Skip to main content

Scalable Representation

  • Chapter
  • First Online:
Scientific Visualization

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 2745 Accesses

Abstract

Although the amount and variety of data being generated is increased dramatically, the capabilities of data visualization, analysis, and discovery solutions have not been improved accordingly with the explosive rate of data production. One reason is that storage and processing at the level of raw data require supercomputer scale resources. The other is that working at the level of raw data prevents effective human comprehension while exploring and solving most problems. Here we show several approaches to scalable functional representations. Encoding, abstraction, and analysis at multiple scales of representations are a common approach in many scientific disciplines and provides a promising approach to harness our expanding digital universe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernardon, F.F., Callahan, S.P., Comba, J.L.D., Silva, C.T.: Interactive volume rendering of unstructured grids with time-varying scalar fields. In: Eurographics Symposium on Parallel Graphics and Visualization, pp. 51–58 (2006)

    Google Scholar 

  2. Bernardon, F.F., Callahan, S.P., Comba, J.L.D., Silva, C.T.: An adaptive framework for visualizing unstructured grids with time-varying scalar fields. Parallel Comput. 33(6), 391–405 (2007)

    Article  Google Scholar 

  3. Bertram, M., Duchaineau, M.A., Hamann, B., Joy, K.I.: Bicubic subdivision-surface wavelets for large-scale isosurface representation and visualization. IEEE Vis. 2000, 389–396 (2000)

    Google Scholar 

  4. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright0 , W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, pp. 67–76 (2001)

    Google Scholar 

  5. Co, C.S., Heckel, B., Hagen, H., Hamann, B., Joy, K.I.: Hierarchical clustering for unstructured volumetric scalar fields. In: Proceedings of IEEE visualization (2003)

    Google Scholar 

  6. Daubechies, I., Guskov, I., Schröder, P., Sweldens, W.: Wavelets on irregular point sets. Phil. Trans. R. Soc. Lond. A 357(1760), 2397–2413 (1999)

    Article  MATH  Google Scholar 

  7. Ertörk, S., Dennis, T.J.: Object shape deformation with spherical harmonic interpolation. IEE Electron. Lett. 34, 1657–1658 (1998)

    Article  Google Scholar 

  8. Ertörk, S., Dennis, T.J.: Approximating spherical harmonic representation order. IEE Electron. Lett. 35, 462–463 (1999)

    Article  Google Scholar 

  9. Ertörk, S., Dennis, T.J.: Automated shape metamorphosis for 3D objects. In: IEE Image processing and its applications, Conference Publication No. 465, 846–850 (1999)

    Google Scholar 

  10. Franke, R.: Scattered data interpolation: Tests of some method. Math. Comput. 38(157), 181–200 (1982)

    MathSciNet  MATH  Google Scholar 

  11. Franke, R., Hagen, H.: Least squares surface approximation using multiquadrics and parametric domain distortion. Comput. Aided Geom. Des. 16(3), 177–196 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Franke, R., Nielson, G.M.: Scattered data interpolation and applications: a tutorial and survey. In: Hagen, H., Roller, D. (eds.) Geometric modelling, methods and applications, pp. 131–160. Springer, Berlin (1991)

    Google Scholar 

  13. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76(8), 1905–1915 (1971)

    Article  Google Scholar 

  14. Hardy, R.L.: Theory and applications of the multiquadric-biharmonic method 20 years of discovery 1968–1988. Comput. Math. Appl. 19(8—-9), 163–208 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ihm, I., Park, S.: Wavelet-based 3D compression scheme for interactive visualization of very large volume data. Comput. Graph. Forum 18(1), 3–15 (1999)

    Article  Google Scholar 

  16. Jang, Y., Botchen, R.P., Lauser, A., Ebert, D.S., Gaither, K.P., Ertl, T.: Enhancing the interactive visualization of procedurally encoded multifield data with ellipsoidal basis functions. Comput. Graph. Forum 25(3), 587–596 (2006)

    Article  Google Scholar 

  17. Jang, Y., Weiler, M., Hopf, M., Huang, J., Ebert, D.S., Gaither, K.P., Ertl, T.: Interactively visualizing procedurally encoded scalar fields. In: EG/IEEE TCVG Symposium on Visualization VisSym’04, pp. 35–44, 339 (2004)

    Google Scholar 

  18. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Eurographics Symposium on Geometry Processing (2003)

    Google Scholar 

  19. Ledergerber, C., Guennebaud, G., Meyer, M., Bacher, M., Pfister, H.: Volume mls ray casting. IEEE Trans. Vis. Comput. Graph. 14(6), 1539–1546 (2008)

    Article  Google Scholar 

  20. Lum, E.B., Ma, K.L., Clyne, J.: Texture hardware assisted rendering of time-varying volume data. In: VIS ’01: Proceedings of the Conference on Visualization’01, pp. 263–270. IEEE Computer Society Press (2001)

    Google Scholar 

  21. Ma, K.L., Shen, H.: Compression and accelerated rendering of time-varying volume data. In: Proceedings of the Workshop on Computer Graphics and Virtual Reality (2000)

    Google Scholar 

  22. Max, N.L., Getzoff, E.D.: Spherical harmonic molecular surfaces. IEEE Computer Graphics and Applications (1988)

    Google Scholar 

  23. McMathon, J.R., Franke, R.: Knot selection for least squares thin plate splines. SIAM J. Sci. Stat. Comput. 13(2), 484–498 (1992)

    Article  Google Scholar 

  24. Misner, C.W.: Spherical harmonic decomposition on a cubic grid. Class. Quantum Gravity 21(3), S243–S247 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Morse, B.S., Yoo, T.S., Rheingans, P., Chen, D.T., Subramanian, K.R.: Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions. In: Proceedings Shape Modeling International, pp. 89–98. Genova, Italy (2001)

    Google Scholar 

  26. Muraki, S.: Approximation and rendering of volume data using wavelet transforms. In: VIS’92: Proceedings of the 3rd Conference on Visualization ’92, pp. 21–28. IEEE Computer Society Press (1992)

    Google Scholar 

  27. Nguyen, K.G., Saupe, D.: Rapid high quality compression of volume data for visualization. Comput. Graph. Forum 20(3), 49–56 (2001)

    Article  Google Scholar 

  28. Nielson, G.M.: Scattered data modeling. IEEE Comput. Graph. Appl. 13(1), 60–70 (1993)

    Article  MathSciNet  Google Scholar 

  29. Nielson, G.M., Foley, T.A., Hamann, B., Lane, D.: Visualizing and modeling scattered multivariate data. IEEE Comput. Graph. Appl. 11(3), 47–55 (1991)

    Article  Google Scholar 

  30. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P.: Multi-level partition of unity implicits. ACM Trans. Graph. 22(3), 463–470 (2003)

    Google Scholar 

  31. Ohtake, Y., Belyaev, A., Seidel, H.P.: 3D scattered data approximation with adaptive compactly supported radial basis functions. In: International Conference on Shape Modeling and Applications (2004)

    Google Scholar 

  32. Savchenko, V.V., Pasko, A.A., Okunev, O.G., Kunii, T.L.: Function representation of solids reconstructed from scattered surface points and contours. Comput. Graph. Forum 14(4), 181–188 (1995). http://citeseer.nj.nec.com/savchenko95function.html

  33. Shen, H.W., Chiang, L.J., Ma, K.L.: A fast volume rendering algorithm for time-varying fields using a time-space partitioning (TSP) tree. In: VIS’99: Proceedings of the Conference on Visualization ’99, pp. 371–377. IEEE Computer Society Press (1999)

    Google Scholar 

  34. Shen, H.W., Johnson, C.R.: Differential volume rendering: a fast volume visualization technique for flow animation. In: VIS’94: Proceedings of the Conference on Visualization ’94, pp. 180–187. IEEE Computer Society Press, Los Alamitos, CA, USA (1994)

    Google Scholar 

  35. Sohn, B.S., Bajaj, C., Siddavanahalli, V.: Feature based volumetric video compression for interactive playback. In: VVS’02: Proceedings of the 2002 IEEE symposium on Volume Visualization and Graphics, pp. 89–96. IEEE Press (2002)

    Google Scholar 

  36. Stollnitz, E.J., DeRose, T.D., Salesin, D.H.: Wavelets for computer graphics: a primer, part 1. IEEE Comput. Graph. Appl. 15(3), 76–84 (1995)

    Article  Google Scholar 

  37. Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511–546 (1998)

    Article  MathSciNet  Google Scholar 

  38. Tanaka, K., Sano, M., Mukawa, N., Kaneko, H.: 3D object representation using spherical harmonic functions. In: Proceedings of the 1993 IEEE/RSJ, International Conference on Intelligent Robots and Systems (1993)

    Google Scholar 

  39. Turk, G., O’Brien, J.F.: Modelling with implicit surfaces that interpolate. ACM Trans. Graph. (TOG) 21(4), 855–873 (2002)

    Article  Google Scholar 

  40. Vuçini, E., Möller, T., Gröller, M.E.: On visualization and reconstruction from non-uniform point sets using b-splines. Comput. Graph. Forum 28(3), 1007–1014 (2009)

    Article  Google Scholar 

  41. Weiler, M., Botchen, R.P., Stegmeier, S., Ertl, T., Huang, J., Jang, Y., Ebert, D.S., Gaither, K.P.: Hardware-assisted feature analysis of procedurally encoded multifield volumetric data. Comput. Graph. Appl. 25(5), 72–81 (2005)

    Article  Google Scholar 

  42. Westermann, R.: Compression domain rendering of time-resolved volume data. In: VIS ’95: Proceedings of the 6th conference on Visualization ’95, pp. 168–175,450. IEEE Computer Society Press (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Jang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Jang, Y. (2014). Scalable Representation. In: Hansen, C., Chen, M., Johnson, C., Kaufman, A., Hagen, H. (eds) Scientific Visualization. Mathematics and Visualization. Springer, London. https://doi.org/10.1007/978-1-4471-6497-5_30

Download citation

Publish with us

Policies and ethics