From Individual to Population: Challenges in Medical Visualization

  • C. P. BothaEmail author
  • B. Preim
  • A. E. Kaufman
  • S. Takahashi
  • A. Ynnerman
Part of the Mathematics and Visualization book series (MATHVISUAL)


Due to continuing advances in medical imaging technology, and in medicine itself, techniques for visualizing medical image data have become increasingly important. In this chapter, we present a brief overview of the past 30 years of developments in medical visualization, after which we discuss the research challenges that we foresee for the coming decade.


Compute Tomography Data Virtual Colonoscopy Optical Colonoscopy Marching Cube Direct Volume Rendering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Altobelli, D.E., Kikinis, R., Mulliken, J.B., Cline, H., Lorensen, W., Jolesz, F.: Computer-assisted three-dimensional planning in craniofacial surgery. Plast. Reconstr Surg 92(4), 576–585; discussion 586–587 (1993)Google Scholar
  2. 2.
    Bajaj, C.L., Pascucci, V., Schikore, D.R.: The contour spectrum. In: Proceedings of IEEE Conference on Visualization, 1997. Visualization’97, pp. 167–173. IEEE (1997). doi:  10.1109/VISUAL.1997.663875
  3. 3.
    Bartz, D.: Virtual endoscopy in research and clinical practice. Comput. Graph. Forum 24(1), 111–126 (2005). doi: 10.1111/j.1467-8659.2005.00831.x CrossRefGoogle Scholar
  4. 4.
    Basser, P.: Fiber-tractography via diffusion tensor MRI (DT-MRI). In: Proceedings of the 6th Annual Meeting ISMRM, Sydney, Australia, vol. 1226 (1998)Google Scholar
  5. 5.
    Basser, P., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994). doi: 10.1016/S0006-3495(94)80775-1 CrossRefGoogle Scholar
  6. 6.
    Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Resonance Med. 44(4), 625–632 (2000). (Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine)CrossRefGoogle Scholar
  7. 7.
    Behrens, U., Teubner, J., Evertsz, C., Walz, M., Jürgens, H., Peitgen, H.O.: Computer-assisted dynamic evaluation of contrast-enhanced-MRI. In: Proceedings of Computer Assisted Radiology, pp. 362–367 (1996)Google Scholar
  8. 8.
    Beyer, J., Hadwiger, M., Wolfsberger, S., Buhler, K.: High-quality multimodal volume rendering for preoperative planning of neurosurgical interventions. IEEE Trans. Vis. Comput. Graph. 13(6), 1696–1703 (2007). doi: 10.1109/TVCG.2007.70560 CrossRefGoogle Scholar
  9. 9.
    Blaas, J., Botha, C.P., Post, F.H.: Interactive visualization of multi-field medical data using linked physical and feature-space views. In: K. Museth, A. Ynnerman, T. Möller (eds.) Proceedings of Eurographics / IEEE-VGTC EuroVis, pp. 123–130 (2007)Google Scholar
  10. 10.
    Bruckner, S., Grimm, S., Kanitsar, A., Gröller, M.: Illustrative context-preserving volume rendering. Proc. EUROVIS 2005, 69–76 (2005)Google Scholar
  11. 11.
    Bruckner, S., Grimm, S., Kanitsar, A., Gröller, M.E.: Illustrative context-preserving exploration of volume data. IEEE Trans. Vis. Comput. Graph. 12(6), 1559–1569 (2006). doi:
  12. 12.
    Bruckner, S., Gröller, E.: Enhancing depth-perception with flexible volumetric halos. IEEE Trans. Vis. Comput. Graph. 13(6), 1344–1351 (2007). doi:
  13. 13.
    Cai, W., Sakas, G.: Data intermixing and multi-volume rendering. Comput. Graph. Forum 18(3), 359–368 (1999). doi: 10.1111/1467-8659.00356 CrossRefGoogle Scholar
  14. 14.
    Cerqueira, M.D., Weissman, N.J., Dilsizian, V., Jacobs, A.K., Kaul, S., Laskey, W.K., Pennell, D.J., Rumberger, J.A., Ryan, T., Verani, M.S.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 105(4), 539–542 (2002). doi: 10.1161/hc0402.102975 CrossRefGoogle Scholar
  15. 15.
    Chan, M.Y., Qu, H., Chung, K.K., Mak, W.H., Wu, Y.: Relation-aware volume exploration pipeline. IEEE Trans. Vis. Comput. Graph. 14(6), 1683–1690 (2008). doi: 10.1109/TVCG.2008.159 CrossRefGoogle Scholar
  16. 16.
    Coto, E., Grimm, S., Bruckner, S., Gröller, E., Kanitsar, A., Rodriguez, O.: MammoExplorer: an advanced CAD application for breast DCE-MRI. In: Proceedings of Vision, Modelling, and Visualization (VMV), pp. 91–98 (2005)Google Scholar
  17. 17.
    Csébfalvi, B., Mroz, L., Hauser, H., König, A., Gröller, E.: Fast visualization of object contours by Non-Photorealistic volume rendering. Comput. Graph. Forum 20(3), 452–460 (2001). doi: 10.1111/1467-8659.00538 CrossRefGoogle Scholar
  18. 18.
    Dick, C., Georgii, J., Burgkart, R., Westermann, R.: Stress tensor field visualization for implant planning in orthopedics. IEEE Trans. Vis. Comput. Graph. 15(6), 1399–1406 (2009). doi: 10.1109/TVCG.2009.184 CrossRefGoogle Scholar
  19. 19.
    Drebin, R.A., Carpenter, L., Hanrahan, P.: Volume rendering. SIGGRAPH Comput. Graph. 22(4), 65–74 (1988). doi:  10.1145/378456.378484
  20. 20.
    Ebert, D., Rheingans, P.: Volume illustration: non-photorealistic rendering of volume models. In: Proceedings of the conference on visualization ’00. VIS ’00, pp. 195–202. IEEE Computer Society Press, Los Alamitos, CA, USA (2000)Google Scholar
  21. 21.
    Falcão, A.X., Udupa, J.K., Samarasekera, S., Sharma, S., Hirsch, B.E., Lotufo, R.D.A.: User-steered image segmentation paradigms: Live wire and live lane. Graph. Models Image Process. 60(4), 233–260 (1998). doi: 10.1006/gmip.1998.0475 CrossRefGoogle Scholar
  22. 22.
    Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. NeuroImage 9(2), 195–207 (1999). doi: 10.1006/nimg.1998.0396 CrossRefGoogle Scholar
  23. 23.
    Gerig, G., Koller, T., Székely, G., Brechbühler, C., Kübler, O.: Symbolic description of 3-d structures applied to cerebral vessel tree obtained from MR angiography volume data. In: Barrett, H.H., Gmitro, A.F. (eds.) Inf. Process. Med. Imaging, vol. 687, pp. 94–111. Springer, Berlin (1993)CrossRefGoogle Scholar
  24. 24.
    Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V.: Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. 100(1), 253–258 (2003). doi: 10.1073/pnas.0135058100 CrossRefGoogle Scholar
  25. 25.
    Hagmann, P., Jonasson, L., Maeder, P., Thiran, J.P., Wedeen, V.J., Meuli, R.: Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiograph. Rev. Publ. Radiol. Soc. North Am. Inc. 26(Suppl 1), S205–S223 (2006). doi:  10.1148/rg.26si065510
  26. 26.
    Höhne, K.H., Bernstein, R.: Shading 3D-Images from CT using gray-level gradients. IEEE Trans. Med. Imaging 5, 45–47 (1986). doi: 10.1109/TMI.1986.4307738 CrossRefGoogle Scholar
  27. 27.
    Höhne, K.H., Bomans, M., Tiede, U., Riemer, M.: Display of multiple 3D-objects using the generalized voxel-model. In: Medical Imaging II, Part B, Proceedings of SPIE 914, pp. 850–854. Newport Beach (1988)Google Scholar
  28. 28.
    Hong, L., Kaufman, A., Wei, Y.C., Viswambharan, A., Wax, M., Liang, Z.: 3D virtual colonoscopy. In: Proceedings of Biomedical Visualization, 1995, pp. 26–32, 83. IEEE (1995). doi:  10.1109/BIOVIS.1995.528702
  29. 29.
    Hong, L., Muraki, S., Kaufman, A., Bartz, D., He, T.: Virtual voyage: interactive navigation in the human colon. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’97, pp. 27–34. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1997). doi:  10.1145/258734.258750
  30. 30.
    Hong, W., Qiu, F., Kaufman, A.: A pipeline for computer aided polyp detection. IEEE Trans. Vis. Comput. Graph. 12(5), 861–868 (2006). doi: 10.1109/TVCG.2006.112 CrossRefGoogle Scholar
  31. 31.
    Hsiao, E.M., Rybicki, F.J., Steigner, M.: CT coronary angiography: 256-slice and 320-detector row scanners. Current Cardiol. Reports 12(1), 68–75 (2010). doi: 10.1007/s11886-009-0075-z. PMID: 20425186 PMCID: 2893879 CrossRefGoogle Scholar
  32. 32.
    Interrante, V., Fuchs, H., Pizer, S.: Enhancing transparent skin surfaces with ridge and valley lines. In: IEEE Conference on Visualization, 1995. Proceedings of Visualization’95, pp. 52–59, 438 (1995). doi:  10.1109/VISUAL.1995.480795
  33. 33.
    Jeong, W., Beyer, J., Hadwiger, M., Blue, R., Law, C., Vazquez, A., Reid, C., Lichtman, J., Pfister, H.: SSECRETT and NeuroTrace: interactive visualization and anaysis tools for large-scale neuroscience datasets. IEEE Comput. Graph. Appl. 99, 1–1 (2011). doi:  10.1109/MCG.2011.33
  34. 34.
    Jeong, W.K., Schneider, J., Turney, S.G., Faulkner-Jones, B.E., Meyer, D., Westermann, R., Reid, R.C., Lichtman, J., Pfister, H.: Interactive histology of large-scale biomedical image stacks. IEEE Trans. Vis. Comput. Graph. 16(6), 1386–1395 (2010). doi: 10.1109/TVCG.2010.168 CrossRefGoogle Scholar
  35. 35.
    John, U., Hensel, E., Lüdemann, J., Piek, M., Sauer, S., Adam, C., Born, G., Alte, D., Greiser, E., Haertel, U., Hense, H.W., Haerting, J., Willich, S., Kessler, C.: Study of health in pomerania (SHIP): a health examination survey in an east german region: objectives and design. Soc. Preventive Med. 46, 186–194 (2001). doi: 10.1007/BF01324255 CrossRefGoogle Scholar
  36. 36.
    Kanitsar, A., Fleischmann, D., Wegenkittl, R., Felkel, P., Gröller, M.E.: CPR: curved planar reformation. In: Proceedings of the Conference on Visualization ’02. VIS’02, pp. 37–44. IEEE Computer Society, Washington, DC, USA (2002)Google Scholar
  37. 37.
    Khlebnikov, R., Kainz, B., Muehl, J., Schmalstieg, D.: Crepuscular rays for tumor accessibility planning. IEEE Trans. Vis. Comput. Graph. 17(12), 2163–2172 (2011). doi: 10.1109/TVCG.2011.184 CrossRefGoogle Scholar
  38. 38.
    Kindlmann, G., Weinstein, D.: Hue-balls and lit-tensors for direct volume rendering of diffusion tensor fields. In: Proceedings of the Conference on Visualization ’99: Celebrating Ten Years. VIS ’99, pp. 183–189. IEEE Computer Society Press, Los Alamitos, CA, USA (1999)Google Scholar
  39. 39.
    Kindlmann, G., Weinstein, D., Hart, D.: Strategies for direct volume rendering of diffusion tensor fields. IEEE Trans. Vis. Comput. Graph. 6(2), 124–138 (2000). doi: 10.1109/2945.856994 CrossRefGoogle Scholar
  40. 40.
    Kindlmann, G., Whitaker, R., Tasdizen, T., Moller, T.: Curvature-based transfer functions for direct volume rendering: Methods and applications. In: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), VIS ’03, p. 67. IEEE Computer Society, Washington, DC, USA (2003). doi:  10.1109/VISUAL.2003.1250414
  41. 41.
    Kok, P., Baiker, M., Hendriks, E.A., Post, F.H., Dijkstra, J., Löwik, C.W., Lelieveldt, B.P., Botha, C.P.: Articulated planar reformation for change visualization in small animal imaging. IEEE Trans. Vis. Comput. Graph. 16(6), 1396–1404 (2010). doi: 10.1109/TVCG.2010.134 CrossRefGoogle Scholar
  42. 42.
    Kok, P., Dijkstra, J., Botha, C.P., Post, F.H., Kaijzel, E., Que, I., Lowik, C., Reiber, J., Lelieveldt, B.P.F.: Integrated visualization of multi-angle bioluminescence imaging and micro CT. In: Cleary, K.R., Miga, M.I. (eds.) Proceedings of SPIE Medical Imaging 2007, vol. 6509 (2007)Google Scholar
  43. 43.
    Krekel, P.R., Botha, C.P., Valstar, E.R., Bruin, P.W.d., Rozing, P.M., Post, F.H.: Interactive simulation and comparative visualisation of the bone-determined range of motion of the human shoulder. In: T. Schulze, G. Horton, B. Preim, S. Schlechtweg (eds.) Proceedings of Simulation and Visualization, pp. 275–288. SCS Publishing House Erlangen (2006). Best Paper AwardGoogle Scholar
  44. 44.
    Kroes, T., Post, F.H., Botha, C.P.: Exposure render: an interactive photo-realistic volume rendering framework. PLoS ONE 7, e38586 (2012)Google Scholar
  45. 45.
    Krüger, J., Westermann, R.: Acceleration techniques for GPU-based volume rendering. In: IEEE Visualization Conference, p. 38. IEEE Computer Society, Los Alamitos, CA, USA (2003). doi:
  46. 46.
    de Leeuw, F.E., de Groot, J.C., Achten, E., Oudkerk, M., Ramos, L.M.P., Heijboer, R., Hofman, A., Jolles, J., van Gijn, J., Breteler, M.M.B.: Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. the rotterdam scan study. J. Neurol. Neurosurg. Psychiatry 70(1), 9–14 (2001). doi: 10.1136/jnnp.70.1.9 CrossRefGoogle Scholar
  47. 47.
    Levoy, M.: Display of surfaces from volume data. IEEE Comput. Graph. Appl. 8(3), 29–37 (1988). doi: 10.1109/38.511 CrossRefGoogle Scholar
  48. 48.
    Lindemann, F., Ropinski, T.: About the influence of illumination models on image comprehension in direct volume rendering. IEEE Trans. Vis. Comput. Graph. 17(12), 1922–1931 (2011). doi: 10.1109/TVCG.2011.161 CrossRefGoogle Scholar
  49. 49.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph. 21(4), 163–169 (1987). doi: 10.1145/37402.37422 CrossRefGoogle Scholar
  50. 50.
    Lundström, C., Rydell, T., Forsell, C., Persson, A., Ynnerman, A.: Multi-touch table system for medical visualization: application to orthopedic surgery planning. IEEE Trans. Vis. Comput. Graph. 17(12), 1775–1784 (2011). doi: 10.1109/TVCG.2011.224 CrossRefGoogle Scholar
  51. 51.
    Mortensen, E.N., Barrett, W.A.: Intelligent scissors for image composition. In: Proceedings of the 22nd Annual Conference on Computer graphics and Interactive Techniques, SIGGRAPH’95, pp. 191–198. ACM, New York, NY, USA (1995). doi:  10.1145/218380.218442
  52. 52.
    Moser, M., Weiskopf, D.: Interactive volume rendering on mobile devices. In: Proceedings of Vision, Modeling, and Visualization 2008, 8–10 Oct 2008, Konstanz, Germany, p. 217 (2008)Google Scholar
  53. 53.
    Neugebauer, M., Gasteiger, R., Beuing, O., Diehl, V., Skalej, M., Preim, B.: Map displays for the analysis of scalar data on cerebral aneurysm surfaces. Comput. Graph. Forum 28(3), 895–902 (2009). doi: 10.1111/j.1467-8659.2009.01459.x CrossRefGoogle Scholar
  54. 54.
    Oeltze, S., Doleisch, H., Hauser, H., Muigg, P., Preim, B.: Interactive visual analysis of perfusion data. IEEE Trans. Vis. Comput. Graph. 13(6), 1392–1399 (2007). doi:  10.1109/TVCG.2007.70569
  55. 55.
    Olabarriaga, S., Smeulders, A.: Interaction in the segmentation of medical images: a survey. Med. Image Anal. 5(2), 127–142 (2001). doi: 10.1016/S1361-8415(00)00041-4 CrossRefGoogle Scholar
  56. 56.
    Prassni, J.S., Ropinski, T., Hinrichs, K.: Uncertainty-aware guided volume segmentation. IEEE Trans. Vis. Comput. Graph. 16(6), 1358–1365 (2010). doi: 10.1109/TVCG.2010.208 CrossRefGoogle Scholar
  57. 57.
    Preim, B., Bartz, D.: Visualization in Medicine. Morgan Kaufmann, Burlington (2007)Google Scholar
  58. 58.
    Rieder, C., Ritter, F., Raspe, M., Peitgen, H.: Interactive visualization of multimodal volume data for neurosurgical tumor treatment. Comput. Graph. Forum 27, 1055–1062 (2008)CrossRefGoogle Scholar
  59. 59.
    Rieder, C., Weihusen, A., Schumann, C., Zidowitz, S., Peitgen, H.: Visual support for interactive Post-Interventional assessment of radiofrequency ablation therapy. Comput. Graph. Forum 29(3), 1093–1102 (2010). doi: 10.1111/j.1467-8659.2009.01665.x CrossRefGoogle Scholar
  60. 60.
    Saad, A., Hamarneh, G., Möller, T.: Exploration and visualization of segmentation uncertainty using shape and appearance prior information. IEEE Trans. Vis. Comput. Graph. 16(6), 1366–1375 (2010). doi: 10.1109/TVCG.2010.152 CrossRefGoogle Scholar
  61. 61.
    Saito, T., Takahashi, T.: Comprehensible rendering of 3-d shapes. SIGGRAPH Comput. Graph. 24(4), 197–206 (1990). doi: 10.1145/97880.97901 CrossRefGoogle Scholar
  62. 62.
    Shinagawa, Y., Kunii, T.L.: Constructing a Reeb graph automatically from cross sections. IEEE Comput. Graph. Appl. 11(6), 44–51 (1991). doi: 10.1109/38.103393 CrossRefGoogle Scholar
  63. 63.
    Steenwijk, M.D., Milles, J., Buchem, M.A., Reiber, J.H., Botha, C.P.: Integrated visual analysis for heterogeneous datasets in cohort studies. In: IEEE VisWeek Workshop on Visual Analytics in Health Care (2010)Google Scholar
  64. 64.
    Sunguroff, A., Greenberg, D.: Computer generated images for medical applications. In: Proceedings of the 5th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’78, pp. 196–202. ACM, New York, NY, USA (1978). doi:  10.1145/800248.807390
  65. 65.
    Takahashi, S., Fujishiro, I., Takeshima, Y., Bi, C.: Previewing volume decomposition through optimal viewpoints. In: Scientific Visualization: Interactions, Features, Metaphors (2011)Google Scholar
  66. 66.
    Taylor, C., Draney, M., Ku, J., Parker, D., Steele, B., Wang, K., Zarins, C.: Predictive medicine: computational techniques in therapeutic decision-making. Comput. Aided Surg. 4(5), 231–247 (1999)CrossRefGoogle Scholar
  67. 67.
    Termeer, M., Bescos, J.O., Breeuwer, M., Vilanova, A., Gerritsen, F., Gröller, M.E.: CoViCAD: comprehensive visualization of coronary artery disease. IEEE Trans. Vis. Comput. Graph. 13(6), 1632–1639 (2007). doi: 10.1109/TVCG.2007.70550 CrossRefGoogle Scholar
  68. 68.
    Tietjen, C., Isenberg, T., Preim, B.: Combining silhouettes, surface, and volume rendering for surgery education and planning. In: IEEE/Eurographics Symposium on Visualization (EuroVis), pp. 303–310 (2005)Google Scholar
  69. 69.
    Tory, M., Röber, N., Möller, T., Celler, A., Atkins, M.S.: 4D space-time techniques: a medical imaging case study. In: Proceedings of IEEE Visualization 2001, pp. 473–476. IEEE Computer Society, Washington, DC, USA (2001)Google Scholar
  70. 70.
    Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48(4), 577–582 (2002). doi: 10.1002/mrm.10268 CrossRefGoogle Scholar
  71. 71.
    Vannier, M.W., Marsh, J.L., Warren, J.O.: Three dimensional computer graphics for craniofacial surgical planning and evaluation. SIGGRAPH Comput. Graph. 17(3), 263–273 (1983). doi: 10.1145/964967.801157 CrossRefGoogle Scholar
  72. 72.
    Vilanova, A., Wegenkittl, R., König, A., Gröller, E.: Nonlinear virtual colon unfolding. In: Proceedings of the Conference on Visualization’01. VIS ’01, pp. 411–420. IEEE Computer Society, Washington, DC, USA (2001)Google Scholar
  73. 73.
    Wang, T.D., Plaisant, C., Quinn, A.J., Stanchak, R., Murphy, S., Shneiderman, B.: Aligning temporal data by sentinel events: discovering patterns in electronic health records. In: Proceedings of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in Computing Systems, CHI ’08, pp. 457–466. ACM, New York, NY, USA (2008). doi:  10.1145/1357054.1357129
  74. 74.
    Ware, C.: Designing with a 2 1/2-d attitude. Inf. Des. J. 10(3), 258–265 (2001). doi: 10.1075/idj.10.3.07war Google Scholar
  75. 75.
    Weber, G.H., Dillard, S.E., Carr, H., Pascucci, V., Hamann, B.: Topology-controlled volume rendering. IEEE Trans. Vis. Comput. Graph. 13(2), 330–341 (2007). doi: 10.1109/TVCG.2007.47 CrossRefGoogle Scholar
  76. 76.
    Weinstein, D., Kindlmann, G., Lundberg, E.: Tensorlines: advection-diffusion based propagation through diffusion tensor fields. In: Proceedings of the Conference on Visualization ’99: Celebrating Ten Years. VIS ’99, pp. 249–253. IEEE Computer Society Press, Los Alamitos, CA, USA (1999)Google Scholar
  77. 77.
    Zachow, S., Muigg, P., Hildebrandt, T., Doleisch, H., Hege, H.C.: Visual exploration of nasal airflow. IEEE Trans. Vis. Comput. Graph. 15(6), 1407–1414 (2009). doi:

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • C. P. Botha
    • 1
    Email author
  • B. Preim
    • 2
  • A. E. Kaufman
    • 3
  • S. Takahashi
    • 4
  • A. Ynnerman
    • 5
  1. 1.vxlabsSomerset WestSA
  2. 2.Department of Simulation and GraphicsUniversity of MagdeburgMagdeburgGermany
  3. 3.Department of Computer ScienceStony Brook UniversityNew YorkUSA
  4. 4.Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
  5. 5.Norrköping Visualization and Interaction StudioLinköping UniversityLinköpingSweden

Personalised recommendations