    PubMed  CAS  Google Scholar 

  106. Brucke T, Podreka I, Angelberger P, Wenger S, Topitz A, Kufferle B, et al. Dopamine D2 receptor imaging with SPECT: studies in different neuropsychiatric disorders. J Cereb Blood Flow Metab. 1991;11:220–8.

    PubMed  CAS  Google Scholar 

  107. Laulumaa V, Kuikka JT, Soininen H, Bergstrom K, Lansimies E, Riekkinen P. Imaging of D2 dopamine receptors of patients with Parkinson’s disease using single photon emission computed tomography and iodobenzamide I 123. Arch Neurol. 1993;50:509–12.

    PubMed  CAS  Google Scholar 

  108. Verstappen CC, Bloem BR, Haaxma CA, Oyen WJ, Horstink MW. Diagnostic value of asymmetric striatal D2 receptor upregulation in Parkinson’s disease: an [123I]IBZM and [123I]FP-CIT SPECT study. Eur J Nucl Med Mol Imaging. 2007;34:502–7.

    PubMed  CAS  Google Scholar 

  109. Hurley MJ, Stubbs CM, Jenner P, Marsden CD. D3 receptor expression within the basal ganglia is not affected by Parkinson’s disease. Neurosci Lett. 1996;214:75–8.

    PubMed  CAS  Google Scholar 

  110. Boileau I, Guttman M, Rusjan P, Adams JR, Houle S, Tong J, et al. Decreased binding of the D3 dopamine receptor-preferring ligand [11C]-(+)-PHNO in drug-naive Parkinson’s disease. Brain. 2009;132:1366–75.

    PubMed  Google Scholar 

  111. Timmons S, Coakley MF, Moloney AM, O’Neill C. Akt signal transduction dysfunction in Parkinson’s disease. Neurosci Lett. 2009;467:30–5.

    PubMed  CAS  Google Scholar 

  112. Cash R, Raisman R, Cervera P, Javoy-Agid F, Agid Y. Pitfalls in membrane binding sites studies in post-mortem human brain. J Recept Res. 1987;7:527–54.

    PubMed  CAS  Google Scholar 

  113. Blanchet P, Bedard PJ, Britton DR, Kebabian JW. Differential effect of selective D-1 and D-2 dopamine receptor agonists on levodopa-induced dyskinesia in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- exposed monkeys. J Pharmacol Exp Ther. 1993;267:275–9.

    PubMed  CAS  Google Scholar 

  114. Goulet M, Madras BK. D(1) dopamine receptor agonists are more effective in alleviating advanced than mild parkinsonism in 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-treated monkeys. J Pharmacol Exp Ther. 2000;292:714–24.

    PubMed  CAS  Google Scholar 

  115. Grondin R, Bédard PJ, Britton DR, Shiosaki K. Potential therapeutic use of the selective dopamine D1 receptor agonist, A-86929: an acute study in parkinsonian levodopa-primed monkeys. Neurology. 1997;49:421–6.

    PubMed  CAS  Google Scholar 

  116. Delfino M, Kalisch R, Czisch M, Larramendy C, Ricatti J, Taravini IRE, et al. Mapping the effects of three dopamine agonists with different dyskinetogenic potential and receptor selectivity using pharmacological functional magnetic resonance imaging. Neuropsychopharmacology. 2007;32:1911–21.

    PubMed  CAS  Google Scholar 

  117. Taylor JL, Bishop C, Walker PD. Dopamine D1 and D2 receptor contributions to L-DOPA-induced dyskinesia in the dopamine-depleted rat. Pharmacol Biochem Behav. 2005;81:887–93.

    PubMed  CAS  Google Scholar 

  118. Westin JE, Vercammen L, Strome EM, Konradi C, Cenci MA. Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA–induced dyskinesia and the role of dopamine D1 receptors. Biol Psychiatry. 2007;62:800–10.

    PubMed  CAS  Google Scholar 

  119. Blanchet PJ, Grondin R, Bedard PJ. Dyskinesia and wearing-off following dopamine D1 agonist treatment in drug-naive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned primates. Mov Disord. 1996;11:91–4.

    PubMed  CAS  Google Scholar 

  120. Darmopil S, Martín AB, De Diego IR, Ares S, Moratalla R. Genetic inactivation of dopamine D1 but not D2 receptors inhibits L-DOPA-induced dyskinesia and histone activation. Biol Psychiatry. 2009;66:603–13.

    PubMed  CAS  Google Scholar 

  121. Playford ED, Brooks DJ. In vivo and in vitro studies of the dopaminergic system in movement disorders. Cerebrovasc Brain Metab Rev. 1992;4:144–71.

    PubMed  CAS  Google Scholar 

  122. Gagnon C, Gomez-Mancilla B, Bédard PJ, Di Paolo T, Chronic CY. 208–243 treatment of MPTP-monkeys causes regional changes of dopamine and GABAA receptors. Neurosci Lett. 1993;163:31–5.

    PubMed  CAS  Google Scholar 

  123. Brooks DJ. PET studies and motor complications in Parkinson’s disease. Trends Neurosci. 2000;23:S101–8.

    PubMed  CAS  Google Scholar 

  124. Guigoni C, Doudnikoff E, Li Q, Bloch B, Bezard E. Altered D(1) dopamine receptor trafficking in parkinsonian and dyskinetic non-human primates. Neurobiol Dis. 2007;26:452–63.

    PubMed  CAS  Google Scholar 

  125. Berthet A, Bezard E, Porras G, Fasano S, Barroso-Chinea P, Dehay B, et al. L-DOPA impairs proteasome activity in parkinsonism through D1 dopamine receptor. J Neurosci. 2012;32:681–91.

    PubMed  CAS  Google Scholar 

  126. Ahmed MR, Berthet A, Bychkov E, Porras G, Li Q, Bioulac BH, et al. Lentiviral overexpression of GRK6 alleviates L-dopa-induced dyskinesia in experimental Parkinson’s disease. Sci Transl Med. 2010;2:28ra.

    Google Scholar 

  127. Muriel M-P, Orieux G, Hirsch EC. Levodopa but not ropinirole induces an internalization of D1 dopamine receptors in parkinsonian rats. Mov Disord. 2002;17:1174–9.

    PubMed  Google Scholar 

  128. Muriel MP, Bernard V, Levey AI, Laribi O, Abrous DN, Agid Y, et al. Levodopa induces a cytoplasmic localization of D1 dopamine receptors in striatal neurons in Parkinson’s disease. Ann Neurol. 1999;46:103–11.

    PubMed  CAS  Google Scholar 

  129. Fienberg AA, Hiroi N, Mermelstein PG, Song W, Snyder GL, Nishi A, et al. DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science (New York, NY). 1998;281:838–42.

    CAS  Google Scholar 

  130. Santini E, Valjent E, Usiello A, Carta M, Borgkvist A, Girault J-A, et al. Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J Neurosci. 2007;27:6995–7005.

    PubMed  CAS  Google Scholar 

  131. Calabresi P, Di Filippo M, Ghiglieri V, Picconi B. Molecular mechanisms underlying levodopa-induced dyskinesia. Mov Disord. 2008;23 Suppl 3:S570–9.

    PubMed  Google Scholar 

  132. Centonze D, Gubellini P, Picconi B, Calabresi P, Giacomini P, Bernardi G. Unilateral dopamine denervation blocks corticostriatal LTP. J Neurophysiol. 1999;82:3575–9.

    PubMed  CAS  Google Scholar 

  133. Picconi B, Centonze D, Håkansson K, Bernardi G, Greengard P, Fisone G, et al. Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat Neurosci. 2003;6:501–6.

    PubMed  CAS  Google Scholar 

  134. Calabresi P, Gubellini P, Centonze D, Picconi B, Bernardi G, Chergui K, et al. Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity. J Neurosci. 2000;20:8443–51.

    PubMed  CAS  Google Scholar 

  135. Fiorentini C, Missale C. Oligomeric assembly of dopamine D1 and glutamate NMDA receptors: molecular mechanisms and functional implications. Biochem Soc Trans. 2004;32:1025–8.

    PubMed  CAS  Google Scholar 

  136. Fiorentini C, Gardoni F, Spano P, Di Luca M, Missale C. Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate N-methyl-D-aspartate receptors. J Biol Chem. 2003;278:20196–202.

    PubMed  CAS  Google Scholar 

  137. Lee FJS, Xue S, Pei L, Vukusic B, Chéry N, Wang Y, et al. Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell. 2002;111:219–30.

    PubMed  CAS  Google Scholar 

  138. Fiorentini C, Rizzetti MC, Busi C, Bontempi S, Collo G, Spano P, et al. Loss of synaptic D1 dopamine/N-methyl-D-aspartate glutamate receptor complexes in L-DOPA-induced dyskinesia in the rat. Mol Pharmacol. 2006;69:805–12.

    PubMed  CAS  Google Scholar 

  139. Sweatt JD. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem. 2001;76:1–10.

    PubMed  CAS  Google Scholar 

  140. Krapivinsky G, Krapivinsky L, Manasian Y, Ivanov A, Tyzio R, Pellegrino C, et al. The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron. 2003;40:775–84.

    PubMed  CAS  Google Scholar 

  141. Valjent E, Pascoli V, Svenningsson P, Paul S, Enslen H, Corvol J-C, et al. Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc Natl Acad Sci. 2005;102:491–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  142. Valjent E, Corvol JC, Pages C, Besson MJ, Maldonado R, Caboche J. Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. J Neurosci. 2000;20:8701–9.

    PubMed  CAS  Google Scholar 

  143. Gerfen CR, Miyachi S, Paletzki R, Brown P. D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J Neurosci. 2002;22:5042–54.

    PubMed  CAS  Google Scholar 

  144. Pavon N, Martín AB, Mendialdua A, Moratalla R. ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol Psychiatry. 2006;59:64–74.

    PubMed  CAS  Google Scholar 

  145. Lindgren HS, Ohlin KE, Cenci MA. Differential involvement of D1 and D2 dopamine receptors in L-DOPA-induced angiogenic activity in a rat model of Parkinson’s disease. Neuropsychopharmacology. 2009;34:2477–88.

    PubMed  CAS  Google Scholar 

  146. Schuster S, Nadjar A, Guo JT, Li Q, Ittrich C, Hengerer B, et al. The 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor lovastatin reduces severity of L-DOPA-induced abnormal involuntary movements in experimental Parkinson’s disease. J Neurosci. 2008;28:4311–6.

    PubMed  CAS  Google Scholar 

  147. Fasano S, D’Antoni A, Orban PC, Valjent E, Putignano E, Vara H, et al. Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) controls activation of extracellular signal-regulated kinase (ERK) signaling in the striatum and long-term behavioral responses to cocaine. Biol Psychiatry. 2009;66:758–68.

    PubMed  PubMed Central  CAS  Google Scholar 

  148. Fasano S, Bezard E, D’Antoni A, Francardo V, Indrigo M, Qin L, et al. Inhibition of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) signaling in the striatum reverts motor symptoms associated with L-dopa-induced dyskinesia. Proc Natl Acad Sci. 2010;107:21824–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  149. Murphy LO, Smith S, Chen R-H, Fingar DC, Blenis J. Molecular interpretation of ERK signal duration by immediate early gene products. Nat Cell Biol. 2002;4:556–64.

    PubMed  CAS  Google Scholar 

  150. Durchdewald M, Angel P, Hess J. The transcription factor Fos: a Janus-type regulator in health and disease. Histol Histopathol. 2009;24:1451–61.

    PubMed  CAS  Google Scholar 

  151. Asin KE, Wirtshafter D, Nikkel A. Amphetamine induces Fos-like immunoreactivity in the striatum of primates. Brain Res. 1996;719:138–42.

    PubMed  CAS  Google Scholar 

  152. Graybiel AM, Moratalla R, Robertson HA. Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc Natl Acad Sci. 1990;87:6912–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  153. Svenningsson P, Arts J, Gunne L, Andrén PE. Acute and repeated treatment with L-DOPA increase c-jun expression in the 6-hydroxydopamine-lesioned forebrain of rats and common marmosets. Brain Res. 2002;955:8–15.

    PubMed  CAS  Google Scholar 

  154. Calon F, Grondin R, Morissette M, Goulet M, Blanchet PJ, Di Paolo T, et al. Molecular basis of levodopa-induced dyskinesias. Ann Neurol. 2000;47:S70–8.

    PubMed  CAS  Google Scholar 

  155. Andersson M, Westin JE, Cenci MA. Time course of striatal DeltaFosB-like immunoreactivity and prodynorphin mRNA levels after discontinuation of chronic dopaminomimetic treatment. Eur J Neurosci. 2003;17:661–6.

    PubMed  CAS  Google Scholar 

  156. Levandis G, Bazzini E, Armentero M-T, Nappi G, Blandini F. Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-DOPA-induced dyskinesias in a rodent model of Parkinson’s disease. Neurobiol Dis. 2008;29:161–8.

    PubMed  CAS  Google Scholar 

  157. Cao X, Yasuda T, Uthayathas S, Watts RL, Mouradian MM, Mochizuki H, et al. Striatal overexpression of DeltaFosB reproduces chronic levodopa-induced involuntary movements. J Neurosci. 2010;30:7335–43.

    PubMed  PubMed Central  CAS  Google Scholar 

  158. Padovan-Neto FE, Ferreira NR, de Oliveira-Tavares D, de Aguiar D, da Silva CA, Raisman-Vozari R, et al. Anti-dyskinetic effect of the neuronal nitric oxide synthase inhibitor is linked to decrease of FosB/DeltaFosB expression. Neurosci Lett. 2013;541:126–31.

    PubMed  CAS  Google Scholar 

  159. Cenci MA, Lundblad M. Post- versus presynaptic plasticity in L-DOPA-induced dyskinesia. J Neurochem. 2006;99:381–92.

    PubMed  CAS  Google Scholar 

  160. Feyder M, Bonito-Oliva A, Fisone G. L-DOPA-induced dyskinesia and abnormal signaling in striatal medium spiny neurons: focus on dopamine D1 receptor-mediated transmission. Front Behav Neurosci. 2011;5:71.

    PubMed  PubMed Central  CAS  Google Scholar 

  161. Fuxe K, Ferré S, Zoli M, Agnati LF. Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia. Brain Res Brain Res Rev. 1998;26:258–73.

    PubMed  CAS  Google Scholar 

  162. Fuxe K, Ferré S, Genedani S, Franco R, Agnati LF. Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol Behav. 2007;92:210–7.

    PubMed  CAS  Google Scholar 

  163. Ginés S, Hillion J, Torvinen M, Le Crom S, Casado V, Canela EI, et al. Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci. 2000;97:8606–11.

    PubMed  PubMed Central  Google Scholar 

  164. Berthet A, Bezard E. Dopamine receptors and L-dopa-induced dyskinesia. Parkinsonism Relat Disord. 2009;15 Suppl 4:S8–12.

    PubMed  Google Scholar 

  165. Murer MG, Moratalla R. Striatal signaling in L-DOPA-induced dyskinesia: common mechanisms with drug abuse and long term memory involving D1 dopamine receptor stimulation. Front Neuroanat. 2011;5:51.

    PubMed  PubMed Central  CAS  Google Scholar 

  166. Drake JD, Kibuuka LN, Dimitrov KD, Pollack AE. Abnormal involuntary movement (AIM) expression following D2 dopamine agonist challenge is determined by the nature of prior dopamine receptor stimulation (priming) in 6-hydroxydopamine lesioned rats. Pharmacol Biochem Behav. 2013;105:26–33.

    PubMed  CAS  Google Scholar 

  167. Dupre KB, Eskow KL, Negron G, Bishop C. The differential effects of 5-HT(1A) receptor stimulation on dopamine receptor-mediated abnormal involuntary movements and rotations in the primed hemiparkinsonian rat. Brain Res. 2007;1158:135–43.

    PubMed  CAS  Google Scholar 

  168. Samadi P, Grégoire L, Bédard PJ. Opioid antagonists increase the dyskinetic response to dopaminergic agents in parkinsonian monkeys: interaction between dopamine and opioid systems. Neuropharmacology. 2003;45:954–63.

    PubMed  CAS  Google Scholar 

  169. Schapira AHV, Barone P, Hauser RA, Mizuno Y, Rascol O, Busse M, et al. Extended-release pramipexole in advanced Parkinson disease: a randomized controlled trial. Neurology. 2011;77:767–74.

    PubMed  CAS  Google Scholar 

  170. Luquin MR, Laguna J, Obeso JA. Selective D2 receptor stimulation induces dyskinesia in parkinsonian monkeys. Ann Neurol. 1992;31:551–4.

    PubMed  CAS  Google Scholar 

  171. Gomez-Mancilla B, Bédard PJ. Effect of chronic treatment with (+)-PHNO, a D2 agonist in MPTP-treated monkeys. Exp Neurol. 1992;117:185–8.

    PubMed  CAS  Google Scholar 

  172. Antonini A, Schwarz J, Oertel WH, Beer HF, Madeja UD, Leenders KL. [11C]raclopride and positron emission tomography in previously untreated patients with Parkinson’s disease: influence of L-dopa and lisuride therapy on striatal dopamine D2-receptors. Neurology. 1994;44:1325–9.

    PubMed  CAS  Google Scholar 

  173. Rahman Z, Schwarz J, Gold SJ, Zachariou V, Wein MN, Choi KH, et al. RGS9 modulates dopamine signaling in the basal ganglia. Neuron. 2003;38:941–52.

    PubMed  CAS  Google Scholar 

  174. Gold SJ, Hoang CV, Potts BW, Porras G, Pioli E, Kim KW, et al. RGS9-2 negatively modulates L-3,4-dihydroxyphenylalanine-induced dyskinesia in experimental Parkinson’s disease. J Neurosci. 2007;27:14338–48.

    PubMed  CAS  Google Scholar 

  175. Aleyasin H, Rousseaux MWC, Marcogliese PC, Hewitt SJ, Irrcher I, Joselin AP, et al. DJ-1 protects the nigrostriatal axis from the neurotoxin MPTP by modulation of the AKT pathway. Proc Natl Acad Sci. 2010;107:3186–91.

    PubMed  PubMed Central  CAS  Google Scholar 

  176. Hillion J, Canals M, Torvinen M, Casadó V, Scott R, Terasmaa A, et al. Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem. 2002;277:18091–7.

    PubMed  CAS  Google Scholar 

  177. Torvinen M, Torri C, Tombesi A, Marcellino D, Watson S, Lluís C, et al. Trafficking of adenosine A2A and dopamine D2 receptors. J Mol Neurosci. 2005;25:191–200.

    PubMed  CAS  Google Scholar 

  178. Bogenpohl JW, Ritter SL, Hall RA, Smith Y. Adenosine A2A receptor in the monkey basal ganglia: ultrastructural localization and colocalization with the metabotropic glutamate receptor 5 in the striatum. J Comp Neurol. 2012;520:570–89.

    PubMed  PubMed Central  CAS  Google Scholar 

  179. Lévesque D, Diaz J, Pilon C, Martres MP, Giros B, Souil E, et al. Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N, N-di-n-propyl-2-aminotetralin. Proc Natl Acad Sci. 1992;89:8155–9.

    PubMed  PubMed Central  Google Scholar 

  180. Lévesque D, Martres MP, Diaz J, Griffon N, Lammers CH, Sokoloff P, et al. A paradoxical regulation of the dopamine D3 receptor expression suggests the involvement of an anterograde factor from dopamine neurons. Proc Natl Acad Sci. 1995;92:1719–23.

    PubMed  PubMed Central  Google Scholar 

  181. Bordet R, Ridray S, Carboni S, Diaz J, Sokoloff P, Schwartz JC. Induction of dopamine D3 receptor expression as a mechanism of behavioral sensitization to levodopa. Proc Natl Acad Sci. 1997;94:3363–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  182. Pilla M, Perachon S, Sautel F, Garrido F, Mann A, Wermuth CG, et al. Selective inhibition of cocaine-seeking behaviour by a partial dopamine D3 receptor agonist. Nature. 1999;400:371–5.

    PubMed  CAS  Google Scholar 

  183. Blanchet PJ, Konitsiotis S, Chase TN. Motor response to a dopamine D3 receptor preferring agonist compared to apomorphine in levodopa-primed 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys. J Pharmacol Exp Ther. 1997;283:794–9.

    PubMed  CAS  Google Scholar 

  184. Visanji NP, Fox SH, Johnston T, Reyes G, Millan MJ, Brotchie JM. Dopamine D3 receptor stimulation underlies the development of L-DOPA-induced dyskinesia in animal models of Parkinson’s disease. Neurobiol Dis. 2009;35:184–92.

    PubMed  CAS  Google Scholar 

  185. Huot P, Johnston TH, Koprich JB, Aman A, Fox SH, Brotchie JM. L-745,870 reduces L-DOPA-induced dyskinesia in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J Pharmacol Exp Ther. 2012;342:576–85.

    PubMed  CAS  Google Scholar 

  186. Mrzljak L, Bergson C, Pappy M, Huff R, Levenson R, Goldman-Rakic PS. Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature. 1996;381:245–8.

    PubMed  CAS  Google Scholar 

  187. Parent A, Lavoie B, Smith Y, Bédard P. The dopaminergic nigro-pallidal projection in primates: distinct cellular origin and relative sparing in MPTP-treated monkeys. Adv Neurol. 1990;53:111–6.

    PubMed  CAS  Google Scholar 

  188. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12:366–75.

    PubMed  CAS  Google Scholar 

  189. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science (New York, NY). 1990;250:1429–32.

    CAS  Google Scholar 

  190. Surmeier DJ, Reiner A, Levine MS, Ariano MA. Are neostriatal dopamine receptors co-localized? Trends Neurosci. 1993;16:299–305.

    PubMed  CAS  Google Scholar 

  191. Aizman O, Brismar H, Uhlén P, Zettergren E, Levey AI, Forssberg H, et al. Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat Neurosci. 2000;3:226–30.

    PubMed  CAS  Google Scholar 

  192. Lester J, Fink S, Aronin N, DiFiglia M. Colocalization of D1 and D2 dopamine receptor mRNAs in striatal neurons. Brain Res. 1993;621:106–10.

    PubMed  CAS  Google Scholar 

  193. Gerfen CR, Keefe KA, Gauda EB. D1 and D2 dopamine receptor function in the striatum: coactivation of D1- and D2-dopamine receptors on separate populations of neurons results in potentiated immediate early gene response in D1-containing neurons. J Neurosci. 1995;15:8167–76.

    PubMed  CAS  Google Scholar 

  194. Rashid AJ, So CH, Kong MM, Furtak T, El-Ghundi M, Cheng R, et al. D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci. 2007;104:654–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  195. So CH, Verma V, Alijaniaram M, Cheng R, Rashid AJ, O’Dowd BF, et al. Calcium signaling by dopamine D5 receptor and D5-D2 receptor hetero-oligomers occurs by a mechanism distinct from that for dopamine D1-D2 receptor hetero-oligomers. Mol Pharmacol. 2009;75:843–54.

    PubMed  PubMed Central  CAS  Google Scholar 

  196. Verma V, Hasbi A, O’Dowd BF, George SR. Dopamine D1-D2 receptor Heteromer-mediated calcium release is desensitized by D1 receptor occupancy with or without signal activation: dual functional regulation by G protein-coupled receptor kinase 2. J Biol Chem. 2010;285:35092–103.

    PubMed  PubMed Central  CAS  Google Scholar 

  197. Schwartz JC, Diaz J, Bordet R, Griffon N, Perachon S, Pilon C, et al. Functional implications of multiple dopamine receptor subtypes: the D1/D3 receptor coexistence. Brain Res Brain Res Rev. 1998;26:236–42.

    PubMed  CAS  Google Scholar 

  198. Marcellino D, Ferré S, Casadó V, Cortés A, Le Foll B, Mazzola C, et al. Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. J Biol Chem. 2008;283:26016–25.

    PubMed  PubMed Central  CAS  Google Scholar 

  199. Fiorentini C, Busi C, Gorruso E, Gotti C, Spano P, Missale C. Reciprocal regulation of dopamine D1 and D3 receptor function and trafficking by heterodimerization. Mol Pharmacol. 2008;74:59–69.

    PubMed  CAS  Google Scholar 

  200. Fiorentini C, Busi C, Spano P, Missale C. Dimerization of dopamine D1 and D3 receptors in the regulation of striatal function. Curr Opin Pharmacol. 2010;10:87–92.

    PubMed  CAS  Google Scholar 

  201. Kostrzewa RM. Dopamine receptor supersensitivity. Neurosci Biobehav Rev. 1995;19:1–17.

    PubMed  CAS  Google Scholar 

  202. Mileson BE, Lewis MH, Mailman RB. Dopamine receptor “supersensitivity” occurring without receptor up-regulation. Brain Res. 1991;561:1–10.

    PubMed  CAS  Google Scholar 

  203. Impact of deprenyl and tocopherol treatment on Parkinson’s disease in DATATOP patients requiring levodopa. Parkinson Study Group. Ann Neurol. 1996;39:37–45.

    Google Scholar 

  204. Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med. 2004;351:2498–508.

    PubMed  CAS  Google Scholar 

  205. Schrag A, Quinn N. Dyskinesias and motor fluctuations in Parkinson’s disease. A community-based study. Brain. 2000;123(Pt 11):2297–305.

    PubMed  Google Scholar 

  206. de la Fuente-Fernandez R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB, et al. Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain. 2004;127:2747–54.

    PubMed  Google Scholar 

  207. Muenter MD, Sharpless NS, Tyce GM, Darley FL. Patterns of dystonia (“I-D-I” and “D-I-D-”) in response to l-dopa therapy for Parkinson’s disease. Mayo Clin Proc. 1977;52:163–74.

    PubMed  CAS  Google Scholar 

  208. Chase TN, Baronti F, Fabbrini G, Heuser IJ, Juncos JL, Mouradian MM. Rationale for continuous dopaminomimetic therapy of Parkinson’s disease. Neurology. 1989;39:7–10; discussion 9.

    PubMed  CAS  Google Scholar 

  209. Olanow CW, Obeso JA, Stocchi F. Continuous dopamine-receptor treatment of Parkinson’s disease: scientific rationale and clinical implications. Lancet Neurol. 2006;5:677–87.

    PubMed  CAS  Google Scholar 

  210. Olanow W, Schapira AH, Rascol O. Continuous dopamine-receptor stimulation in early Parkinson’s disease. Trends Neurosci. 2000;23:S117–26.

    PubMed  CAS  Google Scholar 

  211. Bracco F, Battaglia A, Chouza C, Dupont E, Gershanik O, Marti Masso JF, et al. The long-acting dopamine receptor agonist cabergoline in early Parkinson’s disease: final results of a 5-year, double-blind, levodopa-controlled study. CNS Drugs. 2004;18:733–46.

    PubMed  CAS  Google Scholar 

  212. Hoehn MM, Elton RL. Low dosages of bromocriptine added to levodopa in Parkinson’s disease. Neurology. 1985;35:199–206.

    PubMed  CAS  Google Scholar 

  213. Kartzinel R, Teychenne P, Gillespie MM, Perlow M, Gielen AC, Sadowsky DA, et al. Bromocriptine and levodopa (with or without carbidopa) in parkinsonism. Lancet. 1976;2:272–5.

    PubMed  CAS  Google Scholar 

  214. Lieberman A, Kupersmith M, Estey E, Goldstein M. Treatment of parkinson’s disease with bromocriptine. N Engl J Med. 1976;295:1400–4.

    PubMed  CAS  Google Scholar 

  215. Montastruc JL, Rascol O, Senard JM, Rascol A. A randomised controlled study comparing bromocriptine to which levodopa was later added, with levodopa alone in previously untreated patients with Parkinson’s disease: a five year follow up. J Neurol Neurosurg Psychiatry. 1994;57:1034–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  216. Oertel WH, Wolters E, Sampaio C, Gimenez-Roldan S, Bergamasco B, Dujardin M, et al. Pergolide versus levodopa monotherapy in early Parkinson’s disease patients: The PELMOPET study. Mov Disord. 2006;21:343–53.

    PubMed  Google Scholar 

  217. Olanow CW, Fahn S, Muenter M, Klawans H, Hurtig H, Stern M, et al. A multicenter double-blind placebo-controlled trial of pergolide as an adjunct to Sinemet in Parkinson’s disease. Mov Disord. 1994;9:40–7.

    PubMed  CAS  Google Scholar 

  218. Lieberman A, Olanow CW, Sethi K, Swanson P, Waters CH, Fahn S, et al. A multicenter trial of ropinirole as adjunct treatment for Parkinson’s disease. Ropinirole Study Group. Neurology. 1998;51:1057–62.

    PubMed  CAS  Google Scholar 

  219. Lieberman A, Ranhosky A, Korts D. Clinical evaluation of pramipexole in advanced Parkinson’s disease: results of a double-blind, placebo-controlled, parallel-group study. Neurology. 1997;49:162–8.

    PubMed  CAS  Google Scholar 

  220. Holloway RG, Shoulson I, Fahn S, Kieburtz K, Lang A, Marek K, et al. Pramipexole vs levodopa as initial treatment for Parkinson disease: a 4-year randomized controlled trial. Arch Neurol. 2004;61:1044–53.

    PubMed  Google Scholar 

  221. Constantinescu R, Romer M, McDermott MP, Kamp C, Kieburtz K. Impact of pramipexole on the onset of levodopa-related dyskinesias. Mov Disord. 2007;22:1317–9.

    PubMed  Google Scholar 

  222. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE, et al. Development of dyskinesias in a 5-year trial of ropinirole and L-dopa. Mov Disord. 2006;21:1844–50.

    PubMed  Google Scholar 

  223. Olanow CW, Obeso JA. Pulsatile stimulation of dopamine receptors and levodopa-induced motor complications in Parkinson’s disease: implications for the early use of COMT inhibitors. Neurology. 2000;55:S72–7; discussion S8–81.

    PubMed  CAS  Google Scholar 

  224. Olanow CW, Stocchi F. COMT inhibitors in Parkinson’s disease: can they prevent and/or reverse levodopa-induced motor complications? Neurology. 2004;62:S72–81.

    PubMed  CAS  Google Scholar 

  225. Sawle GV, Burn DJ, Morrish PK, Lammertsma AA, Snow BJ, Luthra S, et al. The effect of entacapone (OR-611) on brain [18 F]-6-L-fluorodopa metabolism: implications for levodopa therapy of Parkinson’s disease. Neurology. 1994;44:1292–7.

    PubMed  CAS  Google Scholar 

  226. Schapira AH, Obeso JA, Olanow CW. The place of COMT inhibitors in the armamentarium of drugs for the treatment of Parkinson’s disease. Neurology. 2000;55:S65–8; discussion S9–71.

    PubMed  CAS  Google Scholar 

  227. Smith LA, Jackson MJ, Al-Barghouthy G, Rose S, Kuoppamaki M, Olanow W, et al. Multiple small doses of levodopa plus entacapone produce continuous dopaminergic stimulation and reduce dyskinesia induction in MPTP-treated drug-naive primates. Mov Disord. 2005;20:306–14.

    PubMed  Google Scholar 

  228. Stocchi F, Rascol O, Kieburtz K, Poewe W, Jankovic J, Tolosa E, et al. Initiating levodopa/carbidopa therapy with and without entacapone in early Parkinson disease: the STRIDE-PD study. Ann Neurol. 2010;68:18–27.

    PubMed  CAS  Google Scholar 

  229. Parkinson Study Group. A randomized placebo-controlled trial of rasagiline in levodopa-treated patients with Parkinson disease and motor fluctuations: the PRESTO study. Arch Neurol. 2005;62:241–8.

    Google Scholar 

  230. Rascol O, Brooks DJ, Melamed E, Oertel W, Poewe W, Stocchi F, et al. Rasagiline as an adjunct to levodopa in patients with Parkinson’s disease and motor fluctuations (LARGO, Lasting effect in Adjunct therapy with Rasagiline Given Once daily, study): a randomised, double-blind, parallel-group trial. Lancet. 2005;365:947–54.

    PubMed  CAS  Google Scholar 

  231. Maratos EC, Jackson MJ, Pearce RK, Cannizzaro C, Jenner P. Both short- and long-acting D-1/D-2 dopamine agonists induce less dyskinesia than L-DOPA in the MPTP-lesioned common marmoset (Callithrix jacchus). Exp Neurol. 2003;179:90–102.

    PubMed  CAS  Google Scholar 

  232. Rascol O, Nutt JG, Blin O, Goetz CG, Trugman JM, Soubrouillard C, et al. Induction by dopamine D1 receptor agonist ABT-431 of dyskinesia similar to levodopa in patients with Parkinson disease. Arch Neurol. 2001;58:249–54.

    PubMed  CAS  Google Scholar 

  233. Oliveri RL, Annesi G, Zappia M, Civitelli D, Montesanti R, Branca D, et al. Dopamine D2 receptor gene polymorphism and the risk of levodopa-induced dyskinesias in PD. Neurology. 1999;53:1425–30.

    PubMed  CAS  Google Scholar 

  234. Zappia M, Annesi G, Nicoletti G, Arabia G, Annesi F, Messina D, et al. Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: an exploratory study. Arch Neurol. 2005;62:601–5.

    PubMed  Google Scholar 

  235. Lee JY, Cho J, Lee EK, Park SS, Jeon BS. Differential genetic susceptibility in diphasic and peak-dose dyskinesias in Parkinson’s disease. Mov Disord. 2011;26:73–9.

    PubMed  Google Scholar 

  236. Wang J, Liu ZL, Chen B. Association study of dopamine D2, D3 receptor gene polymorphisms with motor fluctuations in PD. Neurology. 2001;56:1757–9.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Canadian Institutes of Health Research to T.D.P. V.A.J. received a studentship from the Fonds d’Enseignement et de Recherche of the Faculté de Pharmacie of Université Laval and a studentship from the Centre de Recherche en Endocrinologie Moléculaire et Oncologique et en Génomique Humaine. N.M. received a professional health-care studentship from the Fonds de la Recherche en Santé du Québec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thérèse Di Paolo PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Jourdain, V.A., Morin, N., Di Paolo, T. (2014). Dopamine Receptors and Levodopa-Induced Dyskinesia. In: Fox, S., Brotchie, J. (eds) Levodopa-Induced Dyskinesia in Parkinson's Disease. Springer, London. https://doi.org/10.1007/978-1-4471-6503-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6503-3_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6502-6

  • Online ISBN: 978-1-4471-6503-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics