Design, Fabrication, and Modification of Cost-Effective Nanostructured TiO2 for Solar Energy Applications

Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

One of the greatest challenges for human society and civilization is the development of powerful technologies to harness renewable solar energy to satisfy the ever-growing energy demands. Semiconductor nanomaterials have important applications in the field of solar energy conversion. Among these, TiO2 represents one of the most promising functional semiconductors and is extensively utilized in photoelectrochemical applications, including photocatalysis (e.g., H2 generation from water splitting) and photovoltaics (e.g., dye-sensitized solar cells, DSSCs). As such, many efforts have focused on developing and exploiting cost-effective nanostructured TiO2 materials for efficient solar energy applications.

Keywords

Titanium Surfactant Fe2O3 Alginate Polyurethane 

References

  1. 1.
    Liu J, Cao GZ, Yang ZG, Wang DH, Dubois D, Zhou XD, Graff GL, Pederson LR, Zhang JG (2008) ChemSusChem 1:676–697Google Scholar
  2. 2.
    Hagfeldt A, Boschloo G, Sun LC, Kloo L, Pettersson H (2010) Chem Rev 110:6595–6663Google Scholar
  3. 3.
    Kamat PV (2007) J Phys Chem C 111:2834–2860Google Scholar
  4. 4.
    Nozik A, Miller J (2010) Chem Rev 110:6443–6445Google Scholar
  5. 5.
    Liu C, Burghaus U, Besenbacher F, Wang ZL (2010) ACS Nano 4:5517–5526Google Scholar
  6. 6.
    Serrano E, Rus G, García-Martínez J (2009) Renew Sustain Energy Rev 13:2373–2384Google Scholar
  7. 7.
    Beard MC, Ellingson RJ (2008) Laser Photonics Rev 2:377–399Google Scholar
  8. 8.
    Bisquert J, Cahen D, Hodes G, Ruhle S, Zaban A (2004) J Phys Chem B 108:8106–8118Google Scholar
  9. 9.
    Gratzel M (2001) Nature 414:338–344Google Scholar
  10. 10.
    Green MA (2001) Prog Photovoltaics Res Appl 9:123–135Google Scholar
  11. 11.
    El Chaar L, El Zein N (2011) Renew Sustain Energy Rev 15:2165–2175Google Scholar
  12. 12.
    Lewis NS (2007) Science 315:798–801Google Scholar
  13. 13.
    Gratzel M (2006) Prog Photovoltaics Res Appl 14:429–442Google Scholar
  14. 14.
    Oregan B, Gratzel M (1991) Nature 353:737–740Google Scholar
  15. 15.
    Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Science 334:629–634Google Scholar
  16. 16.
    Grätzel M (2003) J Photochem Photobiol C 4:145–153Google Scholar
  17. 17.
    Toivola M, Halme J, Miettunen K, Aitola K, Lund PD (2009) Int J Energy Res 33:1145–1160Google Scholar
  18. 18.
    Halme J, Vahermaa P, Miettunen K, Lund P (2010) Adv Mater 22:E210–E234Google Scholar
  19. 19.
    O’Regan BC, Durrant JR (2009) Acc Chem Res 42:1799–1808Google Scholar
  20. 20.
    Chen XB (2009) Chin J Catal 30:839–851Google Scholar
  21. 21.
    Galinska A, Walendziewski J (2005) Energy Fuels 19:1143–1147Google Scholar
  22. 22.
    Yang XH, Li Z, Liu G, Xing J, Sun C, Yang HG, Li C (2010) CrystEngComm 13:1378–1383Google Scholar
  23. 23.
    Chen XB, Shen SH, Guo LJ, Mao SS (2010) Chem Rev 110:6503–6570Google Scholar
  24. 24.
    Fujishima A, Honda K (1972) Nature 238:37Google Scholar
  25. 25.
    Ni M, Leung MKH, Leung DYC, Sumathy K (2007) Renew Sustain Energy Rev 11:401–425Google Scholar
  26. 26.
    Zhang QJ, Sun CH, Yan J, Hu XJ, Zhou SY, Chen P (2010) Solid State Sci 12:1274–1277Google Scholar
  27. 27.
    Lee JS (2005) Catal Surv Asia 9:217–227Google Scholar
  28. 28.
    Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Chem Rev 110:6446Google Scholar
  29. 29.
    Ye M, Vennerberga D, Lin C, Lin Z (2012) J Nanosci Lett 2:1Google Scholar
  30. 30.
    Youngblood WJ, Lee SHA, Maeda K, Mallouk TE (2009) Acc Chem Res 42:1966–1973Google Scholar
  31. 31.
    Kaur A, Gupta U (2009) J Mater Chem 19:8279–8289Google Scholar
  32. 32.
    Akpan UG, Hameed BH (2009) J Hazard Mater 170:520–529Google Scholar
  33. 33.
    Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’shea K (2012) Appl Catal B 125:331–349Google Scholar
  34. 34.
    Hu X, Li G, Yu JC (2009) Langmuir 26:3031–3039Google Scholar
  35. 35.
    Chen X, Mao SS (2007) Chem Rev 107:2891–2959Google Scholar
  36. 36.
    Lv M, Zheng D, Ye M, Sun L, Xiao J, Guo W, Lin C (2012) Nanoscale 4:5872–5879Google Scholar
  37. 37.
    Chou TP, Zhang QF, Russo B, Fryxell GE, Cao GZ (2007) J Phys Chem C 111:6296–6302Google Scholar
  38. 38.
    Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) Sol Energy Mater Sol Cells 90:2011–2075Google Scholar
  39. 39.
    Shankar K, Basham JI, Allam NK, Varghese OK, Mor GK, Feng XJ, Paulose M, Seabold JA, Choi KS, Grimes CA (2009) J Phys Chem C 113:6327–6359Google Scholar
  40. 40.
    Fei H, Yang Y, Rogow DL, Fan X, Oliver SRJ (2010) ACS Appl Mater Interfaces 2:974–979Google Scholar
  41. 41.
    Nozik AJ (2010) Nano Lett 10:2735–2741Google Scholar
  42. 42.
    Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nat Mater 4:366–377Google Scholar
  43. 43.
    Guo YG, Hu JS, Wan LJ (2008) Adv Mater 20:2878–2887Google Scholar
  44. 44.
    Xin X, He M, Han W, Jung J, Lin Z (2011) Angew Chem Int Ed 50:11739–11742Google Scholar
  45. 45.
    Choi SK, Kim S, Lim SK, Park H (2010) J Phys Chem C 114:16475–16480Google Scholar
  46. 46.
    Xin X, Wang J, Han W, Ye M, Lin Z (2012) Nanoscale 4:964–969Google Scholar
  47. 47.
    Xin X, Scheiner M, Ye M, Lin Z (2011) Langmuir 27:14594–14598Google Scholar
  48. 48.
    Hartmann P, Lee DK, Smarsly BM, Janek J (2010) ACS Nano 4:3147–3154Google Scholar
  49. 49.
    Alivov Y, Fan ZY (2009) J Phys Chem C 113:12954–12957Google Scholar
  50. 50.
    Li Y, Fang XS, Koshizaki N, Sasaki T, Li L, Gao SY, Shimizu Y, Bando Y, Golberg D (2009) Adv Funct Mater 19:2467–2473Google Scholar
  51. 51.
    Kumar A, Madaria AR, Zhou CW (2010) J Phys Chem C 114:7787–7792Google Scholar
  52. 52.
    Albu SP, Roy P, Virtanen S, Schmuki P (2010) Isr J Chem 50:453–467Google Scholar
  53. 53.
    Yu JG, Fan JJ, Lv KL (2010) Nanoscale 2:2144–2149Google Scholar
  54. 54.
    Bleta R, Alphonse P, Lorenzato L (2010) J Phys Chem C 114:2039–2048Google Scholar
  55. 55.
    Isley SL, Penn RL (2008) J Phys Chem C 112:4469–4474Google Scholar
  56. 56.
    Liu JJ, Qin W, Zuo SL, Yu YC, Hao ZP (2009) J Hazard Mater 163:273–278Google Scholar
  57. 57.
    Wang J, Lin ZQ (2009) J Phys Chem C 113:4026–4030Google Scholar
  58. 58.
    Zhang W, Zhu R, Ke L, Liu XZ, Liu B, Ramakrishna S (2010) Small 6:2176–2182Google Scholar
  59. 59.
    Hwang D, Lee H, Jang SY, Jo SM, Kim D, Seo Y, Kim DY (2011) ACS Appl Mater Interfaces 3:2719–2725Google Scholar
  60. 60.
    Wu MS, Tsai CH, Wei TC (2011) Chem Commun 47:2871–2873Google Scholar
  61. 61.
    Bala H, Jiang L, Fu WY, Yuan GY, Wang XD, Liu ZR (2010) Appl Phys Lett 97:153108Google Scholar
  62. 62.
    Suprabha T, Roy HG, Thomas J, Kumar KP, Mathew S (2009) Nanoscale Res Lett 4:144–152Google Scholar
  63. 63.
    Melhem H, Simon P, Beouch L, Goubard F, Boucharef M, Di Bin C, Leconte Y, Ratier B, Herlin-Boime N, Bouclon J (2011) Adv Energy Mater 1:908–916Google Scholar
  64. 64.
    Pradhan SK, Reucroft PJ (2003) J Cryst Growth 250:588–594Google Scholar
  65. 65.
    Yu DH, Yu X, Wang C, Liu XC, Xing Y (2012) ACS Appl Mater Interfaces 4:2781–2787Google Scholar
  66. 66.
    Koo B, Park J, Kim Y, Choi SH, Sung YE, Hyeon T (2006) J Phys Chem B 110:24318–24323Google Scholar
  67. 67.
    Ahn SH, Chi WS, Park JT, Koh JK, Roh DK, Kim JH (2012) Adv Mater 24:519–522Google Scholar
  68. 68.
    Guldin S, Huttner S, Kolle M, Welland ME, Muller-Buschbaum P, Friend RH, Steiner U, Tétreault N (2010) Nano Lett 10:2303–2309Google Scholar
  69. 69.
    Halaoui LI, Abrams NM, Mallouk TE (2005) J Phys Chem B 109:6334–6342Google Scholar
  70. 70.
    Ismagilov ZR, Tsikoza LT, Shikina NV, Zarytova VF, Zinoviev VV, Zagrebelnyi SN (2009) Russ Chem Rev 78:873–885Google Scholar
  71. 71.
    Han S, Choi SH, Kim SS, Cho M, Jang B, Kim DY, Yoon J, Hyeon T (2005) Small 1:812–816Google Scholar
  72. 72.
    Jin WM, Shin JH, Cho CY, Kang JH, Park JH, Moon JH (2010) ACS Appl Mater Interfaces 2:2970–2973Google Scholar
  73. 73.
    Hatton B, Mishchenko L, Davis S, Sandhage KH, Aizenberg J (2010) PNAS 107:10354–10359Google Scholar
  74. 74.
    Shopsowitz KE, Stahl A, Hamad WY, MacLachlan MJ (2012) Angew Chem Int Ed 51:6886–6890Google Scholar
  75. 75.
    Ahn SH, Park JT, Koh JK, Roh DK, Kim JH (2011) Chem Commun 47:5882–5884Google Scholar
  76. 76.
    Agarwala S, Kevin M, Wong A, Peh C, Thavasi V, Ho G (2010) ACS Appl Mater Interfaces 2:1844–1850Google Scholar
  77. 77.
    Ismail AA, Bahnemann DW (2011) J Mater Chem 21:11686–11707Google Scholar
  78. 78.
    Park JT, Chi WS, Roh DK, Ahn SH, Kim JH (2012) Adv Funct Mater 23:26–33Google Scholar
  79. 79.
    Kim YJ, Lee YH, Lee MH, Kim HJ, Pan JH, Lim GI, Choi YS, Kim K, Park NG, Lee C (2008) Langmuir 24:13225–13230Google Scholar
  80. 80.
    Yang SC, Yang DJ, Kim J, Hong JM, Kim HG, Kim ID, Lee H (2008) Adv Mater 20:1059–1064Google Scholar
  81. 81.
    Mandlmeier B, Szeifert JM, Fattakhova-Rohlfing D, Amenitsch H, Bein T (2011) J Am Chem Soc 133:17274–17282Google Scholar
  82. 82.
    Xiong Z, Dou H, Pan J, Ma J, Xu C, Zhao X (2010) CrystEngComm 12:3455–3457Google Scholar
  83. 83.
    Sjöström T, McNamara LE, Yang L, Dalby M, Su B (2012) ACS Appl Mater Interfaces 4:6354–6361Google Scholar
  84. 84.
    Jang YH, Xin X, Byun M, Jang YJ, Lin Z, Kim DH (2011) Nano Lett 12:479–485Google Scholar
  85. 85.
    Hayward RC, Chmelka BF, Kramer EJ (2005) Adv Mater 17:2591–2595Google Scholar
  86. 86.
    Zhao D, Feng D, Luo W, Zhang J, Xu M, Zhang R, Wu H, Lv Y, Asiri AM, Rahman M (2013) J Mater Chem A 1:1591–1599 Google Scholar
  87. 87.
    Cha MA, Shin C, Kannaiyan D, Jang YH, Kochuveedu ST, Kim DH (2009) J Mater Chem 19:7245–7250Google Scholar
  88. 88.
    Guldin S, Docampo P, Stefik M, Kamita G, Wiesner U, Snaith HJ, Steiner U (2012) Small 3:432–440Google Scholar
  89. 89.
    Chen Y, Kim HC, McVittie J, Ting C, Nishi Y (2010) Nanotechnology 21:185303Google Scholar
  90. 90.
    Ahmed S, Du Pasquier A, Birnie DP III, Asefa T (2011) ACS Appl Mater Interfaces 3:3002–3010Google Scholar
  91. 91.
    Dutta S, Patra AK, De S, Bhaumik A, Saha B (2012) ACS Appl Mater Interfaces 4:1560–1564Google Scholar
  92. 92.
    Kwak ES, Lee W, Park NG, Kim J, Lee H (2009) Adv Funct Mater 19:1093–1099Google Scholar
  93. 93.
    Mihi A, Zhang C, Braun PV (2011) Angew Chem Int Ed 123:5830–5833Google Scholar
  94. 94.
    Campbell M, Sharp D, Harrison M, Denning R, Turberfield A (2000) Nature 404:53–56Google Scholar
  95. 95.
    Nishimura S, Abrams N, Lewis BA, Halaoui LI, Mallouk TE, Benkstein KD, van de Lagemaat J, Frank AJ (2003) J Am Chem Soc 125:6306–6310Google Scholar
  96. 96.
    Lee SHA, Abrams NM, Hoertz PG, Barber GD, Halaoui LI, Mallouk TE (2008) J Phys Chem B 112:14415–14421Google Scholar
  97. 97.
    Shin JH, Moon JH (2011) Langmuir 27:6311–6315Google Scholar
  98. 98.
    Chang SY, Chen SF, Huang YC (2011) J Phys Chem C 115:1600–1607Google Scholar
  99. 99.
    Cho CY, Moon JH (2011) Adv Mater 23:2971–2975Google Scholar
  100. 100.
    Berrigan JD, McLachlan TM, Deneault JR, Cai Y, Kang TS, Durstock MF, Sandhage K (2013) J Mater Chem A 1:128–134Google Scholar
  101. 101.
    Xu C, Shin PH, Cao L, Wu J, Gao D (2009) Chem Mater 22:143–148Google Scholar
  102. 102.
    Shao W, Gu F, Gai L, Li C (2011) Chem Commun 47:5046–5048Google Scholar
  103. 103.
    Joo JB, Zhang Q, Lee I, Dahl M, Zaera F, Yin Y (2012) Adv Funct Mater 22:166–174Google Scholar
  104. 104.
    Thompson GE (1997) Thin Solid Films 297:192–201Google Scholar
  105. 105.
    Koh JH, Koh JK, Seo JA, Shin JS, Kim JH (2011) Nanotechnology 22:365401Google Scholar
  106. 106.
    Wang H (2012) CrystEngComm 14:6215–6220Google Scholar
  107. 107.
    Bian Z, Zhu J, Cao F, Huo Y, Lu Y, Li H (2010) Chem Commun 46:8451–8453Google Scholar
  108. 108.
    Tétreault N, Arsenault E, Heiniger LP, Soheilnia N, Brillet J, Moehl T, Zakeeruddin S, Ozin GA, Grätzel M (2011) Nano Lett 11:4579–4584Google Scholar
  109. 109.
    Liu L, Karuturi SK, Su LT, Tok AIY (2010) Energy Environ Sci 4:209–215Google Scholar
  110. 110.
    Tan LK, Liu X, Gao H (2011) J Mater Chem 21:11084–11087Google Scholar
  111. 111.
    Li L, Liu C (2009) J Phys Chem C 114:1444–1450Google Scholar
  112. 112.
    Yang W, Li J, Wang Y, Zhu F, Shi W, Wan F, Xu D (2011) Chem Commun 47:1809–1811Google Scholar
  113. 113.
    Yang H, Fang W, Yang X, Zhu H, Li Z, Zhao H, Yao X (2012) J Mater Chem 22:22082–22089Google Scholar
  114. 114.
    Wu B, Guo C, Zheng N, Xie Z, Stucky GD (2008) J Am Chem Soc 130:17563–17567Google Scholar
  115. 115.
    Yu J, Xiang Q, Ran J, Mann S (2010) CrystEngComm 12:872–879Google Scholar
  116. 116.
    Wang J, Bian Z, Zhu J, Li H (2013) J Mater Chem A 1:1296–1302Google Scholar
  117. 117.
    Jun Y, Casula MF, Sim JH, Kim SY, Cheon J, Alivisatos AP (2003) J Am Chem Soc 125:15981–15985Google Scholar
  118. 118.
    Wu D, Gao Z, Xu F, Chang J, Jiang K (2012) CrystEngComm 15:516–523Google Scholar
  119. 119.
    Nian JN, Teng HS (2006) J Phys Chem B 110:4193–4198Google Scholar
  120. 120.
    Horvath E, Kukovecz A, Konya Z, Kiricsi I (2007) Chem Mater 19:927–931Google Scholar
  121. 121.
    Guo WX, Xu C, Wang X, Wang SH, Pan CF, Lin CJ, Wang ZL (2012) J Am Chem Soc 134:4437–4441Google Scholar
  122. 122.
    Liu B, Aydil ES (2009) J Am Chem Soc 131:3985–3990Google Scholar
  123. 123.
    Chen D, Huang F, Cheng YB, Caruso RA (2009) Adv Mater 21:2206–2210Google Scholar
  124. 124.
    Liu M, Piao L, Lu W, Ju S, Zhao L, Zhou C, Li H, Wang W (2010) Nanoscale 2:1115–1117Google Scholar
  125. 125.
    Ye M, Liu HY, Lin C, Lin Z (2012) Small 9:312–321Google Scholar
  126. 126.
    Zhang D, Li G, Yang X, Jimmy CY (2009) Chem Commun 4381–4383 Google Scholar
  127. 127.
    Zheng Z, Huang B, Qin X, Zhang X, Dai Y, Jiang M, Wang P, Whangbo MH (2009) Chem Eur J 15:12576–12579Google Scholar
  128. 128.
    Diebold U (2003) Surf Sci Rep 48:53–229Google Scholar
  129. 129.
    Gong XQ, Selloni A (2005) J Phys Chem B 109:19560–19562Google Scholar
  130. 130.
    Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Nature 453:638–641Google Scholar
  131. 131.
    Gu L, Wang J, Cheng H, Du Y, Han X (2012) Chem Commun 48:6978–6980Google Scholar
  132. 132.
    He Z, Cai Q, Hong F, Jiang Z, Chen J, Song S (2012) Ind Eng Chem Res 51:5662–5668Google Scholar
  133. 133.
    Xiang Q, Yu J, Jaroniec M (2011) Chem Commun 47:4532–4534Google Scholar
  134. 134.
    Zheng Z, Huang B, Qin X, Zhang X, Dai Y, Jiang M, Wang P, Whangbo MH (2009) Chem Eur J 15:12576–12579Google Scholar
  135. 135.
    Zhang H, Han Y, Liu X, Liu P, Yu H, Zhang S, Yao X, Zhao H (2010) Chem Commun 46:8395–8397Google Scholar
  136. 136.
    Liu M, Piao L, Zhao L, Ju S, Yan Z, He T, Zhou C, Wang W (2010) Chem Commun 46:1664–1666Google Scholar
  137. 137.
    Li J, Cao K, Li Q, Xu D (2012) CrystEngComm 14:83–85Google Scholar
  138. 138.
    Li J, Xu D (2010) Chem Commun 46:2301–2303Google Scholar
  139. 139.
    Ma XY, Chen ZG, Hartono SB, Jiang HB, Zou J, Qiao SZ, Yang HG (2010) Chem Commun 46:6608–6610Google Scholar
  140. 140.
    Yu H, Tian B, Zhang J (2011) Chem Eur J 17:5499–5502Google Scholar
  141. 141.
    Kumar EN, Jose R, Archana P, Vijila C, Yusoff M, Ramakrishna S (2012) Energy Environ Sci 5:5401–5407Google Scholar
  142. 142.
    Liu B, Miao J (2012) RSC Adv 3:1222–1226Google Scholar
  143. 143.
    Dai Y, Cobley CM, Zeng J, Sun Y, Xia Y (2009) Nano Lett 9:2455–2459Google Scholar
  144. 144.
    Amano F, Prieto-Mahaney OO, Terada Y, Yasumoto T, Shibayama T, Ohtani B (2009) Chem Mater 21:2601–2603Google Scholar
  145. 145.
    Jung MH, Chu MJ, Kang MG (2012) Chem Commun 48:5016–5018Google Scholar
  146. 146.
    Xie S, Han X, Kuang Q, Fu J, Zhang L, Xie Z, Zheng L (2011) Chem Commun 47:6722–6724Google Scholar
  147. 147.
    Pan J, Wu X, Wang L, Liu G, Lu GQM, Cheng HM (2011) Chem Commun 47:8361–8363Google Scholar
  148. 148.
    Wang L, Zang L, Zhao J, Wang C (2012) Chem Commun 48:11736–11738Google Scholar
  149. 149.
    Li F, Xu J, Chen L, Ni B, Li X, Fu Z, Lu Y (2013) J Mater Chem A 1:225–228Google Scholar
  150. 150.
    Berger S, Hahn R, Roy P, Schmuki P (2010) Phys Status Solidi B 247:2424–2435Google Scholar
  151. 151.
    Peng XS, Wang JP, Thomas DF, Chen AC (2005) Nanotechnology 16:2389–2395Google Scholar
  152. 152.
    Gong D, Grimes CA, Varghese OK, Hu WC, Singh RS, Chen Z, Dickey EC (2001) J Mater Res 16:3331–3334Google Scholar
  153. 153.
    Wu XJ, Zhu F, Mu C, Liang YQ, Xu LF, Chen QW, Chen RZ, Xu DS (2010) Coord Chem Rev 254:1135–1150Google Scholar
  154. 154.
    Peter LM, Jennings JR, Ghicov A, Schmuki P, Walker AB (2008) J Am Chem Soc 130:13364–13372Google Scholar
  155. 155.
    Xiao P, Zhang YH, Garcia BB, Sepehri S, Liu DW, Cao GZ (2009) J Nanosci Nanotechnol 9:2426–2436Google Scholar
  156. 156.
    Allam NK, El-Sayed MA (2010) J Phys Chem C 114:12024–12029Google Scholar
  157. 157.
    Lai Y, Sun L, Chen Y, Zhuang H, Lin C (2006) J Electrochem Soc 153:D123–D127Google Scholar
  158. 158.
    Gong JJ, Lai YK, Lin CJ (2010) Electrochim Acta 55:4776–4782Google Scholar
  159. 159.
    Gong JJ, Lin CJ, Ye MD, Lai YK (2011) Chem Commun 47:2598–2600Google Scholar
  160. 160.
    Guo WX, Xue XY, Wang SH, Lin CJ, Wang ZL (2012) Nano Lett 12:2520–2523Google Scholar
  161. 161.
    Rattanavoravipa T, Sagawa T, Yoshikawa S (2008) Sol Energy Mater Sol Cells 92:1445–1449Google Scholar
  162. 162.
    Wender H, Feil AF, Diaz LB, Ribeiro CS, Machado GJ, Migowski P, Weibel DE, Dupont J, Teixeira SR (2011) ACS Appl Mater Interfaces 3:1359–1365Google Scholar
  163. 163.
    Tan YF, Yang L, Chen JZ, Qiu Z (2010) Langmuir 26:10111–10114Google Scholar
  164. 164.
    Alivov Y, Pandikunta M, Nikishin S, Fan ZY (2009) Nanotechnology 20:225602Google Scholar
  165. 165.
    Bao NZ, Yoriya S, Grimes CA (2011) J Mater Chem 21:13909–13912Google Scholar
  166. 166.
    Wang J, Zhao L, Lin VSY, Lin ZQ (2009) J Mater Chem 19:3682–3687Google Scholar
  167. 167.
    Wang J, Lin Z (2012) Chem Asian J 7:2754–2762Google Scholar
  168. 168.
    Su ZX, Zhou WZ (2011) J Mater Chem 21:8955–8970Google Scholar
  169. 169.
    Roy P, Kim D, Lee K, Spiecker E, Schmuki P (2010) Nanoscale 2:45–59Google Scholar
  170. 170.
    Roy P, Berger S, Schmuki P (2011) Angew Chem Int Ed 50:2904–2939Google Scholar
  171. 171.
    Nah YC, Paramasivam I, Schmuki P (2010) ChemPhysChem 11:2698–2713Google Scholar
  172. 172.
    Schmuki P, Macak JM, Tsuchiya H, Taveira L, Aldabergerova S (2005) Angew Chem Int Ed 44:7463–7465Google Scholar
  173. 173.
    Grimes CA, Allam NK, Shankar K (2008) J Mater Chem 18:2341–2348Google Scholar
  174. 174.
    Schmuki P, Kim D, Ghicov A, Albu SP (2008) J Am Chem Soc 130:16454Google Scholar
  175. 175.
    Fei GT, Jin Z, Hu XY, Xu SH, De Zhang L (2009) Chem Lett 38:288–289Google Scholar
  176. 176.
    Lin J, Liu K, Chen XF (2011) Small 7:1784–1789Google Scholar
  177. 177.
    Xu XJ, Tang CC, Zeng HB, Zhai TY, Zhang SQ, Zhao HJ, Bando Y, Golberg D (2011) ACS Appl Mater Interfaces 3:1352–1358Google Scholar
  178. 178.
    Schmuki P, Albu SP, Ghicov A, Aldabergenova S, Drechsel P, LeClere D, Thompson GE, Macak JM (2008) Adv Mater 20:4135Google Scholar
  179. 179.
    Li SQ, Zhang GM, Guo DZ, Yu LG, Zhang W (2009) J Phys Chem C 113:12759–12765Google Scholar
  180. 180.
    Stergiopoulos T, Ghicov A, Likodimos V, Tsoukleris DS, Kunze J, Schmuki P, Falaras P (2008) Nanotechnology 19:235602Google Scholar
  181. 181.
    Sun Y, Yan KP, Wang GX, Guo W, Ma TL (2011) J Phys Chem C 115:12844–12849Google Scholar
  182. 182.
    Biswas S, Shahjahan M, Hossain MF, Takahashi T (2010) Electrochem Commun 12:668–671Google Scholar
  183. 183.
    Chen CH, Chen KC, He JL (2010) Curr Appl Phys 10:S176–S179Google Scholar
  184. 184.
    Stergiopoulos T, Valota A, Likodimos V, Speliotis T, Niarchos D, Skeldon P, Thompson GE, Falaras P (2009) Nanotechnology 20:365601Google Scholar
  185. 185.
    Tang YX, Tao J, Tao HJ, Wu T, Wang L, Zhang YY, Li ZL, Tian XL (2008) Acta Phys Chim Sin 24:1120–1126Google Scholar
  186. 186.
    Leenheer AJ, Miedaner A, Curtis CJ, van Hest M, Ginley DS (2007) J Mater Res 22:681–687Google Scholar
  187. 187.
    Mor GK, Varghese OK, Paulose M, Grimes CA (2005) Adv Funct Mater 15:1291–1296Google Scholar
  188. 188.
    Varghese OK, Paulose M, Grimes CA (2009) Nat Nanotechnol 4:592–597Google Scholar
  189. 189.
    Sadek AZ, Zheng HD, Latham K, Wlodarski W, Kalantar-Zadeh K (2009) Langmuir 25:509–514Google Scholar
  190. 190.
    Wang DA, Yu B, Wang CW, Zhou F, Liu WM (2009) Adv Mater 21:1964–1967Google Scholar
  191. 191.
    Zhang G, Huang H, Zhang Y, Chan HLW, Zhou L (2007) Electrochem Commun 9:2854–2858Google Scholar
  192. 192.
    S. H. Kang, H. S. Kim, J. Y. Kim and Y. E. Sung, Nanotechnology, 2009, 20Google Scholar
  193. 193.
    Lei BX, Liao JY, Zhang R, Wang J, Su CY, Kuang DB (2010) J Phys Chem C 114:15228–15233Google Scholar
  194. 194.
    Lin J, Chen JF, Chen XF (2010) Electrochem Commun 12:1062–1065Google Scholar
  195. 195.
    Wang J, Lin ZQ (2008) Chem Mater 20:1257–1261Google Scholar
  196. 196.
    Ali G, Yoo SH, Kum JM, Kim YN, Cho SO (2011) Nanotechnology 22:245602Google Scholar
  197. 197.
    Wang J, Lin ZQ (2010) Chem Mater 22:579–584Google Scholar
  198. 198.
    Wang DA, Liu LF (2010) Chem Mater 22:6656–6664Google Scholar
  199. 199.
    Pang Q, Leng LM, Zhao LJ, Zhou LY, Liang CJ, Lan YW (2011) Mater Chem Phys 125:612–616Google Scholar
  200. 200.
    Wang DA, Liu LF, Zhang FX, Tao K, Pippel E, Domen K (2011) Nano Lett 11:3649–3655Google Scholar
  201. 201.
    Wang J, Lin ZQ (2008) Chem Mater 20:1257–1261Google Scholar
  202. 202.
    Lin CJ, Yu WY, Chien SH (2010) J Mater Chem 20:1073–1077Google Scholar
  203. 203.
    Wang YH, Yang HX, Liu Y, Wang H, Shen H, Yan J, Xu HM (2010) Prog Photovoltaics 18:285–290Google Scholar
  204. 204.
    Wang YH, Yang HX, Lu L (2010) J Appl Phys 108:064510Google Scholar
  205. 205.
    Liu ZY, Misra M (2010) ACS Nano 4:2196–2200Google Scholar
  206. 206.
    Zou DC, Wang D, Chu ZZ, Lv ZB, Fan X (2010) Coord Chem Rev 254:1169–1178Google Scholar
  207. 207.
    Liu Y, Wang H, Li M, Hong RJ, Ye QH, Zheng JM, Shen H (2009) Appl Phys Lett 95:233505Google Scholar
  208. 208.
    Liu Y, Li M, Wang H, Zheng JM, Xu HM, Ye QH, Shen H (2010) J Phys D Appl Phys 43:205103Google Scholar
  209. 209.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Nano Lett 6:215–218Google Scholar
  210. 210.
    Hu A, Li H, Jia Z, Xia Z (2011) J Solid State Chem 184:2936–2940Google Scholar
  211. 211.
    Hu A, Xiao L, Dai G, Xia Z (2012) J Solid State Chem 190:130–134Google Scholar
  212. 212.
    Ye MD, Xin XK, Lin CJ, Lin ZQ (2011) Nano Lett 11:3214–3220Google Scholar
  213. 213.
    Chen CC, Chung HW, Chen CH, Lu HP, Lan CM, Chen SF, Luo L, Hung CS, Diau EWG (2008) J Phys Chem C 112:19151–19157Google Scholar
  214. 214.
    Shang M, Wang W, Yin W, Ren J, Sun S, Zhang L (2010) Chem Eur J 16:11412–11419Google Scholar
  215. 215.
    Ding B, Kim H, Kim C, Khil M, Park S (2003) Nanotechnology 14:532Google Scholar
  216. 216.
    Li D, Wang Y, Xia Y (2003) Nano Lett 3:1167–1171Google Scholar
  217. 217.
    Reneker DH, Chun I (1999) Nanotechnology 7:216Google Scholar
  218. 218.
    Song MY, Ihn KJ, Jo SM, Kim DY (1861) Nanotechnology 2004:15Google Scholar
  219. 219.
    Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) Compos Sci Technol 63:2223–2253Google Scholar
  220. 220.
    Choi SW, Park JY, Kim SS (2009) Nanotechnology 20:465603Google Scholar
  221. 221.
    Li D, Xia Y (2003) Nano Lett 3:555–560Google Scholar
  222. 222.
    Nair AS, Zhu P, Jagadeesh Babu V, Yang S, Krishnamoorthy T, Murugan R, Peng S, Ramakrishna S (2012) Langmuir 28:6202–6206Google Scholar
  223. 223.
    Wu MC, Sápi A, Avila A, Szabó M, Hiltunen J, Huuhtanen M, Tóth G, Kukovecz Á, Kónya Z, Keiski R (2011) Nano Research 4:360–369Google Scholar
  224. 224.
    Kumar A, Jose R, Fujihara K, Wang J, Ramakrishna S (2007) Chem Mater 19:6536–6542Google Scholar
  225. 225.
    Yang L, Leung WWF (2011) Adv Mater 23:4559–4562Google Scholar
  226. 226.
    Hwang SH, Kim C, Song H, Son S, Jang J (2012) ACS Appl Mater Interfaces 4:5287–5292Google Scholar
  227. 227.
    Jose R, Kumar A, Thavasi V, Ramakrishna S (2008) Nanotechnology 19:424004Google Scholar
  228. 228.
    Zhu P, Nair AS, Yang S, Peng S, Ramakrishna S (2011) J Mater Chem 21:12210–12212Google Scholar
  229. 229.
    Zhan S, Chen D, Jiao X, Tao C (2006) J Phys Chem B 110:11199–11204Google Scholar
  230. 230.
    Lee BH, Song MY, Jang SY, Jo SM, Kwak SY, Kim DY (2009) J Phys Chem C 113:21453–21457Google Scholar
  231. 231.
    Nair AS, Shengyuan Y, Peining Z, Ramakrishna S (2010) Chem Commun 46:7421–7423Google Scholar
  232. 232.
    Shengyuan Y, Peining Z, Nair AS, Ramakrishna S (2011) J Mater Chem 21:6541–6548Google Scholar
  233. 233.
    Hwang D, Jo SM, Kim DY, Armel V, MacFarlane DR, Jang SY (2011) ACS Appl Mater Interfaces 3:1521–1527Google Scholar
  234. 234.
    Ishida M, Park SW, Hwang D, Koo YB, Sessler JL, Kim DY, Kim D (2011) J Phys Chem C 115:19343–19354Google Scholar
  235. 235.
    Chen X, Liu L, Peter YY, Mao SS (2011) Science 331:746–750Google Scholar
  236. 236.
    An HL, Ahn HJ (2012) Mater Lett 81:41–44Google Scholar
  237. 237.
    Fujihara K, Kumar A, Jose R, Ramakrishna S, Uchida S (2007) Nanotechnology 18:365709Google Scholar
  238. 238.
    Liu B, Nakata K, Sakai M, Saito H, Ochiai T, Murakami T, Takagi K, Fujishima A (2012) Catal Sci Technol 2:1933–1939Google Scholar
  239. 239.
    Hwang D, Lee H, Seo Y, Kim D, Jo SM, Kim DY (2013) J Mater Chem A 1:1359–1367Google Scholar
  240. 240.
    Lee H, Hwang D, Jo SM, Kim D, Seo Y, Kim DY (2012) ACS Appl Mater Interfaces 4:3308–3315Google Scholar
  241. 241.
    Jang SY, Hwang D, Kim DY, Kim D (2013) J Mater Chem A 1:1228–1238Google Scholar
  242. 242.
    Yang HY, Lee MF, Huang CH, Lo YS, Chen YJ, Wong MS (2009) Thin Solid Films 518:1590–1594Google Scholar
  243. 243.
    Wolcott A, Smith WA, Kuykendall TR, Zhao Y, Zhang JZ (2008) Small 5:104–111Google Scholar
  244. 244.
    Larsen GK, Fitzmorris R, Zhang JZ, Zhao Y (2011) J Phys Chem C 115:16892–16903Google Scholar
  245. 245.
    Smith W, Wolcott A, Fitzmorris RC, Zhang JZ, Zhao Y (2011) J Mater Chem 21:10792–10800Google Scholar
  246. 246.
    Wang S, Xia G, He H, Yi K, Shao J, Fan Z (2007) J Alloy Compd 431:287–291Google Scholar
  247. 247.
    Pihosh Y, Turkevych I, Ye J, Goto M, Kasahara A, Kondo M, Tosa M (2009) J Electrochem Soc 156:K160–K165Google Scholar
  248. 248.
    Gamez F, Plaza-Reyes A, Hurtado P, Guillen F, Anta JA, Martinez-Haya B, Perez S, Sanz M, Castillejo M, Izquierdo JG, Banares L (2010) J Phys Chem C 114:17409–17415Google Scholar
  249. 249.
    Sanz M, Walczak M, de Nalda R, Oujja M, Marco JF, Rodriguez J, Izquierdo JG, Banares L, Castillejo M (2009) Appl Surf Sci 255:5206–5210Google Scholar
  250. 250.
    Sanz M, Walczak M, Oujja M, Cuesta A, Castillejo M (2009) Thin Solid Films 517:6546–6552Google Scholar
  251. 251.
    Yang XF, Zhuang JL, Li XY, Chen DH, Ouyang GF, Mao ZQ, Han YX, He ZH, Liang CL, Wu MM, Yu JC (2009) ACS Nano 3:1212–1218Google Scholar
  252. 252.
    Quinonez C, Vallejo W, Gordillo G (2010) Appl Surf Sci 256:4065–4071Google Scholar
  253. 253.
    Shan AY, Ghazi TIM, Rashid SA (2010) Appl Catal A 389:1–8Google Scholar
  254. 254.
    Seifried S, Winterer M, Hahn H (2000) Chem Vap Deposition 6:239–244Google Scholar
  255. 255.
    Zhang C, Chen S, Mo L, Huang Y, Tian H, Hu L, Huo Z, Dai S, Kong F, Pan X (2011) J Phys Chem C 115:16418–16424Google Scholar
  256. 256.
    Xu L, Steinmiller EMP, Skrabalak SE (2011) J Phys Chem C 116:871–877Google Scholar
  257. 257.
    Yu H, Irie H, Shimodaira Y, Hosogi Y, Kuroda Y, Miyauchi M, Hashimoto K (2010) J Phys Chem C 114:16481–16487Google Scholar
  258. 258.
    Zhu J, Ren J, Huo Y, Bian Z, Li H (2007) J Phys Chem C 111:18965–18969Google Scholar
  259. 259.
    Wu Q, Ouyang JJ, Xiea KP, Sun L, Wang MY, Lin CJ (2012) J Hazard Mater 199:410–417Google Scholar
  260. 260.
    Di Paola A, Marci G, Palmisano L, Schiavello M, Uosaki K, Ikeda S, Ohtani B (2002) J Phys Chem B 106:637–645Google Scholar
  261. 261.
    Huang JH, Hung PY, Hu SF, Liu RS (2010) J Mater Chem 20:6505–6511Google Scholar
  262. 262.
    Liqiang J, Xiaojun S, Baifu X, Baiqi W, Weimin C, Honggang F (2004) J Solid State Chem 177:3375–3382Google Scholar
  263. 263.
    Liu Z, Li Y, Liu C, Ya J (2011) L. E., W. Zhao, D. Zhao and L. An. ACS Appl Mater Interfaces 3:1721–1725Google Scholar
  264. 264.
    Wang E, Yang W, Cao Y (2009) J Phys Chem C 113:20912–20917Google Scholar
  265. 265.
    Li H, Zhang X, Huo Y, Zhu J (2007) Environ Sci Technol 41:4410–4414Google Scholar
  266. 266.
    Wu G, Nishikawa T, Ohtani B, Chen A (2007) Chem Mater 19:4530–4537Google Scholar
  267. 267.
    Song J, Yang HB, Wang X, Khoo SY, Wong C, Liu XW, Li CM (2012) ACS Appl Mater Interfaces 4:3712–3717Google Scholar
  268. 268.
    Liu G, Yin LC, Wang J, Niu P, Zhen C, Xie Y, Cheng HM (2012) Energy Environ Sci 5:9603–9610Google Scholar
  269. 269.
    Zhao Y, Qiu X, Burda C (2008) Chem Mater 20:2629–2636Google Scholar
  270. 270.
    Peng T, Dai K, Yi H, Ke D, Cai P, Zan L (2008) Chem Phys Lett 460:216–219Google Scholar
  271. 271.
    Liao G, Chen S, Quan X, Chen H, Zhang Y (2010) Environ Sci Technol 44:3481–3485Google Scholar
  272. 272.
    Park J, Yi J, Tachikawa T, Majima T, Choi W (2010) J Phys Chem Lett 1:1351–1355Google Scholar
  273. 273.
    Park H, Choi W (2005) J Phys Chem B 109:11667–11674Google Scholar
  274. 274.
    Zhang H, Zong R, Zhao J, Zhu Y (2008) Environ Sci Technol 42:3803–3807Google Scholar
  275. 275.
    Zhou X, Peng F, Wang H, Yu H, Fang Y (2011) Chem Commun 47:10323–10325Google Scholar
  276. 276.
    Zhang M, Shao C, Guo Z, Zhang Z, Mu J, Cao T, Liu Y (2011) ACS Appl Mater Interfaces 3:369–377Google Scholar
  277. 277.
    Wang H, Bai Y, Zhang H, Zhang Z, Li J, Guo L (2010) J Phys Chem C 114:16451–16455Google Scholar
  278. 278.
    Zhu G, Pan L, Xu T, Sun Z (2011) ACS Appl Mater Interfaces 3:1472–1478Google Scholar
  279. 279.
    Wang CL, Sun L, Yun H, Li J, Lai YK, Lin CJ (2009) Nanotechnology 20:295601Google Scholar
  280. 280.
    Hou Y, Li X, Zou X, Quan X, Chen G (2008) Environ Sci Technol 43:858–863Google Scholar
  281. 281.
    Zhou W, Liu H, Wang J, Liu D, Du G, Cui J (2010) ACS Appl Mater Interfaces 2:2385–2392Google Scholar
  282. 282.
    Kim JY, Choi SB, Noh JH, Yoon SH, Lee S, Noh TH, Frank AJ, Hong KS (2009) Langmuir 25:5348–5351Google Scholar
  283. 283.
    Huang H, Li D, Lin Q, Shao Y, Chen W, Hu Y, Chen Y, Fu X (2009) J Phys Chem C 113:14264–14269Google Scholar
  284. 284.
    Murakami N, Kurihara Y, Tsubota T, Ohno T (2009) J Phys Chem C 113:3062–3069Google Scholar
  285. 285.
    Zhang X, Zhang L, Xie T, Wang D (2009) J Phys Chem C 113:7371–7378Google Scholar
  286. 286.
    Colón G, López SM, Hidalgo M, Navío J (2010) Chem Commun 46:4809–4811Google Scholar
  287. 287.
    Gao XF, Li HB, Sun WT, Chen Q, Tang FQ, Peng LM (2009) J Phys Chem C 113:7531–7535Google Scholar
  288. 288.
    Lee HJ, Leventis HC, Moon SJ, Chen P, Ito S, Haque SA, Torres T, Nüesch F, Geiger T, Zakeeruddin SM (2009) Adv Funct Mater 19:2735–2742Google Scholar
  289. 289.
    O’Hayre R, Nanu M, Schoonman J, Goossens A, Wang Q, Grätzel M (2006) Adv Funct Mater 16:1566–1576Google Scholar
  290. 290.
    Wang Y, Gong H, Fan B, Hu G (2010) J Phys Chem C 114:3256–3259Google Scholar
  291. 291.
    Zhang Z, Shao C, Li X, Sun Y, Zhang M, Mu J, Zhang P, Guo Z, Liu Y (2012) Nanoscale 5:606–618Google Scholar
  292. 292.
    Pandikumar A, Murugesan S, Ramaraj R (2010) ACS Appl Mater Interfaces 2:1912–1917Google Scholar
  293. 293.
    Z. Bian, J. Zhu, F. Cao, Y. Lu and H. Li, Chem. Commun., 2009, 3789-3791Google Scholar
  294. 294.
    Seh ZW, Liu S, Low M, Zhang SY, Liu Z, Mlayah A, Han MY (2012) Adv Mater 24:2310–2314Google Scholar
  295. 295.
    Lee SS, Oh K (2012) ACS Appl Mater Interfaces 4:5727–5731Google Scholar
  296. 296.
    Xie KP, Wu Q, Wang YY, Guo WX, Wang MY, Sun L, Lin CJ (2011) Electrochem Commun 13:1469–1472Google Scholar
  297. 297.
    Xie KP, Sun L, Wang CL, Lai YK, Wang MY, Chen HB, Lin CJ (2010) Electrochim Acta 55:7211–7218Google Scholar
  298. 298.
    Mohapatra SK, Kondamudi N, Banerjee S, Misra M (2008) Langmuir 24:11276–11281Google Scholar
  299. 299.
    Zhang N, Liu S, Fu X, Xu YJ (2011) J Phys Chem C 115:9136–9145Google Scholar
  300. 300.
    Ye M, Gong J, Lai Y, Lin C, Lin Z (2012) J Am Chem Soc 134:15720–15723Google Scholar
  301. 301.
    Wang C, Yin L, Zhang L, Liu N, Lun N, Qi Y (2010) ACS Appl Mater Interfaces 2:3373–3377Google Scholar
  302. 302.
    Chen YC, Pu YC, Hsu YJ (2012) J Phys Chem C 116:2967–2975Google Scholar
  303. 303.
    Lai YK, Gong JJ, Lin CJ (2012) Int J Hydrogen Energy 37:6438–6446Google Scholar
  304. 304.
    Yu Y, Zhang MZ, Chen J, Zhao YD (2012) Dalton Trans 42:885–889Google Scholar
  305. 305.
    Bai H, Liu Z, Sun DD (2012) J Am Ceram Soc 96:942–949Google Scholar
  306. 306.
    Smitha VS, Baiju KV, Perumal P, Ghosh S, Warrier KG (2012) Eur J Inorg Chem 2012:226–233Google Scholar
  307. 307.
    K. M. Shrestha, C. M. Sorensen and K. J. Klabundea, J. Mater. Res., 1, 1-9Google Scholar
  308. 308.
    Lü X, Huang F, Wu J, Ding S, Xu F (2011) ACS Appl Mater Interfaces 3:566–572Google Scholar
  309. 309.
    Diamant Y, Chen S, Melamed O, Zaban A (2003) J Phys Chem B 107:1977–1981Google Scholar
  310. 310.
    Furukawa S, Shishido T, Teramura K, Tanaka T (2011) ACS Catalysis 2:175–179Google Scholar
  311. 311.
    Pan J, Hühne SM, Shen H, Xiao L, Born P, Mader W, Mathur S (2011) J Phys Chem C 115:17265–17269Google Scholar
  312. 312.
    Song KY, Park MK, Kwon YT, Lee HW, Chung WJ, Lee WI (2001) Chem Mater 13:2349–2355Google Scholar
  313. 313.
    Sun L, Bu JF, Guo WX, Wang YY, Wang MY, Lin CJ (2012) Electrochem Solid-State Lett 15:E1–E3Google Scholar
  314. 314.
    Katoh R, Furube A, Yoshihara T, Hara K, Fujihashi G, Takano S, Murata S, Arakawa H, Tachiya M (2004) J Phys Chem B 108:4818–4822Google Scholar
  315. 315.
    Jiang X, Zhang Y, Jiang J, Rong Y, Wang Y, Wu Y, Pan CX (2012) J Phys Chem C 116:22619–22624Google Scholar
  316. 316.
    Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi CL, Psaro R, Dal V (2012) Santo. J Am Chem Soc 134:7600–7603Google Scholar
  317. 317.
    Tominaka S, Tsujimoto Y, Matsushita Y, Yamaura K (2011) Angew Chem Int Ed 50:7418–7421Google Scholar
  318. 318.
    Zuo F, Bozhilov K, Dillon RJ, Wang L, Smith P, Zhao X, Bardeen C, Feng P (2012) Angew Chem Int Ed 124:6327–6330Google Scholar
  319. 319.
    Gu D, Lu Y, Yang B (2008) Chem Commun 2453–2455Google Scholar
  320. 320.
    Sayed FN, Jayakumar O, Sasikala R, Kadam R, Bharadwaj SR, Kienle L, Schürmann U, Kaps S, Adelung R, Mittal J (2012) J Phys Chem C 116:12462–12467Google Scholar
  321. 321.
    Kitano M, Funatsu K, Matsuoka M, Ueshima M, Anpo M (2006) J Phys Chem B 110:25266–25272Google Scholar
  322. 322.
    Gu DE, Yang BC, Hu YD (2008) Catal Commun 9:1472–1476Google Scholar
  323. 323.
    Wang CL, Wang MY, Xie KP, Wu Q, Sun L, Lin ZQ, Lin CJ (2011) Nanotechnology 22:305607Google Scholar
  324. 324.
    Sato S (1986) Chem Phys Lett 123:126–128Google Scholar
  325. 325.
    Sato S, Nakamura R, Abe S (2005) Appl Catal A 284:131–137Google Scholar
  326. 326.
    Lai YK, Huang JY, Zhang HF, Subramaniam VP, Tang YX, Gong DG, Sundar L, Sun L, Chen Z, Lin CJ (2010) J Hazard Mater 184:855–863Google Scholar
  327. 327.
    Cao J, Zhang Y, Tong H, Li P, Kako T, Ye J (2012) Chem Commun 48:8649–8651Google Scholar
  328. 328.
    Bacsa R, Kiwi J, Ohno T, Albers P, Nadtochenko V (2005) J Phys Chem B 109:5994–6003Google Scholar
  329. 329.
    Li Y, Ma G, Peng S, Lu G, Li S (2008) Appl Surf Sci 254:6831–6836Google Scholar
  330. 330.
    Chen D, Jiang Z, Geng J, Wang Q, Yang D (2007) Ind Eng Chem Res 46:2741–2746Google Scholar
  331. 331.
    Chen X, Burda C (2008) J Am Chem Soc 130:5018–5019Google Scholar
  332. 332.
    Dong F, Wang H, Wu Z (2009) J Phys Chem C 113:16717–16723Google Scholar
  333. 333.
    Sun H, Liu H, Ma J, Wang X, Wang B, Han L (2008) J Hazard Mater 156:552–559Google Scholar
  334. 334.
    Wu G, Wang J, Thomas DF, Chen A (2008) Langmuir 24:3503–3509Google Scholar
  335. 335.
    Dong F, Guo S, Wang H, Li X, Wu Z (2011) J Phys Chem C 115:13285–13292Google Scholar
  336. 336.
    Wei F, Ni L, Cui P (2008) J Hazard Mater 156:135–140Google Scholar
  337. 337.
    In S, Orlov A, Berg R, García F, Pedrosa-Jimenez S, Tikhov MS, Wright DS, Lambert RM (2007) J Am Chem Soc 129:13790–13791Google Scholar
  338. 338.
    Zong X, Xing Z, Yu H, Chen Z, Tang F, Zou J, Lu GQ, Wang L (2011) Chem Commun 47:11742–11744Google Scholar
  339. 339.
    Li L, Shi J, Li G, Yuan Y, Li Y, Zhao W (2013) New J Chem 37:451–457Google Scholar
  340. 340.
    Santos RS, Faria GA, Giles C, Leite CAP, Barbosa HS, Arruda MAZ, Longo C (2012) ACS Appl Mater Interfaces 4:5555–5561Google Scholar
  341. 341.
    Liu X, Geng D, Wang X, Ma S, Wang H, Li D, Li B, Liu W, Zhang Z (2010) Chem Commun 46:6956–6958Google Scholar
  342. 342.
    Cao G, Li Y, Zhang Q, Wang H (2010) J Am Ceram Soc 93:1252–1255Google Scholar
  343. 343.
    Zhang J, Pan C, Fang P, Wei J, Xiong R (2010) ACS Appl Mater Interfaces 2:1173–1176Google Scholar
  344. 344.
    Dai G, Yu J, Liu G (2011) J Phys Chem C 115:7339–7346Google Scholar
  345. 345.
    Wang Y, Zhang Y, Zhao G, Tian H, Shi H, Zhou T (2012) ACS Appl Mater Interfaces 4:3965–3972Google Scholar
  346. 346.
    Vogel R, Hoyer P, Weller H (1994) J Phys Chem 98:3183–3188Google Scholar
  347. 347.
    Kim W, Tachikawa T, Majima T, Choi W (2009) J Phys Chem C 113:10603–10609Google Scholar
  348. 348.
    D. Zhang, G. Li, X. Yang and C. Y. Jimmy, Chem. Commun., 2009, 0, 4381-4383Google Scholar
  349. 349.
    Peng L, Xie T, Lu Y, Fan H, Wang D (2010) Phys Chem Chem Phys 12:8033–8041Google Scholar
  350. 350.
    Wang C, Shao C, Zhang X, Liu Y (2009) Inorg Chem 48:7261–7268Google Scholar
  351. 351.
    Anderson C, Bard AJ (1997) J Phys Chem B 101:2611–2616Google Scholar
  352. 352.
    William L IV, Kostedt I, Ismail AA, Mazyck DW (2008) Ind Eng Chem Res 47:1483–1487Google Scholar
  353. 353.
    Fu X, Clark LA, Yang Q, Anderson MA (1996) Environ Sci Technol 30:647–653Google Scholar
  354. 354.
    Ding S, Yin X, Lü X, Wang Y, Huang F, Wan D (2011) ACS Appl Mater Interfaces 4:306–311Google Scholar
  355. 355.
    Shao Z, Zhu W, Li Z, Yang Q, Wang G (2012) J Phys Chem C 116:2438–2442Google Scholar
  356. 356.
    Kang Q, Liu S, Yang L, Cai Q, Grimes CA (2011) ACS Appl Mater Interfaces 3:746–749Google Scholar
  357. 357.
    Liu B, Wang D, Zhang Y, Fan H, Lin Y, Jiang T, Xie T (2012) Dalton Trans 42:2232–2237Google Scholar
  358. 358.
    Wang S, Zhang X, Zhou G, Wang ZS (2012) Phys Chem Chem Phys 14:816–822Google Scholar
  359. 359.
    Kim JY, Kang SH, Kim HS, Sung YE (2009) Langmuir 26:2864–2870Google Scholar
  360. 360.
    Yu H, Xue B, Liu P, Qiu J, Wen W, Zhang S, Zhao H (2012) ACS Appl Mater Interfaces 4:1289–1294Google Scholar
  361. 361.
    Jung HS, Lee JK, Nastasi M, Lee SW, Kim JY, Park JS, Hong KS, Shin H (2005) Langmuir 21:10332–10335Google Scholar
  362. 362.
    Shinde DV, Mane RS, Oh IH, Lee JK, Han SH (2012) Dalton Trans 41:10161–10163Google Scholar
  363. 363.
    Pang S, Xie T, Zhang Y, Wei X, Yang M, Wang D, Du Z (2007) J Phys Chem C 111:18417–18422Google Scholar
  364. 364.
    Cao T, Li Y, Wang C, Zhang Z, Zhang M, Shao C, Liu Y (2011) J Mater Chem 21:6922–6927Google Scholar
  365. 365.
    Li X, Hou Y, Zhao Q, Chen G (2011) Langmuir 27:3113–3120Google Scholar
  366. 366.
    Muduli S, Lee W, Dhas V, Mujawar S, Dubey M, Vijayamohanan K, Han SH, Ogale S (2009) ACS Appl Mater Interfaces 1:2030–2035Google Scholar
  367. 367.
    Liu B, Huang Y, Wen Y, Du L, Zeng W, Shi Y, Zhang F, Zhu G, Xu X, Wang Y (2012) J Mater Chem 22:7484–7491Google Scholar
  368. 368.
    Kim H, Moon G, Monllor-Satoca D, Park Y, Choi W (2011) J Phys Chem C 116:1535–1543Google Scholar
  369. 369.
    Zhang H, Lv X, Li Y, Wang Y, Li J (2009) ACS Nano 4:380–386Google Scholar
  370. 370.
    Liu J, Bai H, Wang Y, Liu Z, Zhang X, Sun DD (2010) Adv Funct Mater 20:4175–4181Google Scholar
  371. 371.
    Hou C, Zhang Q, Li Y, Wang H (2012) J Hazard Mater 205:229–235Google Scholar
  372. 372.
    Wojtoniszak M, Zielinska B, Chen X, Kalenczuk RJ, Borowiak-Palen E (2012) J Mater Sci 47:3185–3190Google Scholar
  373. 373.
    Yang N, Zhang Y, Halpert JE, Zhai J, Wang D, Jiang L (2012) Small 11:1762–1770Google Scholar
  374. 374.
    Lee JS, You KH, Park CB (2012) Adv Mater 24:1084–1088Google Scholar
  375. 375.
    Cottineau T, Albrecht A, Janowska I, Macher N, Bégin D, Ledoux MJ, Pronkin S, Savinova E, Keller N, Keller V (2012) Chem Commun 48:1224–1226Google Scholar
  376. 376.
    Kim IY, Lee JM, Kim TW, Kim HN, Kim H, Choi W, Hwang SJ (2012) Small 7:1038–1048Google Scholar
  377. 377.
    Peining Z, Nair AS, Shengjie P, Shengyuan Y, Ramakrishna S (2012) ACS Appl Mater Interfaces 4:581–585Google Scholar
  378. 378.
    Zhang XY, Li HP, Cui XL, Lin Y (2010) J Mater Chem 20:2801–2806Google Scholar
  379. 379.
    Liu S, Liu C, Wang W, Cheng B, Yu J (2012) Nanoscale 4:3193–3200Google Scholar
  380. 380.
    Tu W, Zhou Y, Liu Q, Tian Z, Gao J, Chen X, Zhang H, Liu J, Zou Z (2012) Adv Funct Mater 22:1215–1221Google Scholar
  381. 381.
    Sun L, Zhao Z, Zhou Y, Liu L (2012) Nanoscale 4:613–620Google Scholar
  382. 382.
    Sher Shah MSA, Park AR, Zhang K, Park JH, Yoo PJ (2012) ACS Appl Mater Interfaces 4:3893–3901Google Scholar
  383. 383.
    Zhang X, Sun Y, Cui X, Jiang Z (2012) Int J Hydrogen Energy 37:811–815Google Scholar
  384. 384.
    Jiang B, Tian C, Pan Q, Jiang Z, Wang JQ, Yan W, Fu H (2011) J Phys Chem C 115:23718–23725Google Scholar
  385. 385.
    Libisch F, Stampfer C, Burgdörfer J (2009) Phys Rev B 79:115423Google Scholar
  386. 386.
    Ritter KA, Lyding JW (2009) Nat Mater 8:235–242Google Scholar
  387. 387.
    Ponomarenko L, Schedin F, Katsnelson M, Yang R, Hill E, Novoselov K, Geim A (2008) Science 320:356–358Google Scholar
  388. 388.
    Zhuo S, Shao M, Lee ST (2012) ACS Nano 6:1059–1064Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
  2. 2.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations