Skip to main content

Chemical Routes to Graphene-Based Flexible Electrodes for Electrochemical Energy Storage

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Due to their many fascinating properties and low-cost preparation by chemical reduction method, particular attention has been paid to the graphene-based materials in the application of energy storage devices. In the present chapter, we focus on the latest work regarding the development of flexible electrodes for batteries and supercapacitors based on graphene as well as graphene-based composites. To begin with, graphene as the sole or dominant part of flexible electrode will be discussed, involving its structure, relationship between structure and performance, and strategies to improve their performances; The next major section deals with graphene as conductive matrix for flexible electrode, the role of graphene to offer efficient electrically conductive channels and flexible mechanical supports will be discussed. Another role of graphene in flexible electrode is as active additives to improve the performance of cellulose and carbon nanofiber papers, examples will be given and such strategy is promising for further reducing the cost of flexible electrodes. Finally, prospects and further developments in this exciting field of graphene-based flexible energy storage devices will be also suggested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nishide H, Oyaizu K (2008) Materials science—toward flexible batteries. Science 319(5864):737–738

    Article  Google Scholar 

  2. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  Google Scholar 

  3. Feng J, Sun X, Wu C, Peng L, Lin C, Hu S, Yang J, Xie Y (2011) Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. J Am Chem Soc 133(44):17832–17838

    Article  Google Scholar 

  4. Nyholm L, Nystrom G, Mihranyan A, Stromme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23(33):3751–3769

    Google Scholar 

  5. Liu F, Song S, Xue D, Zhang H (2012) Selective crystallization with preferred lithium-ion storage capability of inorganic materials. Nanoscale Res Lett 7:149

    Article  Google Scholar 

  6. Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci 104(34):13574–13577

    Article  Google Scholar 

  7. Sukjae J, Houk J, Youngbin L, Daewoo S, Seunghyun B, Byung Hee H, Jong-Hyun A (2010) Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes. Nanotechnology 21(42):425201

    Google Scholar 

  8. Gwon H, Kim H-S, Lee KU, Seo D-H, Park YC, Lee Y-S, Ahn BT, Kang K (2011) Flexible energy storage devices based on graphene paper. Energy Environ Sci 4(4):1277–1283

    Article  Google Scholar 

  9. Huang Z-D, Zhang B, Liang R, Zheng Q-B, Oh SW, Lin X-Y, Yousefi N, Kim J-K (2012) Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers. Carbon 50(11):4239–4251

    Article  Google Scholar 

  10. Zhang Y, Xue D (2012) Mild synthesis route to nanostructured aplha-MnO2 as electrode materials for electrochemical energy storage. Funct Mater Lett 5(3):1250030

    Google Scholar 

  11. Lu P, Liu F, Xue D, Yang H, Liu Y (2012) Phase selective route to Ni(OH)2 with enhanced supercapacitance: performance dependent hydrolysis of Ni(Ac)2 at hydrothermal conditions. Electrochim Acta 78:1–10

    Article  Google Scholar 

  12. Liu J, Zhou Y, Liu F, Liu C, Wang J, Pan Y, Xue D (2012) One-pot synthesis of mesoporous interconnected carbon-encapsulated Fe3O4 nanospheres as superior anodes for Li-ion batteries. RSC Adv 2(6):2262–2265

    Article  Google Scholar 

  13. Chen Y, Huang Q, Wang J, Wang Q, Xue J (2011) Synthesis of monodispersed SnO2@C composite hollow spheres for lithium ion battery anode applications. J Mater Chem 21:17448–17453

    Article  Google Scholar 

  14. Liu J, Xue D (2010) Hollow nanostructured anode materials for Li-ion batteries. Nanoscale Res Lett 5:1525–1534

    Article  Google Scholar 

  15. Liu J, Xia H, Xue D, Lu L (2009) Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J Am Chem Soc 131(34):12086–12087

    Article  Google Scholar 

  16. Cheng F, Liang J, Tao Z, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23:1695–1715

    Article  Google Scholar 

  17. Liu C, Li F, Ma L, Cheng H (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Article  Google Scholar 

  18. Song H, Lee K, Kim M, Nazar L, Cho J (2010) Recent progress in nanostructured cathode materials for lithium secondary batteries. Adv Mater 20:3818–3834

    Google Scholar 

  19. Arico A, Bruce P, Scrosati B, Tarascon J, Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  Google Scholar 

  20. Liu J, Liu F, Gao K, Wu J, Xue D (2009) Recent developments in the chemical synthesis of inorganic porous capsules. J Mater Chem 19:6073–6084

    Article  Google Scholar 

  21. Liu J, Xia H, Lu L, Xue D (2010) Anisotropic Co3O4 porous nanocapsules toward high-capacity Li-ion batteries. J Mater Chem 20:1506–1510

    Article  Google Scholar 

  22. Liu J, Xue D (2010) Sn-based nanomaterials converted from SnS nanobelts: facile synthesis, characterizations, optical properties and energy storage performances. Electrochim Acta 56:243–250

    Article  Google Scholar 

  23. Liu J, Zhou Y, Liu C, Wang J, Pan Y, Xue D (2012) Self-assembled porous hierarchical-like CoO@C microsheets transformed from inorganic-organic precursors and their lithium-ion battery application. CrystEngComm 14(8):2669–2674

    Article  Google Scholar 

  24. Bruce P, Scrosati B, Tarascon J (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–3946

    Article  Google Scholar 

  25. Wang H, Yang Y, Liang Y, Cui L, Casalongue H, Li Y, Hong G, Cui Y, Dai H (2011) LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew Chem Int Ed 50:7364–7368

    Article  Google Scholar 

  26. Goodenough J, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  Google Scholar 

  27. Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699

    Article  Google Scholar 

  28. Beguin F, Szostak K, Lota G, Frackowiak E (2005) A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends. Adv Mater 17(19):2380–2384

    Google Scholar 

  29. Chen J, Minett AI, Liu Y, Lynam C, Sherrell P, Wang C, Wallace GG (2008) Direct growth of flexible carbon nanotube electrodes. Adv Mater 20(3):566–570

    Google Scholar 

  30. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  31. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710

    Article  Google Scholar 

  32. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  Google Scholar 

  33. Geim AK, Novoselov KS (2007) The rise of graphene. Nature Mater 6(3):183–191

    Article  Google Scholar 

  34. Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nat Nanotechnol 2(10):605–615

    Article  Google Scholar 

  35. Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim Y-J, Kim KS, Ozyilmaz B, Ahn J-H, Hong BH, Iijima S (2010) Roll-to-roll production of 30-in. graphene films for transparent electrodes. Nat Nanotechnol 5(8):574–578

    Article  Google Scholar 

  36. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    Article  Google Scholar 

  37. Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, Avouris P (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327(5966):662

    Article  Google Scholar 

  38. Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Room-temperature quantum hall effect in graphene. Science 315(5817):1379

    Article  Google Scholar 

  39. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63

    Article  Google Scholar 

  40. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3(5):270–274

    Article  Google Scholar 

  41. Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 3(9):538–542

    Article  Google Scholar 

  42. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224

    Article  Google Scholar 

  43. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568

    Article  Google Scholar 

  44. Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105

    Article  Google Scholar 

  45. Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Roehrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater 8(3):203–207

    Article  Google Scholar 

  46. Sutter PW, Flege J-I, Sutter EA (2008) Epitaxial graphene on ruthenium. Nature Mater 7(5):406–411

    Article  Google Scholar 

  47. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331

    Article  Google Scholar 

  48. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448(7152):457–460

    Article  Google Scholar 

  49. Wang C, Li D, Too CO, Wallace GG (2009) Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem Mater 21(13):2604–2606

    Article  Google Scholar 

  50. Goodenough J, Kim Y (2011) Challenges for rechargeable batteries. J Power Sources 196:6688–6694

    Article  Google Scholar 

  51. Tarascon J (2010) Key challenges in future Li-battery research. Phil Trans R Soc A 368:3227–3241

    Article  Google Scholar 

  52. Abouimrane A, Compton OC, Amine K, Nguyen ST (2010) Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J Phys Chem C 114(29):12800–12804

    Article  Google Scholar 

  53. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502

    Article  Google Scholar 

  54. Zhang L, Shi G (2011) Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J Phys Chem C 115(34):17206–17212

    Article  Google Scholar 

  55. Lin Z, Liu Y, Yao Y, Hildreth OJ, Li Z, Moon K, Wong C (2011) Superior capacitance of functionalized graphene. J Phys Chem C 115(14):7120–7125

    Google Scholar 

  56. Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energy Environ Sci 4(4):1113–1132

    Article  Google Scholar 

  57. Yu A, Roes I, Davies A, Chen Z (2010) Ultrathin, transparent, and flexible graphene films for supercapacitor application. Appl Phys Lett 96(25):253103–253105

    Article  Google Scholar 

  58. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330

    Article  Google Scholar 

  59. Lin J, Zhong J, Bao D, Reiber-Kyle J, Wang W, Vullev V, Ozkan M, Ozkan CS (2012) Supercapacitors Based on Pillared Graphene Nanostructures. J Nanosci Nanotechnol 12(3):1770–1775

    Article  Google Scholar 

  60. Sun Y, Qiong W, Xu Y, Bai H, Li C, Shi G (2011) Highly conductive and flexible mesoporous graphitic films prepared by graphitizing the composites of graphene oxide and nanodiamond. J Mater Chem 21(20):7154–7160

    Article  Google Scholar 

  61. Rakhi RB, Chen W, Cha D, Alshareef HN (2012) Nanostructured ternary electrodes for energy-storage applications. Adv Energy Mater 2(3):381–389

    Article  Google Scholar 

  62. Yang X, Zhu J, Qiu L, Li D (2011) Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv Mater 23(25):2833–2838

    Article  Google Scholar 

  63. Zhao X, Hayner CM, Kung MC, Kung HH (2011) Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano 5(11):8739–8749

    Article  Google Scholar 

  64. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541

    Article  Google Scholar 

  65. Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff RS (2012) Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett 12(4):1806–1812

    Article  Google Scholar 

  66. Liu F, Song S, Xue D, Zhang H (2012) Folded structured graphene paper for high performance electrode materials. Adv Mater 24(8):1089–1094

    Article  Google Scholar 

  67. Bai H, Li C, Shi G (2011) Functional composite materials based on chemically converted graphene. Adv Mater 23(9):1089–1115

    Article  Google Scholar 

  68. Wang D-W, Li F, Zhao J, Ren W, Chen Z-G, Tan J, Wu Z-S, Gentle I, Lu GQ, Cheng H-M (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3(7):1745–1752

    Article  Google Scholar 

  69. Wang D, Kou R, Choi D, Yang Z, Nie Z, Li J, Saraf LV, Hu D, Zhang J, Graff GL, Liu J, Pope MA, Aksay IA (2010) Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano 4(3):1587–1595

    Article  Google Scholar 

  70. Szczech J, Jin S (2011) Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4:56–72

    Article  Google Scholar 

  71. Teki R, Datta M, Krishnan P, Parker T, Lu T, Kumta P, Koratkar N (2009) Nanostructured silicon anodes for lithium ion rechargeable batteries. Small 5:2236–2242

    Article  Google Scholar 

  72. Tao H-C, Fan L-Z, Mei Y, Qu X (2011) Self-supporting Si/Reduced Graphene Oxide nanocomposite films as anode for lithium ion batteries. Electrochem Commun 13(12):1332–1335

    Article  Google Scholar 

  73. Liu S, Liu X, Li Z, Yang S, Wang J (2011) Fabrication of free-standing graphene/polyaniline nanofibers composite paper via electrostatic adsorption for electrochemical supercapacitors. New J Chem 35(2):369–374

    Article  Google Scholar 

  74. Yu A, Park HW, Davies A, Higgins DC, Chen Z, Xiao X (2011) Free-standing layer-by-layer hybrid thin film of graphene–MnO2 nanotube as anode for lithium ion batteries. J Phys Chem Lett 2(15):1855–1860

    Article  Google Scholar 

  75. Liu F, Xue D (2012) Flexible composite electrodes upon aerogel derived graphene paper towards lithium-ion batteries. Energ Environ Focus 1(2):93–98

    Google Scholar 

  76. Kang Y-R, Li Y-L, Hou F, Wen Y-Y, Su D (2012) Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage. Nanoscale 4(10):3248–3253

    Article  Google Scholar 

  77. Weng Z, Su Y, Wang D-W, Li F, Du J, Cheng H-M (2011) Graphene-cellulose paper flexible supercapacitors. Adv Energy Mater 1(5):917–922

    Article  Google Scholar 

  78. Tai Z, Yan X, Lang J, Xue Q (2012) Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets. J Power Sources 199:373–378

    Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (grant nos. 50872016, 20973033, and 51125009) and National Natural Science Foundation for Creative Research Group (grant no. 20921002) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfeng Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Liu, F., Xue, D. (2014). Chemical Routes to Graphene-Based Flexible Electrodes for Electrochemical Energy Storage. In: Lin, Z., Wang, J. (eds) Low-cost Nanomaterials. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-6473-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6473-9_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6472-2

  • Online ISBN: 978-1-4471-6473-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics