Abstract
Although the amount and variety of data being generated is increased dramatically, the capabilities of data visualization, analysis, and discovery solutions have not been improved accordingly with the explosive rate of data production. One reason is that storage and processing at the level of raw data require supercomputer scale resources. The other is that working at the level of raw data prevents effective human comprehension while exploring and solving most problems. Here we show several approaches to scalable functional representations. Encoding, abstraction, and analysis at multiple scales of representations are a common approach in many scientific disciplines and provides a promising approach to harness our expanding digital universe.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bernardon, F.F., Callahan, S.P., Comba, J.L.D., Silva, C.T.: Interactive volume rendering of unstructured grids with time-varying scalar fields. In: Eurographics Symposium on Parallel Graphics and Visualization, pp. 51–58 (2006)
Bernardon, F.F., Callahan, S.P., Comba, J.L.D., Silva, C.T.: An adaptive framework for visualizing unstructured grids with time-varying scalar fields. Parallel Comput. 33(6), 391–405 (2007)
Bertram, M., Duchaineau, M.A., Hamann, B., Joy, K.I.: Bicubic subdivision-surface wavelets for large-scale isosurface representation and visualization. IEEE Vis. 2000, 389–396 (2000)
Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright0 , W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, pp. 67–76 (2001)
Co, C.S., Heckel, B., Hagen, H., Hamann, B., Joy, K.I.: Hierarchical clustering for unstructured volumetric scalar fields. In: Proceedings of IEEE visualization (2003)
Daubechies, I., Guskov, I., Schröder, P., Sweldens, W.: Wavelets on irregular point sets. Phil. Trans. R. Soc. Lond. A 357(1760), 2397–2413 (1999)
Ertörk, S., Dennis, T.J.: Object shape deformation with spherical harmonic interpolation. IEE Electron. Lett. 34, 1657–1658 (1998)
Ertörk, S., Dennis, T.J.: Approximating spherical harmonic representation order. IEE Electron. Lett. 35, 462–463 (1999)
Ertörk, S., Dennis, T.J.: Automated shape metamorphosis for 3D objects. In: IEE Image processing and its applications, Conference Publication No. 465, 846–850 (1999)
Franke, R.: Scattered data interpolation: Tests of some method. Math. Comput. 38(157), 181–200 (1982)
Franke, R., Hagen, H.: Least squares surface approximation using multiquadrics and parametric domain distortion. Comput. Aided Geom. Des. 16(3), 177–196 (1999)
Franke, R., Nielson, G.M.: Scattered data interpolation and applications: a tutorial and survey. In: Hagen, H., Roller, D. (eds.) Geometric modelling, methods and applications, pp. 131–160. Springer, Berlin (1991)
Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76(8), 1905–1915 (1971)
Hardy, R.L.: Theory and applications of the multiquadric-biharmonic method 20 years of discovery 1968–1988. Comput. Math. Appl. 19(8—-9), 163–208 (1990)
Ihm, I., Park, S.: Wavelet-based 3D compression scheme for interactive visualization of very large volume data. Comput. Graph. Forum 18(1), 3–15 (1999)
Jang, Y., Botchen, R.P., Lauser, A., Ebert, D.S., Gaither, K.P., Ertl, T.: Enhancing the interactive visualization of procedurally encoded multifield data with ellipsoidal basis functions. Comput. Graph. Forum 25(3), 587–596 (2006)
Jang, Y., Weiler, M., Hopf, M., Huang, J., Ebert, D.S., Gaither, K.P., Ertl, T.: Interactively visualizing procedurally encoded scalar fields. In: EG/IEEE TCVG Symposium on Visualization VisSym’04, pp. 35–44, 339 (2004)
Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Eurographics Symposium on Geometry Processing (2003)
Ledergerber, C., Guennebaud, G., Meyer, M., Bacher, M., Pfister, H.: Volume mls ray casting. IEEE Trans. Vis. Comput. Graph. 14(6), 1539–1546 (2008)
Lum, E.B., Ma, K.L., Clyne, J.: Texture hardware assisted rendering of time-varying volume data. In: VIS ’01: Proceedings of the Conference on Visualization’01, pp. 263–270. IEEE Computer Society Press (2001)
Ma, K.L., Shen, H.: Compression and accelerated rendering of time-varying volume data. In: Proceedings of the Workshop on Computer Graphics and Virtual Reality (2000)
Max, N.L., Getzoff, E.D.: Spherical harmonic molecular surfaces. IEEE Computer Graphics and Applications (1988)
McMathon, J.R., Franke, R.: Knot selection for least squares thin plate splines. SIAM J. Sci. Stat. Comput. 13(2), 484–498 (1992)
Misner, C.W.: Spherical harmonic decomposition on a cubic grid. Class. Quantum Gravity 21(3), S243–S247 (2004)
Morse, B.S., Yoo, T.S., Rheingans, P., Chen, D.T., Subramanian, K.R.: Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions. In: Proceedings Shape Modeling International, pp. 89–98. Genova, Italy (2001)
Muraki, S.: Approximation and rendering of volume data using wavelet transforms. In: VIS’92: Proceedings of the 3rd Conference on Visualization ’92, pp. 21–28. IEEE Computer Society Press (1992)
Nguyen, K.G., Saupe, D.: Rapid high quality compression of volume data for visualization. Comput. Graph. Forum 20(3), 49–56 (2001)
Nielson, G.M.: Scattered data modeling. IEEE Comput. Graph. Appl. 13(1), 60–70 (1993)
Nielson, G.M., Foley, T.A., Hamann, B., Lane, D.: Visualizing and modeling scattered multivariate data. IEEE Comput. Graph. Appl. 11(3), 47–55 (1991)
Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P.: Multi-level partition of unity implicits. ACM Trans. Graph. 22(3), 463–470 (2003)
Ohtake, Y., Belyaev, A., Seidel, H.P.: 3D scattered data approximation with adaptive compactly supported radial basis functions. In: International Conference on Shape Modeling and Applications (2004)
Savchenko, V.V., Pasko, A.A., Okunev, O.G., Kunii, T.L.: Function representation of solids reconstructed from scattered surface points and contours. Comput. Graph. Forum 14(4), 181–188 (1995). http://citeseer.nj.nec.com/savchenko95function.html
Shen, H.W., Chiang, L.J., Ma, K.L.: A fast volume rendering algorithm for time-varying fields using a time-space partitioning (TSP) tree. In: VIS’99: Proceedings of the Conference on Visualization ’99, pp. 371–377. IEEE Computer Society Press (1999)
Shen, H.W., Johnson, C.R.: Differential volume rendering: a fast volume visualization technique for flow animation. In: VIS’94: Proceedings of the Conference on Visualization ’94, pp. 180–187. IEEE Computer Society Press, Los Alamitos, CA, USA (1994)
Sohn, B.S., Bajaj, C., Siddavanahalli, V.: Feature based volumetric video compression for interactive playback. In: VVS’02: Proceedings of the 2002 IEEE symposium on Volume Visualization and Graphics, pp. 89–96. IEEE Press (2002)
Stollnitz, E.J., DeRose, T.D., Salesin, D.H.: Wavelets for computer graphics: a primer, part 1. IEEE Comput. Graph. Appl. 15(3), 76–84 (1995)
Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511–546 (1998)
Tanaka, K., Sano, M., Mukawa, N., Kaneko, H.: 3D object representation using spherical harmonic functions. In: Proceedings of the 1993 IEEE/RSJ, International Conference on Intelligent Robots and Systems (1993)
Turk, G., O’Brien, J.F.: Modelling with implicit surfaces that interpolate. ACM Trans. Graph. (TOG) 21(4), 855–873 (2002)
Vuçini, E., Möller, T., Gröller, M.E.: On visualization and reconstruction from non-uniform point sets using b-splines. Comput. Graph. Forum 28(3), 1007–1014 (2009)
Weiler, M., Botchen, R.P., Stegmeier, S., Ertl, T., Huang, J., Jang, Y., Ebert, D.S., Gaither, K.P.: Hardware-assisted feature analysis of procedurally encoded multifield volumetric data. Comput. Graph. Appl. 25(5), 72–81 (2005)
Westermann, R.: Compression domain rendering of time-resolved volume data. In: VIS ’95: Proceedings of the 6th conference on Visualization ’95, pp. 168–175,450. IEEE Computer Society Press (1995)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag London
About this chapter
Cite this chapter
Jang, Y. (2014). Scalable Representation. In: Hansen, C., Chen, M., Johnson, C., Kaufman, A., Hagen, H. (eds) Scientific Visualization. Mathematics and Visualization. Springer, London. https://doi.org/10.1007/978-1-4471-6497-5_30
Download citation
DOI: https://doi.org/10.1007/978-1-4471-6497-5_30
Published:
Publisher Name: Springer, London
Print ISBN: 978-1-4471-6496-8
Online ISBN: 978-1-4471-6497-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)