Fuzzy Fibers: Uncertainty in dMRI Tractography

  • Thomas Schultz
  • Anna Vilanova
  • Ralph Brecheisen
  • Gordon Kindlmann
Part of the Mathematics and Visualization book series (MATHVISUAL)


Fiber tracking based on diffusion weighted Magnetic Resonance Imaging (dMRI) allows for noninvasive reconstruction of fiber bundles in the human brain. In this chapter, we discuss sources of error and uncertainty in this technique, and review strategies that afford a more reliable interpretation of the results. This includes methods for computing and rendering probabilistic tractograms, which estimate precision in the face of measurement noise and artifacts. However, we also address aspects that have received less attention so far, such as model selection, partial voluming, and the impact of parameters, both in preprocessing and in fiber tracking itself. We conclude by giving impulses for future research.


Fiber Bundle Fiber Direction Seed Point Fiber Tractography Probabilistic Tractography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alexander, D.C., Barker, G.J., Arridge, S.R.: Detection and modeling of non-gaussian apparent diffusion coefficient profiles in human brain data. Magn. Reson. Med. 48, 331–340 (2002)CrossRefGoogle Scholar
  2. 2.
    Behrens, T.E.J., Johansen-Berg, H., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34, 144–155 (2007)CrossRefGoogle Scholar
  3. 3.
    Behrens, T.E.J., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S., Matthews, P.M., Brady, J.M., Smith, S.M.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077–1088 (2003)CrossRefGoogle Scholar
  4. 4.
    Björnemo, M., Brun, A., Kikinis, R., Westin, C.F.: Regularized stochastic white matter tractography using diffusion tensor MRI. In: Dohi, T., Kikinis, R. (eds.) Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI), Lecture Notes in Computer Science, vol. 2488, pp. 435–442. Springer, Berlin (2002)Google Scholar
  5. 5.
    Blaas, J., Botha, C.P., Peters, B., Vos, F.M., Post, F.H.: Fast and reproducible fiber bundle selection in DTI visualization. In: Silva, C., Gröller, E., Rushmeier, H. (eds) Proceedings of IEEE Visualization, pp. 59–64 (2005)Google Scholar
  6. 6.
    Brecheisen, R., Platel, B., ter Haar Romenij, B.M., Vilanova, A.: Illustrative uncertainty visualization for DTI fiber pathways. In: Poster Proceedings of EuroVis (2011)Google Scholar
  7. 7.
    Brecheisen, R., Vilanova, A., Platel, B., ter Haar Romenij, B.M.: Parameter sensitivity visualization for DTI fiber tracking. IEEE Trans. Vis. Comput. Graph. 15(6), 1441–1448 (2009)Google Scholar
  8. 8.
    Bretthorst, G.L., Kroenke, C.D., Neil, J.J.: Characterizing water diffusion in fixed baboon brain. In Fischer, R., Preuss, R., von Toussaint, U. (eds.) Bayesian Inference and Maximum Entropy Methods in Science and Engineering, pp. 3–15 (2004)Google Scholar
  9. 9.
    Bürgel, U., Mädler, B., Honey, C.R., Thron, A., Gilsbach, J., Coenen, V.A.: Fiber tracking with distinct software tools results in a clear diversity in anatomical fiber tract portrayal. Cen. Eur. Neurosurg. 70(1), 27–35 (2009)CrossRefGoogle Scholar
  10. 10.
    Calamante, F., Tournier, J.D., Jackson, G.D., Connelly, A.: Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping. NeuroImage 53(4), 1233–1243 (2010)CrossRefGoogle Scholar
  11. 11.
    Catani, M., Howard, R.J., Pajevic, S., Jones, D.K.: Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage 17, 77–94 (2002)CrossRefGoogle Scholar
  12. 12.
    Chung, S., Ying, L.: Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters. NeuroImage 33(2), 531–541 (2006)CrossRefGoogle Scholar
  13. 13.
    Ciccarelli, O., Parker, G.J.M., Toosy, A.T., Wheeler-Kingshott, C.A.M., Barker, G.J., Boulby, P.A., Miller, D.H., Thompson, A.J.: From diffusion tractography to quantitative white matter tract measures: a reproducibility study. NeuroImage 18, 348–359 (2003)CrossRefGoogle Scholar
  14. 14.
    Ding, Z., Gore, J.C., Anderson, A.W.: Classification and quantification of neuronal fiber pathways using diffusion tensor MRI. Magn. Reson. Med. 49, 716–721 (2003)CrossRefGoogle Scholar
  15. 15.
    Ehricke, H.-H., Klose, U., Grodd, W.: Visualizing MR diffusion tensor fields by dynamic fiber tracking and uncertainty mapping. Comput. Graph. 30, 255–264 (2006)Google Scholar
  16. 16.
    Farrell, J.A.D., Landman, B.A., Jones, C.K., Smith, S.A., Prince, J.L., van Zijl, P.C.M., Mori, S.: Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T. J. Magn. Reson. Imag. 26, 756–767 (2007)Google Scholar
  17. 17.
    Freidlin, R.Z., Özarslan, E., Komlosh, M.E., Chang, L.-C., Koay, C.G., Jones, D.K., Basser, P.J.: Parsimonious model selection for tissue segmentation and classification applications: a study using simulated and experimental DTI data. IEEE Trans. Med. Imaging 26(11), 1576–1584 (2007)Google Scholar
  18. 18.
    Greenspan, H., Oz, G., Kiryati, N., Peled, S.: MRI inter-slice reconstruction using super-resolution. Magn. Reson. Imaging 20, 437–446 (2002)CrossRefGoogle Scholar
  19. 19.
    Hagmann, P., Thiran, J.-P., Jonasson, L., Vandergheynst, P., Clarke, S., Maeder, P., Meuli, R.: DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection. NeuroImage 19, 545–554 (2003)CrossRefGoogle Scholar
  20. 20.
    Heidemann, R.M., Porter, D.A., Anwander, A., Feiweier, T., Calamante, F., Tournier, J.-S., Lohmann, G., Meyer, H., Knösche, T.R., Turner, R.: Whole-brain, multi-shot, diffusion-weighted imaging in humans at 7T with 1 mm isotropic resolution. In Proceedings of International Society of Magnetic Resonance in Medicine (ISMRM), p. 417 (2011)Google Scholar
  21. 21.
    Heiervang, E., Behrens, T.E.J., Mackay, C.E., Robson, M.D., Johansen-Berg, H.: Between session reproducibility and between subject variability of diffusion MRI and tractography measures. NeuroImage 33, 867–877 (2006)CrossRefGoogle Scholar
  22. 22.
    Hoeting, J.A., Madigan, D., Raftery, A.E., Volinsky, C.T.: Bayesian model averaging: a tutorial. Stat. Sci. 14(4), 382–417 (1999)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Hsu, E.: Generalized line integral convolution rendering of diffusion tensor fields. In Proceedings of International Society of Magnetic Resonance in Medicine (ISMRM), p. 790 (2001)Google Scholar
  24. 24.
    Hao, H., Zhang, J., van Zijl, P.C.m., Mori, S.: Analysis of noise effects on DTI-based tractography using the brute-force and multi-ROI approach. Magn. Reson. Med. 52, 559–565 (2004)Google Scholar
  25. 25.
    Hubbard, P.L., Parker, G.J.M.: Validation of tractography. In: Johansen-Berg, H., Behrens, T.E.J. (eds.) Diffusion MRI: From Quantitative Measurement to in-Vivo Neuroanatomy, pp. 353–375. Academic Press, Massachusetts (2009)Google Scholar
  26. 26.
    Jeurissen, B., Leemans, A., Tournier, J-D. Jones, D.K., Sijbers, J.: Estimating the number of fiber orientations in diffusion MRI voxels: a spherical deconvolution study. In Proceedings of International Society of Magnetic Resonance in Medicine (ISMRM) (2010)Google Scholar
  27. 27.
    Jeurissen, B., Leemans, A., Jones, D.K., Tournier, J.D., Sijbers, J.: Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution. Hum. Brain Mapp. 32, 461–479 (2011)CrossRefGoogle Scholar
  28. 28.
    Jiao, F., Phillips, J.M., Gur, Y., Johnson, C.R.: Uncertainty visualization in HARDI based on ensembles of ODFs. In: Hauser, H., Kobourov, S.G., Qu, H. (eds.) Proceedings of IEEE Pacific Visualization Symposium, pp. 193–200 (2012)Google Scholar
  29. 29.
    Jiao, F., Phillips, J.M., Stinstra, J., Krüger, J., Varma, R., Hsu, E., Korenberg, J., Johnson, C.R.: Metrics for uncertainty analysis and visualization of diffusion tensor images. In: Liao, H., Eddie Edwards, P.J., Pan, X., Fan, Y., Yang, G.-Z. (eds.) Proceedings of Medical Imaging and Augmented Reality. Lecture Notes in Computer Science, vol. 6326, pp. 179–190 (2010)Google Scholar
  30. 30.
    Jones, D.K., Travis, A.R., Eden, G., Pierpaoli, C., Basser, P.J.: Pasta: pointwise assessment of streamline tractography attributes. Magn. Reson. Med. 53(6), 1462–1467 (2005)Google Scholar
  31. 31.
    Jones, D.K.: Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI. Magn. Reson. Med. 49, 7–12 (2003)Google Scholar
  32. 32.
    Jones, D.K.: Tractography gone wild: probabilistic fibre tracking using the wild bootstrap with diffusion tensor MRI. IEEE Trans. Med. Imaging 27(9), 1268–1274 (2008)CrossRefGoogle Scholar
  33. 33.
    Jones, D.K.: Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI. Future Med. 2(3), 341–355 (2010)Google Scholar
  34. 34.
    Jones, D.K., Cercignani, M.: Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed. 23, 803–820 (2010)CrossRefGoogle Scholar
  35. 35.
    Jones, D.K., Pierpaoli, C.: Confidence mapping in diffusion tensor magnetic resonance imaging tractography using a bootstrap approach. Magn. Reson. Med. 53, 1143–1149 (2005)CrossRefGoogle Scholar
  36. 36.
    Kass, R.E., Raftery, A.E.: Bayes factors. J. Am. Stat. Assoc. 90(430), 773–795 (1995)CrossRefMATHGoogle Scholar
  37. 37.
    Kinoshita, M., Yamada, K., Hashimoto, N., Kato, A., Izumoto, S., Baba, T., Maruno, M., Nishimura, T., Yoshimine, T.: Fiber-tracking does not accurately estimate size of fiber bundle in pathological condition: initial neurosurgical experience using neuronavigation and subcortical white matter stimulation. NeuroImage 25(2), 424–429 (2005)CrossRefGoogle Scholar
  38. 38.
    Koch, M.A., Norris, D.G., Hund-Georgiadis, M.: An investigation of functional and anatomical connectivity using magnetic resonance imaging. NeuroImage 16, 241–250 (2002)CrossRefGoogle Scholar
  39. 39.
    Lazar, M., Alexander, A.L.: Bootstrap white matter tractography (BOOT-TRAC). NeuroImage 24(2), 524–532 (2005)CrossRefGoogle Scholar
  40. 40.
    McGraw, T., NadarM.S.: Stochastic DT-MRI connectivity mapping on the GPU. IEEE Trans. Visual. Comput. Graph. 13(6), 1504–1511 (2007)Google Scholar
  41. 41.
    Nedjati-Gilani, S., Alexander, D.C.: Fanning and bending sub-voxel structures in diffusion MRI. In Proceedings International Society of Magnetic Resonance in Medicine (ISMRM), p. 1402 (2009)Google Scholar
  42. 42.
    Nedjati-Gilani, S., Alexander, D.C., Parker, G.J.M.: Regularized super-resolution for diffusion MRI. In Proceedings of IEEE International Symposium on Biomedical Imaging (ISBI), pp. 875–878 (2008)Google Scholar
  43. 43.
    Pajevic, S., Basser, P.J.: Parametric and non-parametric statistical analysis of DT-MRI data. J. Magn. Reson. 161(1), 1–14 (2003)CrossRefGoogle Scholar
  44. 44.
    Parker, G.J.M., Alexander, D.C.: Probabilistic monte carlo based mapping of cerebral connections utilising whole-brain crossing fibre information. In: Taylor, C.J., Noble, J.A. (eds.) Information Processing in Medical Imaging. Lecture Notes in Computer Science, vol. 2732, pp. 684–695. Springer, Berlin (2003)Google Scholar
  45. 45.
    Parker, G.J.M., Haroon, H.A., Wheeler-Kingshott, C.A.M.: A framework for a streamline-based probabilistic index of connectivity (pico) using a structural interpretation of MRI diffusion measurements. J. Magn. Reson. Imaging 18, 242–254 (2003)Google Scholar
  46. 46.
    Peled, S., Friman, O., Jolesz, F., Westin, C.-F.: Geometrically constrained two-tensor model for crossing tracts in DWI. Magn. Reson. Imaging 24(9), 1263–1270 (2006)Google Scholar
  47. 47.
    Peled, S., Yeshurun, Y.: Superresolution in MRI: application to human white matter fiber tract visualization by diffusion tensor imaging. Magn. Reson. Med. 45, 29–35 (2001)CrossRefGoogle Scholar
  48. 48.
    Peled, S., Yeshurun, Y.: Superresolution in MRI—perhaps sometimes. Magn. Reson. Med. 48, 409 (2002)CrossRefGoogle Scholar
  49. 49.
    Pfefferbaum, A., Adalsteinsson, E., Sullivan, E.V.: Replication of diffusion tensor imaging measurements of fractional anisotropy and trace in brain. J. Magn. Reson. Imaging 18, 427–433 (2003)CrossRefGoogle Scholar
  50. 50.
    Qazi, A.A., Radmanesh, A., O’Donnell, L., Kindlmann, G., Peled, S., Whalen, S., Westin, C.-F., Golby, A.J.: Resolving crossings in the corticospinal tract by two-tensor streamline tractography: method and clinical assessment using fMRI. NeuroImage, 47(Supplement 2), T98–T106 (2009, in press)Google Scholar
  51. 51.
    Scheffler, K.: Superresolution in MRI? Magn. Reson. Med. 48, 408 (2002)CrossRefGoogle Scholar
  52. 52.
    Scherrer, B., Gholipour, A., Warfield, S.K.: Super-resolution in diffusion-weighted imaging. In: Fichtinger, G., Martel, A., Peters, T. (eds.) Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI). Lecture Notes in Computer Science, vol. 6892, pp. 124–132. Springer, Berlin (2011)Google Scholar
  53. 53.
    Schultz. T.: Feature extraction for visual analysis of DW-MRI data. Ph.D. thesis, Universität des Saarlandes (2009)Google Scholar
  54. 54.
    Schultz, T: Learning a reliable estimate of the number of fiber directions in diffusion MRI. In: Ayache, N. et al. (eds.) Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 493–500 (2012) (Part III volume 7512 of LNCS)Google Scholar
  55. 55.
    Schultz, T., Schlaffke, L., Schölkopf, B., Schmidt-Wilcke, T.: HiFiVE: a Hilbert space embedding of fiber variability estimates for uncertainty modeling and visualization. Comput. Graph. Forum 32(3), 121–130 (2013)CrossRefGoogle Scholar
  56. 56.
    Schultz, T., Seidel, H.P.: Estimating crossing fibers: a tensor decomposition approach. IEEE Trans. Visual. Comput. Graph. 14(6):1635–1642 (2008)Google Scholar
  57. 57.
    Schultz, T., Theisel, H., Seidel, H.P.: Topological visualization of brain diffusion MRI data. IEEE Trans. Visual. Comput. Graph. 13(6), 1496–1503 (2007)Google Scholar
  58. 58.
    Schultz, T., Westin, C.F., Kindlmann, G.: Multi-diffusion-tensor fitting via spherical deconvolution: a unifying framework. In Jiang, T. et al. (eds.) Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 673–680. Springer, Berlin (2010) (vol. 6361 of Lecture Notes in Computer Science)Google Scholar
  59. 59.
    A.J. Sherbondy, R.F. Dougherty, M. Ben-Shachar, S. Napel, and B. Wandell. Contrack: Finding the most likely pathways between brain regions using diffusion tractography. Journal of Vision, 8:1, 2008.Google Scholar
  60. 60.
    Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., Moeller, S., Auerbach, E.J., Glasser, M.F., Hernandez, M., Sapiro, M., Jenkinson, M., Feinberg, D.A., Yacoub, E., Lenglet, C., Van Essen, D.C., Ugurbil, K., Behrens, T.E.J.: Advances in diffusion MRI acquisition and processing in the human connectome project. NeuroImage. doi: 10.1016/j.neuroimage.2013.05.057 (2013)
  61. 61.
    Tensaouti, F., Lahlou, I., Clarisse, P., Lotterie, J.A., Berry, I.: Quantitative and reproducibility study of four tractography alorithms used in clinical routine. Journal of Magnetic Resonance Imaging 34, 165–172 (2011)CrossRefGoogle Scholar
  62. 62.
    Tournier, J.D., Calamante, F., Connelly, A.: Non-negativity constrained super-resolved spherical deconvolution: robust determination of the fibre orientation distribution in diffusion MRI. NeuroImage 35, 1459–1472 (2007)Google Scholar
  63. 63.
    Voineskos, A.N., O’Donnell, L.J., Lobaugh, N.J., Markant, D., Ameis, S.H., Niethammer, M., Mulsant, B.H., Pollock, B.G., Kennedy, J.L., Westin, C.-F., Shenton, M.E.: Quantitative examination of a novel clustering method using magnetic resonance diffusion tensor tractography. NeuroImage 45(2), 370–376 (2009)CrossRefGoogle Scholar
  64. 64.
    Vollmar, C., O’Muircheartaigh, J., Barker, G.J., Symms, M.R., Thompson, P., Kumari, V., Duncan, J.S., Richardson, M.P., Koepp, M.J.: Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0 T scanners. NeuroImage 51(4), 1384–1394 (2010)CrossRefGoogle Scholar
  65. 65.
    Wakana, S., Caprihan, A., Panzenboeck, M.M., Fallon, J.H., Perry, M., Gollub, R.L., Hua, K., Zhang, J., Jiang, H., Dubey, P., Blitz, A., van Zijl, P., Mori, S.: Reproducibility of quantitative tractography methods applied to cerebral white matter. NeuroImage 36, 630–644 (2007)CrossRefGoogle Scholar
  66. 66.
    Westin, C.F., Peled, S., Gubjartsson, H., Kikinis, R., Jolesz, F.A.: Geometrical diffusion measures for MRI from tensor basis analysis. In Proceedings of International Society of Magnetic Resonance in Medicine (ISMRM) (1997)Google Scholar
  67. 67.
    Whitcher, B., Tuch, D.S., Wisco, J.J., Gregory Sorenson, A., Wang, L.: Using the wild bootstrap to quantify uncertainty in DTI. Human Brain Map. 29(3), 346–362 (2008)CrossRefGoogle Scholar
  68. 68.
    Wu, J.S., Mao, Y., Zhou, L.F., Tang, W.J., Hu, J., Song, Y.Y., Hong, X.N., Du, G.H.: Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery 61(5), 935–949 (2007)Google Scholar
  69. 69.
    Zheng, X., Pang, A.: HyperLIC. In Proceedings of IEEE Visualization, pp. 249–256 (2003)Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Thomas Schultz
    • 1
    • 2
  • Anna Vilanova
    • 3
    • 4
  • Ralph Brecheisen
    • 4
  • Gordon Kindlmann
    • 5
  1. 1.University of BonnBonnGermany
  2. 2.MPI for Intelligent SystemsUniversity of BonnTübingenGermany
  3. 3.TU DelftDelftNetherlands
  4. 4.TU EindhovenEindhovenNetherlands
  5. 5.University of ChicagoChicagoUSA

Personalised recommendations