Skip to main content

Feature-Based Visualization of Multifields

  • Chapter
  • First Online:
Scientific Visualization

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Feature-based techniques are one of the main categories of methods used in scientific visualization. Features are structures in a dataset that are meaningful within the scientific or engineering context of the dataset. Extracted features can be visualized directly, or they can be used indirectly for modifying another type of visualization. In multifield data, each of the component fields can be searched for features, but in addition, there can be features of the multifield which rely on information form several of its components and which cannot be found by searching in a single field. In this chapter we give a survey of feature-based visualization of multifields, taking both of these feature types into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ANSYS CFX Reference Guide, Release 12. ANSYS Inc, Apr 2009

    Google Scholar 

  2. Banks, D.C., Singer, B.A.: A predictor-corrector technique for visualizing unsteady flow. IEEE Trans. Vis. Comp. Graph. 1(2), 151–163 (1995)

    Article  Google Scholar 

  3. Bauer, D.: Ronald Peikert, Mie Sato, and Mirjam Sick. A case study in selective visualization of unsteady 3d flow. In: IEEE Visualization ’02 Proceedings, pp. 525–528. IEEE Computer Society, Oct 2002

    Google Scholar 

  4. Blaas, J., Botha, C.P., Post, F.H.: Interactive visualization of multi-field medical data using linked physical and feature-space views. In: Museth, K., Möller, T., Ynnerman, A. (eds.) Eurographics/IEEE-VGTC Symposium on Visualization, pp. 123–130. Eurographics Association, Norrköping (2007)

    Google Scholar 

  5. Bürger, R., Hauser, H.: Visualization of multi-variate scientific data. In: EuroGraphics State of the Art Reports (STARs), pp. 117–134 (2007)

    Google Scholar 

  6. Canny, J.: A computational approach to edge detection. Pattern Anal. Mach. Intell. IEEE Trans. 8(6), 679–698 (1986)

    Article  Google Scholar 

  7. Cottet, G.H., Koumoutsakos, P.: Vortex Methods—Theory and Practice. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  8. Doleisch, H., Gasser, M., Hauser, H.: Interactive feature specification for focus+context visualization of complex simulation data. In: Proceedings of the Symposium on Data Visualisation, pp. 239–248. Eurographics Association (2003)

    Google Scholar 

  9. Doleisch, H., Muigg, P., Hauser, H.: Interactive visual analysis of hurricane isabel with SimVis. Technical Report TR-VRVis-2004-058, VRVis Research Center, Vienna (2004)

    Google Scholar 

  10. Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Local and Global Comparison of Continuous Functions. In: Proceedings of the Conference on Visualization ’04, pp. 275–280. IEEE Computer Society (2004)

    Google Scholar 

  11. Fuchs, R., Peikert, R., Hauser, H., Sadlo, F., Muigg, P.: Parallel vectors criteria for unsteady flow vortices. IEEE Trans. Vis. Comput. Graph. 14(3), 615–626 (2008)

    Article  Google Scholar 

  12. Gosink, L., Anderson, J., Bethel, W., Joy, K.: Variable interactions in query-driven visualization. IEEE Trans. Vis. Comp. Graph. 13, 1400–1407 (2007)

    Article  Google Scholar 

  13. Haller, G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D 149, 248–277 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Henze, C.: Feature Detection in Linked Derived Spaces. In: Proceedings of the Conference on Visualization ’98, VIS ’98, pp. 87–94. Los Alamitos, IEEE Computer Society Press, CA (1998)

    Google Scholar 

  15. Hunt, J.C.R., Wray, A.A., Moin, P.: Eddies, Stream and Convergence Zones in Turbulent Flows. In: 2. Proceedings of the 1988 Summer Program, pp. 193–208 (1988)

    Google Scholar 

  16. Jänicke, H., Böttinger, M., Tricoche, X., Scheuermann, G.: Automatic detection and visualization of distinctive structures in 3d unsteady multi-fields. Comput. Graph. Forum 27(3), 767–774 (2008)

    Article  Google Scholar 

  17. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–84 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Levy, Y., Degani, D., Seginer, A.: Graphical visualization of vortical flows by means of helicity. AIAA J. 28, 1347–1352 (1990)

    Article  Google Scholar 

  19. Love, A.L., Pang, A., Kao, D.L.: Visualizing spatial multivalue data. IEEE Comput. Graph. Appl. 25, 69–79 (2005)

    Article  Google Scholar 

  20. Miura, H., Kida, S.: Identification of tubular vortices in turbulence. J. Phys. Soc. Japan 66, 1331–1334 (1997)

    Article  MATH  Google Scholar 

  21. Nagaraj, S., Natarajan, V.: Relation-aware isosurface extraction in multifield data. Vis. Comput. Graph. IEEE Trans. 17(2), 182–191 (2011)

    Article  Google Scholar 

  22. Nagaraj, S., Natarajan, V., Nanjundiah, R.S.: A gradient-based comparison measure for visual analysis of multifield data. Comput. Graph. Forum 30(3), 1101–1110 (2011)

    Article  Google Scholar 

  23. Neugebauer, M., Gasteiger, R., Beuing, O., Diehl, V., Skalej, M., Preim, B.: Combining map displays and 3D visualizations for the analysis of scalar data on cerebral aneurysm surfaces. Comput. Graph. Forum 28(3), 895–902 (2009)

    Article  Google Scholar 

  24. Obermaier, H., Hering-Bertram, M., Kuhnert, J., Hagen, H.: Volume deformations in grid-less flow simulations. Comput. Graph. Forum 28(3), 879–886 (2009)

    Article  Google Scholar 

  25. Peikert, R., Roth, M.: The “Parallel Vectors” Operator—A Vector Field Visualization Primitive. In: Proceedings of the 10th IEEE Visualization Conference (VIS ’99), pp. 263–270. IEEE Computer Society, Washington (1999)

    Google Scholar 

  26. Peikert, R., Sadlo, F.: Topology-guided visualization of constrained vector fields. In: Hagen, H., Hauser, H., Theisel, H. (eds.) Topology-Based Methods in Visualization, pp. 21–34. Springer-Verlag, Berlin (2007)

    Chapter  Google Scholar 

  27. Post, F., Vrolijk, B., Hauser, H., Laramee, R., Doleisch, H.: The state of the art in flow visualization: feature extraction and tracking. Comput. Graph. Forum 22(4), 775–792 (2003)

    Article  Google Scholar 

  28. Potter, K., Wilson, A., Bremer, P.T., Williams, D., Doutriaux, C., Pascucci, V., Johnson. C.R.: Ensemble-vis: A Framework for the Statistical Visualization of Ensemble Data. In: Proceedings of the 2009 IEEE International Conference on Data Mining Workshops, ICDMW ’09, pp. 233–240. IEEE Computer Society, Washington (2009)

    Google Scholar 

  29. Reinders, F., Post, F.H., Spoelder, H.J.W.: Visualization of time-dependent data with feature tracking and event detection. Vis. Comput. 17(1), 55–71 (2001)

    Article  MATH  Google Scholar 

  30. Sauber, N., Theisel, H., Seidel, H.-P.: Multifield-graphs: an approach to visualizing correlations in multifield scalar data. Vis. Comput. Graph. IEEE Trans. 12(5), 917–924 (2006)

    Article  Google Scholar 

  31. Smith, K.M., Banks, D.C., Druckman, N., Beason, K., Hussaini, M.Y.: Clustered ensemble averaging: a technique for visualizing qualitative features of stochastic simulations. J. Comput. Theor. Nanosci. 3(5), 752–760 (2006)

    Google Scholar 

  32. Stegmaier, S., Rist, U., Ertl, T.: Opening the Can of Worms: An Exploration Tool for Vortical Flows. In: Silva, C., Grer, E., Rushmeier, H. (eds.) Proceedings of IEEE Visualization ’05, pp. 463–470 (2005)

    Google Scholar 

  33. Sujudi D., Haimes, R.: Identification of Swirling Flow in 3D Vector Fields. Technical Report, pp. 95–1715. AIAA (1995)

    Google Scholar 

  34. Ueng, S.K., Sikorski, C., Ma, K.L.: Efficient streamline, streamribbon, and streamtube constructions on unstructured grids. IEEE Trans. Vis. Comput. Graph. 2, 100–110 (1996)

    Article  Google Scholar 

  35. Unger, A., Muigg, P., Doleisch, H., Schumann, H.: Visualizing statistical properties of smoothly brushed data subsets. In: Information Visualisation. IV ’08. 12th International Conference, pp. 233–239 ( 2008)

    Google Scholar 

  36. Weinkauf, T., Hege, H.-C., Noack, B.R., Schlegel, M., Dillmann, A.: Coherent structures in a transitional flow around a backward-facing step. Phys. Fluids 15(9), S3 (2003)

    Article  Google Scholar 

  37. Woodring, J., Shen, H.W.: Multi-variate, time varying, and comparative visualization with contextual cues. Vis. Comput. Graph. IEEE Trans. 12(5), 909–916 (2006)

    Article  Google Scholar 

  38. Ye, X., Kao, D., Pang, A.: Strategy for scalable seeding of 3d streamlines. In: Proceedings IEEE Visualization ’05, pp. 471–478 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Obermaier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Obermaier, H., Peikert, R. (2014). Feature-Based Visualization of Multifields. In: Hansen, C., Chen, M., Johnson, C., Kaufman, A., Hagen, H. (eds) Scientific Visualization. Mathematics and Visualization. Springer, London. https://doi.org/10.1007/978-1-4471-6497-5_17

Download citation

Publish with us

Policies and ethics