Skip to main content

Nanoparticles in Polymer Nanocomposite Food Contact Materials: Uses, Potential Release, and Emerging Toxicological Concerns

Part of the Molecular and Integrative Toxicology book series (MOLECUL)

Abstract

Several types of nanotechnology-enabled plastics intended for the storage and transport of foods are close to commercialization. For food contact applications, nanocomposite plastics offer many advantages over traditional polymers. However, while the unique properties of engineered nanomaterials (ENMs) may be harnessed for many positive ends, there are concerns about whether ENMs pose risks to human health. The primary areas of interest for assessing safety of nanocomposite food contact materials (FCM) are the potential for migration of ENMs into food and the potential toxicity of such released ENMs. This chapter offers a review of theoretical and experimental methods to assess the likelihood of ENM release from nanotechnology-enabled materials into liquid media, as well as a brief overview of the potential toxicological considerations of ENMs likely to be used in FCMs. Because the use of nanotechnology in food contact applications is a developing field, this chapter also provides background information on some of the food-related applications of nanocomposites currently in development, and a discussion of current methods being used to assess the release of non-nanoscale food packaging additives or contaminants. The goal of this work is to provide readers with an appreciation for current activity in this field as well as an understanding of data gaps that may need to be addressed in order to ensure the safety of this emerging technology.

Keywords

  • Engineered nanomaterials
  • Food packaging
  • Polymer nanocomposites
  • Migration
  • Nanotoxicity
  • Nanoparticle toxicity
  • Safety of nanotechnology

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4471-6500-2_4
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-4471-6500-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3

Notes

  1. 1.

    There are additional exemptions (e.g., pesticides and color additives), which have their own separate regulatory definitions.

  2. 2.

    Migration ratio was defined as the ratio of amount of silver in the food simulant at the end of the migration experiment to the amount of silver in the film prior to the migration experiment.

References

  • Alger H, Momcilovic D, Carlander D et al (2014) Methods to evaluate uptake of engineered nanomaterials by the alimentary tract. Compr Rev Food Sci Food Saf. doi:10.1111/1541-4337.12077

  • Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    CAS  CrossRef  PubMed  Google Scholar 

  • Alissawi N, Zaporojtchenko V, Strunskus T et al (2012) Tuning of the ion release properties of silver nanoparticles buried under a hydrophobic polymer barrier. J Nanopart Res 14(7):1–12

    Google Scholar 

  • Asare N, Instanes C, Sandberg WJ et al (2012) Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology 291(1–3):65–72

    CAS  CrossRef  PubMed  Google Scholar 

  • Avella M, De Vlieger JJ, Errico ME et al (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474

    CAS  CrossRef  Google Scholar 

  • Avella M, Bruno G, Errico ME et al (2007) Innovative packaging for minimally processed fruits. Packag Technol Sci 20(5):325–335

    CAS  CrossRef  Google Scholar 

  • Balasubramanyam A, Sailaja N, Mahboob M et al (2009) Evaluation of genotoxic effects of oral exposure to aluminum oxide nanomaterials in rat bone marrow. Mutat Res 676(1–2):41–47

    CAS  CrossRef  PubMed  Google Scholar 

  • Begley TH, Gay ML, Hollifield HC (1995) Determination of migrants in and migration from nylon food-packaging. Food Addit Contam 12(5):671–676

    CAS  CrossRef  PubMed  Google Scholar 

  • Begley T, Castle L, Feigenbaum A et al (2005) Evaluation of migration models that might be used in support of regulations for food-contact plastics. Food Addit Contam 22(1):73–90

    CAS  CrossRef  PubMed  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY et al (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53(1):52–62

    CAS  CrossRef  PubMed  Google Scholar 

  • Brandsch J, Mercea P, Ruter M et al (2002) Migration modelling as a tool for quality assurance of food packaging. Food Addit Contam 19:29–41

    CAS  CrossRef  PubMed  Google Scholar 

  • Busolo MA, Fernandez P, Ocio MJ et al (2010) Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Addit Contam 27A(11):1617–1626

    CrossRef  Google Scholar 

  • Card JW, Magnuson BA (2010) A method to assess the quality of studies that examine the toxicity of engineered nanomaterials. Int J Toxicol 29(4):402–410

    CAS  CrossRef  PubMed  Google Scholar 

  • Card JW, Jonaitis TS, Tafazoli S et al (2011) An appraisal of the published literature on the safety and toxicity of food-related nanomaterials. Crit Rev Toxicol 41(1):20–49

    CAS  CrossRef  Google Scholar 

  • Cerrada ML, Serrano C, Sánchez-Chaves M et al (2008) Self-sterilized EVOH-TiO2 nanocomposites: interface effects on biocidal properties. Adv Funct Mater 18(13):1949–1960

    CAS  CrossRef  Google Scholar 

  • Chawengkijwanich C, Hayata Y (2008) Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol 123(3):288–292

    CAS  CrossRef  PubMed  Google Scholar 

  • Cho W-S, Kang B-C, Lee JK et al (2013) Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part Fibre Toxicol 10:9

    PubMed Central  CAS  CrossRef  PubMed  Google Scholar 

  • Choudalakis G, Gotsis AD (2009) Permeability of polymer/clay nanocomposites: a review. Eur Polym J 45(4):967–984

    CAS  CrossRef  Google Scholar 

  • Code of Federal Regulations (CRC) (2013) 21CFC170.3, Title 21, Vol. 3, Part 170, Food Additives; Section 170.3(i) Definitions; definition of safety. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?fr=170.3. Accessed 20 Oct 2013

  • Cushen M, Kerry J, Morris M et al (2013) Migration and exposure assessment of silver from a PVC nanocomposite. Food Chem 139(1–4):389–397

    CAS  CrossRef  PubMed  Google Scholar 

  • de Azeredo HMC (2013) Antimicrobial nanostructures in food packaging. Trends Food Sci Technol 30(1):56–69

    CrossRef  Google Scholar 

  • de Moura MR, Lorevice MV, Mattoso LHC et al (2011) Highly stable, edible cellulose films incorporating chitosan nanoparticles. J Food Sci 76(2):S25–S29

    CrossRef  Google Scholar 

  • Dhar S, Mali V, Bodhankar S et al (2011) Biocompatible gellan gum-reduced gold nanoparticles: cellular uptake and subacute oral toxicity studies. J Appl Toxicol 31(5):411–420

    CAS  CrossRef  PubMed  Google Scholar 

  • Diaz CA, Xia Y, Rubino M et al (2013) Fluorescent labeling and tracking of nanoclay. Nanoscale 5(1):164–168

    CAS  CrossRef  PubMed  Google Scholar 

  • Duan Y, Liu J, Ma L et al (2010) Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials 31(5):894–899

    CAS  CrossRef  PubMed  Google Scholar 

  • Duncan TV (2011a) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24

    CAS  CrossRef  PubMed  Google Scholar 

  • Duncan TV (2011b) The communication challenges presented by nanofoods. Nat Nanotechnol 6(11):683–688

    CAS  CrossRef  PubMed  Google Scholar 

  • Emamifar A, Kadivar M, Shahedi M et al (2011) Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control 22(3–4):408–413

    CAS  CrossRef  Google Scholar 

  • Eom HJ, Choi J (2010) p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol 44(21):8337–8342

    CAS  CrossRef  PubMed  Google Scholar 

  • European Food Safety Authority (EFSA) Scientific Committee (2009) The potential risks arising from nanoscience and nanotechnologies on food and feed safety. EFSA J 958:1–39. doi:10.2903/j.efsa.2009.958, http://www.efsa.europa.eu/en/efsajournal/pub/958.htm. Accessed 24 Oct 2013

  • European Food Safety Authority (EFSA) Scientific Committee (2011) Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J 9(5):2140. doi:10.2903/j.efsa.2011.2140, http://www.efsa.europa.eu/en/efsajournal/pub/2140.htm. Accessed 24 Oct 2013

  • Fang XY, Domenek S, Ducruet V et al (2013) Diffusion of aromatic solutes in aliphatic polymers above glass transition temperature. Macromolecules 46(3):874–888

    CAS  CrossRef  Google Scholar 

  • Farhoodi M, Mousavi SM, Sotudeh-Gharebagh R et al (2013) Migration of aluminum and silicon from PET/clay nanocomposite bottles into acidic food simulant. Packag Technol Sci. doi:10.1002/pts.2017

    Google Scholar 

  • Fayaz AM, Balaji K, Girilal M et al (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57(14):6246–6252

    CrossRef  Google Scholar 

  • Fernández A, Picouet P, Lloret E (2010) Reduction of the spoilage-related microflora in absorbent pads by silver nanotechnology during modified atmosphere packaging of beef meat. J Food Prot 73(12):2263–2269

    PubMed  Google Scholar 

  • Food and Drug Administration (FDA) (2007) Guidance for industry: preparation of premarket submissions for food contact substances: chemistry recommendations. http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/IngredientsAdditivesGRASPackaging/ucm081818.htm. Accessed 20 Oct 2013

  • Food and Drug Administration (FDA) (2011) Considering whether an FDA-regulated product involves the application of nanotechnology. http://www.fda.gov/regulatoryinformation/guidances/ucm257698.htm. Accessed 20 Oct 2013

  • Fortunati E, Latterini L, Rinaldi S et al (2011) PLGA/Ag nanocomposites: in vitro degradation study and silver ion release. J Mater Sci Mater Med 22(12):2735–2744

    CAS  CrossRef  PubMed  Google Scholar 

  • Fröhlich E, Roblegg E (2012) Models for oral uptake of nanoparticles in consumer products. Toxicology 291(1–3):10–17

    PubMed Central  CrossRef  PubMed  Google Scholar 

  • Gaiser BK, Fernandes TF, Jepson MA et al (2012) Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ Toxicol Chem 31(1):144–154

    CAS  CrossRef  PubMed  Google Scholar 

  • Hackenberg S, Scherzed A, Technau A et al (2011) Cytotoxic, genotoxic and pro-inflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro. Toxicol In Vitro 25(3):657–663

    CAS  CrossRef  PubMed  Google Scholar 

  • Hadrup N, Loeschner K, Bergström A et al (2012) Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats. Arch Toxicol 86(4):543–551

    CAS  CrossRef  PubMed  Google Scholar 

  • Hahn A, Brandes G, Wagener P et al (2011) Metal ion release kinetics from nanoparticle silicone composites. J Control Release 154(2):164–170

    CAS  CrossRef  PubMed  Google Scholar 

  • Huang YM, Chen S, Bing X et al (2011) Nanosilver migrated into food-simulating solutions from commercially available food fresh containers. Packag Technol Sci 24(5):291–297

    CAS  CrossRef  Google Scholar 

  • Jia X, Li N, Chen J (2005) A subchronic toxicity study of elemental Nano-Se in Sprague-Dawley rats. Life Sci 76(17):1989–2003

    CAS  CrossRef  PubMed  Google Scholar 

  • Kim YS, Kim JS, Cho HS et al (2008) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicol 20(6):575–583

    CAS  CrossRef  Google Scholar 

  • Kim S, Choi JE, Choi J et al (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 23(6):1076–1084

    CAS  CrossRef  PubMed  Google Scholar 

  • Kim YS, Song MY, Park JD et al (2010) Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 7:20

    PubMed Central  CrossRef  PubMed  Google Scholar 

  • Kim JS, Song SS, Sung JH et al (2013) Genotoxicity, acute oral and dermal toxicity, eye and dermal irritation and corrosion and skin sensitisation evaluation of silver nanoparticles. Nanotoxicology 7(5):953–960

    Google Scholar 

  • Kittler S, Greulich C, Diendorf J et al (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22(16):4548–4554

    CAS  CrossRef  Google Scholar 

  • Li H, Li F, Wang L et al (2009) Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chem 114(2):547–552

    CAS  CrossRef  Google Scholar 

  • Lin J-J, Lin W-C, Dong R-X et al (2012) The cellular responses and antibacterial activities of silver nanoparticles stabilized by different polymers. Nanotechnology 23(6):065102

    CrossRef  PubMed  Google Scholar 

  • Liu W, Wu Y, Wang C et al (2010) Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4(3):319–330

    CAS  CrossRef  PubMed  Google Scholar 

  • Loeschner K, Hadrup N, Qvortrup K et al (2011) Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol 8:18

    PubMed Central  CAS  CrossRef  PubMed  Google Scholar 

  • Longano D, Ditaranto N, Cioffi N et al (2012) Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging. Anal Bioanal Chem 403(4):1179–1186

    CAS  CrossRef  PubMed  Google Scholar 

  • Luque-Garcia JL, Sanchez-Díaz R, Lopez-Heras I et al (2013) Bioanalytical strategies for in vitro and in vivo evaluation of the toxicity induced by metallic nanoparticles. TrAC Trends Anal Chem 43:254–268

    CAS  CrossRef  Google Scholar 

  • Maneewattanapinyo P, Banlunara W, Thammacharoen C et al (2011) An evaluation of acute toxicity of colloidal silver nanoparticles. J Vet Med Sci 73(11):1417–1423

    CAS  CrossRef  PubMed  Google Scholar 

  • Marsh K, Bugusu B (2007) Food packaging—roles, materials, and environmental issues. J Food Sci 72(3):R39–R55

    CAS  CrossRef  PubMed  Google Scholar 

  • Mauricio-Iglesias M, Peyron S, Guillard V et al (2010) Wheat gluten nanocomposite films as food-contact materials: migration tests and impact of a novel food stabilization technology (high pressure). J Appl Polym Sci 116(5):2526–2535

    CAS  Google Scholar 

  • Mauricio-Iglesias M, Gontard N, Gastaldi E (2011) Impact of high pressure treatment on the structure of montmorillonite. Appl Clay Sci 51(1–2):174–176

    CAS  CrossRef  Google Scholar 

  • Mollahosseini A, Rahimpour A, Jahamshahi M et al (2012) The effect of silver nanoparticle size on performance and antibacteriality of polysulfone ultrafiltration membrane. Desalination 306:41–50

    CAS  CrossRef  Google Scholar 

  • Noonan GO, Whelton AJ, Carlander D et al (2014) Measurement methods to evaluate engineered nanomaterial release from food contact materials. Comp Rev Food Sci Food Saf. doi:10.1111/1541-4337.12079

  • Paladini F, Pollini M, Talá A et al (2012) Efficacy of silver treated catheters for haemodialysis in preventing bacterial adhesion. J Mater Sci Mater Med 23(8):1983–1990

    CAS  CrossRef  PubMed  Google Scholar 

  • Park EJ, Bae E, Yi J et al (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30(2):162–168

    CAS  CrossRef  PubMed  Google Scholar 

  • Park E-J, Kim H, Kim Y et al (2011a) Repeated-dose toxicity attributed to aluminum nanoparticles following 28-day oral administration, particularly on gene expression in mouse brain. Toxicol Environ Chem 93(1):120–133

    CAS  CrossRef  Google Scholar 

  • Park K, Park E-J, Chun IK et al (2011b) Bioavailability and toxicokinetics of citrate-coated silver nanoparticles in rats. Arch Pharmacol Res 34(1):153–158

    CAS  CrossRef  Google Scholar 

  • Piao MJ, Kang KA, Lee IK et al (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201(1):92–100

    CAS  CrossRef  PubMed  Google Scholar 

  • Podsiadlo P, Kaushik AK, Arruda EM et al (2007) Ultrastrong and stiff layered polymer nanocomposites. Science 318(5847):80–83

    CAS  CrossRef  PubMed  Google Scholar 

  • Ray SS, Yamada K, Okamoto M et al (2002) Polylactide-layered silicate nanocomposite: a novel biodegradable material. Nano Lett 2(10):1093–1096

    CAS  CrossRef  Google Scholar 

  • Risch SJ (2009) Food packaging history and innovations. J Agric Food Chem 57(18):8089–8092

    CAS  CrossRef  PubMed  Google Scholar 

  • Robertson GL (2006) Food packaging: principles and practice, 2nd edn. Taylor and Francis Group, LLC, Boca Raton

    Google Scholar 

  • Rulis AM, Levitt JA (2009) FDA’s food ingredient approval process, safety assurance based on scientific assessment. Regul Toxicol Pharmacol 53(1):20–31

    CrossRef  PubMed  Google Scholar 

  • Sánchez-Valdes S, Ortega-Ortiz H, Ramos-de Valle LF et al (2009) Mechanical and antimicrobial properties of multilayer films with a polyethylene/silver nanocomposite layer. J Appl Polym Sci 111(2):953–962

    Google Scholar 

  • Schmidt B, Petersen JH, Koch CB et al (2009) Combining asymmetrical flow field-flow fractionation with light-scattering and inductively coupled plasma mass spectrometric detection for characterization of nanoclay used in biopolymer nanocomposites. Food Addit Contam 26A(12):1619–1627

    CrossRef  Google Scholar 

  • Schmidt B, Katiyar V, Plackett D et al (2011) Migration of nanosized layered double hydroxide platelets from polylactide nanocomposite films. Food Addit Contam 28A(7):956–966

    CrossRef  Google Scholar 

  • Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed 7:2767–2781

    CAS  Google Scholar 

  • Seok SH, Cho W-S, Park JS et al (2013) Rat pancreatitis produced by 13-week administration of zinc oxide nanoparticles: biopersistence of nanoparticles and possible solutions. J Appl Toxicol 33(10):1089–1096

    CAS  CrossRef  PubMed  Google Scholar 

  • Šimon P, Chaudhry Q, Bakoš D (2008) Migration of engineered nanoparticles from polymer packaging to food—a physicochemical view. J Food Nutr Res 47(3):105–113

    Google Scholar 

  • Song H, Li B, Lin Q-B et al (2011) Migration of silver from nanosilver-polyethylene composite packaging into food simulants. Food Addit Contam 28(12):1758–1762

    CAS  Google Scholar 

  • Strohal R, Schelling M, Takacs M et al (2005) Nanocrystalline silver dressings as an efficient anti-MRSA barrier: a new solution to an increasing problem. J Hosp Infect 60(3):226–230

    CAS  CrossRef  PubMed  Google Scholar 

  • Sweet MJ, Singleton I (2011) Silver nanoparticles: a microbial perspective. Adv Appl Microbiol 77:115–133

    CAS  CrossRef  PubMed  Google Scholar 

  • United States Code (2010) 21 United States Code, 2010 Edition, Title 21—Food and Drugs, Chapter 9 – Federal Food, Drug, and Cosmetic Act, Subchapter II – Definitions; Section 321, Definition for food additive. http://www.gpo.gov/fdsys/pkg/U.S.CODE-2010-title21/html/U.S.CODE-2010-title21-chap9-subchapII.htm. Accessed 20 Oct 2013

  • United States Environmental Protection Agency (USEPA) (2013) Municipal solid waste. U.S. Environmental Protection Agency. http://www.epa.gov/epawaste/nonhaz/municipal/. Accessed 30 June 2014

  • van der Zande M, Vandebriel RJ, Van Doren E et al (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6(8):7427–7442

    CrossRef  PubMed  Google Scholar 

  • Wang Y, Chen Z, Ba T et al (2013) Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small 9(9–10):1742–1752

    CAS  CrossRef  PubMed  Google Scholar 

  • Welle F (2013) A new method for the prediction of diffusion coefficients in poly(ethylene terephthalate). J Appl Polym Sci 129:1845–1851

    CAS  CrossRef  Google Scholar 

  • Xia X, Tang Y, Xie C et al (2011) An approach to give prospective life-span of the copper/low-density-polyethylene nanocomposite intrauterine device. J Mater Sci Mater Med 22(7):1773–1781

    CAS  CrossRef  PubMed  Google Scholar 

  • Xiu Z-M, Zhang Q-B, Puppala HL et al (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy V. Duncan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Pillai, K.V., Hunt, P.R., Duncan, T.V. (2014). Nanoparticles in Polymer Nanocomposite Food Contact Materials: Uses, Potential Release, and Emerging Toxicological Concerns. In: Snedeker, S. (eds) Toxicants in Food Packaging and Household Plastics. Molecular and Integrative Toxicology. Springer, London. https://doi.org/10.1007/978-1-4471-6500-2_4

Download citation