1D Pd-Based Nanomaterials as Efficient Electrocatalysts for Fuel Cells

  • Yizhong Lu
  • Wei Chen
Part of the Green Energy and Technology book series (GREEN)


Since the first experiment conducted by William Grove in 1839, fuel cell, a device that converts the chemical energy stored in fuels into electricity through electrochemical reactions with oxygen or other oxidizing agents, has attracted worldwide attention in the past few decades. However, despite extensive research progress, the widespread commercialization of fuel cells is still a big challenge partly because of the low catalytic performance and high-cost of the Pt-based electrocatalysts. In addition, the hydrogen storage is another critical issue for the commercialization of hydrogen-powered fuel cells. Among the metal catalysts, Pd has been found to be a promising alternative because of its excellent catalytic properties and lower cost than Pt. Moreover, Pd-based materials exhibit high hydrogen storage capabilities. In this chapter, we summarize recent progress in the synthesis of one-dimensional (1D) Pd-based nanomaterials and their applications as electrocatalysts on both anodic and cathodic sides of fuel cells, and their applications in hydrogen storage. We demonstrated here that various 1D Pd-based nanomaterials, such as nanorods, nanowires, and nanotubes have been successfully prepared through different synthetic routes. The nanostructured 1D Pd-based materials exhibit high catalytic performance for electrooxidation of small organic molecules and oxygen reduction reaction (ORR). Moreover, high capacities for hydrogen storage have also been reported with 1D Pd-based nanomaterials.


Fuel Cell High Resolution Transmission Electron Microscopy High Resolution Transmission Electron Microscopy Oxygen Reduction Reaction Hydrogen Storage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (Nos. 21275136, 21043013), the Natural Science Foundation of Jilin province, China (No. 201215090), and Scientific Research Foundation for Returned Scholars, Ministry of Education of China.


  1. 1.
    Dresselhaus MS, Thomas IL (2001) Nature 414(6861):332–337Google Scholar
  2. 2.
    Dillon R, Srinivasan S, Arico AS, Antonucci V (2004) J Power Sources 127(1–2):112–126Google Scholar
  3. 3.
    Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Leger JM (2002) J Power Sources 105(2):283–296Google Scholar
  4. 4.
    Okada O, Yokoyama K (2001) Fuel Cells 1(1):72–77Google Scholar
  5. 5.
    Winter M, Brodd RJ (2004) Chem Rev 104(10):4245–4269Google Scholar
  6. 6.
    Vielstich W, Lamm A, Gasteiger HA (2003) Handbook of fuel cells: fundamentals, technology, and applications, vol 4. Wiley, ChichesterGoogle Scholar
  7. 7.
    Chen AC, Holt-Hindle P (2010) Chem Rev 110(6):3767–3804Google Scholar
  8. 8.
    Chen W, Kim JM, Sun SH, Chen SW (2007) Langmuir 23(22):11303–11310Google Scholar
  9. 9.
    Zhang J, Yang HZ, Yang KK, Fang J, Zou SZ, Luo ZP, Wang H, Bae IT, Jung DY (2010) Adv Funct Mater 20(21):3727–3733Google Scholar
  10. 10.
    Yang HZ, Zhang J, Sun K, Zou SZ, Fang JY (2010) Angew Chem Int Ed 49(38):6848–6851Google Scholar
  11. 11.
    Chen W, Kim JM, Xu LP, Sun SH, Chen SW (2007) J Phys Chem C 111(36):13452–13459Google Scholar
  12. 12.
    Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Science 315(5811):493–497Google Scholar
  13. 13.
    Xia BY, Wu HB, Wang X, Lou XW (2012) J Am Chem Soc 134(34):13934–13937Google Scholar
  14. 14.
    Chen W, Chen SW (2011) J Mater Chem 21(25):9169–9178Google Scholar
  15. 15.
    Chen W, Kim JM, Sun SH, Chen SW (2008) J Phys Chem C 112(10):3891–3898Google Scholar
  16. 16.
    Chen W, Kim J, Sun SH, Chen SW (2006) Phys Chem Chem Phys 8(23):2779–2786Google Scholar
  17. 17.
    Kang YJ, Murray CB (2010) J Am Chem Soc 132(22):7568–7569Google Scholar
  18. 18.
    Gasteiger HA, Markovic N, Ross PN, Cairns EJ (1994) J Electrochem Soc 141(7):1795–1803Google Scholar
  19. 19.
    Dinh HN, Ren XM, Garzon FH, Zelenay P, Gottesfeld S (2000) J Electroanal Chem 491(1–2):222–233Google Scholar
  20. 20.
    Oetjen HF, Schmidt VM, Stimming U, Trila F (1996) J Electrochem Soc 143(12):3838–3842Google Scholar
  21. 21.
    Frelink T, Visscher W, vanVeen JAR (1996) Langmuir 12(15):3702–3708Google Scholar
  22. 22.
    Goodenough JB, Hamnett A, Kennedy BJ, Manoharan R, Weeks SA (1988) J Electroanal Chem 240(1–2):133–145Google Scholar
  23. 23.
    Chen W, Xu LP, Chen SW (2009) J Electroanal Chem 631(1–2):36–42Google Scholar
  24. 24.
    Lu YZ, Chen W (2011) Chem Commun 47(9):2541–2543Google Scholar
  25. 25.
    Lim B, Jiang MJ, Camargo PHC, Cho EC, Tao J, Lu XM, Zhu YM, Xia YN (2009) Science 324(5932):1302–1305Google Scholar
  26. 26.
    Chen W, Chen SW (2009) Angew Chem Int Edit 48(24):4386–4389Google Scholar
  27. 27.
    Chen W, Ny D, Chen SW (2010) J Power Sources 195(2):412–418Google Scholar
  28. 28.
    Liu HS, Song CJ, Tang YH, Zhang JL, Zhang HJ (2007) Electrochim Acta 52(13):4532–4538Google Scholar
  29. 29.
    Zhang L, Zhang JJ, Wilkinson DP, Wang HJ (2006) J Power Sources 156(2):171–182Google Scholar
  30. 30.
    Morozan A, Jousselme B, Palacin S (2011) Energy Environ Sci 4(4):1238–1254Google Scholar
  31. 31.
    Chen ZW, Higgins D, Yu AP, Zhang L, Zhang JJ (2011) Energy Environ Sci 4(9):3167–3192Google Scholar
  32. 32.
    Wei WT, Lu YZ, Chen W, Chen SW (2011) J Am Chem Soc 133(7):2060–2063Google Scholar
  33. 33.
    Lu YZ, Wang YC, Chen W (2011) J Power Sources 196(6):3033–3038Google Scholar
  34. 34.
    Wu HB, Chen W (2011) J Am Chem Soc 133(39):15236–15239Google Scholar
  35. 35.
    Serov A, Kwak C (2009) Appl Catal B Environ 91(1–2):1–10Google Scholar
  36. 36.
    Serov A, Kwak C (2009) Appl Catal B Environ 90(3–4):313–320Google Scholar
  37. 37.
    Lu YZ, Chen W (2012) Chem Soc Rev 41(9):3594–3623Google Scholar
  38. 38.
    Antolini E (2009) Energy Environ Sci 2(9):915–931Google Scholar
  39. 39.
    Bianchini C, Shen PK (2009) Chem Rev 109(9):4183–4206Google Scholar
  40. 40.
    Cheng TT, Gyenge EL (2009) J Appl Electrochem 39(10):1925–1938Google Scholar
  41. 41.
    Zhou WP, Lewera A, Larsen R, Masel RI, Bagus PS, Wieckowski A (2006) J Phys Chem B 110(27):13393–13398Google Scholar
  42. 42.
    Larsen R, Ha S, Zakzeski J, Masel RI (2006) J Power Sources 157(1):78–84Google Scholar
  43. 43.
    Mazumder V, Sun SH (2009) J Am Chem Soc 131(13):4588–4589Google Scholar
  44. 44.
    Xiao L, Zhuang L, Liu Y, Lu JT, Abruna HD (2009) J Am Chem Soc 131(2):602–608Google Scholar
  45. 45.
    Chen XM, Lin ZJ, Jia TT, Cai ZM, Huang XL, Jiang YQ, Chen X, Chen GN (2009) Anal Chim Acta 650(1):54–58Google Scholar
  46. 46.
    Fu Y, Wei ZD, Chen SG, Li L, Feng YC, Wang YQ, Ma XL, Liao MJ, Shen PK, Jiang SP (2009) J Power Sources 189(2):982–987Google Scholar
  47. 47.
    Hu FP, Chen CL, Wang ZY, Wei GY, Shen PK (2006) Electrochim Acta 52(3):1087–1091Google Scholar
  48. 48.
    Wei WT, Chen W (2012) J Power Sources 204:85–88Google Scholar
  49. 49.
    Jiang YY, Lu YZ, Li FH, Wu TS, Niu L, Chen W (2012) Electrochem Commun 19:21–24Google Scholar
  50. 50.
    Chen XM, Wu GH, Chen JM, Chen X, Xie ZX, Wang XR (2011) J Am Chem Soc 133(11):3693–3695Google Scholar
  51. 51.
    Zhang J, Fang JY (2009) J Am Chem Soc 131(51):18543–18547Google Scholar
  52. 52.
    Bergamaski K, Pinheiro ALN, Teixeira-Neto E, Nart FC (2006) J Phys Chem B 110(39):19271–19279Google Scholar
  53. 53.
    Mayrhofer KJJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM (2005) J Phys Chem B 109(30):14433–14440Google Scholar
  54. 54.
    Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Science 316(5825):732–735Google Scholar
  55. 55.
    Fernandez JL, Walsh DA, Bard AJ (2005) J Am Chem Soc 127(1):357–365Google Scholar
  56. 56.
    Suo YG, Zhuang L, Lu JT (2007) Angew Chem Int Edit 46(16):2862–2864Google Scholar
  57. 57.
    Schmidt TJ, Jusys Z, Gasteiger HA, Behm RJ, Endruschat U, Boennemann H (2001) J Electroanal Chem 501(1–2):132–140Google Scholar
  58. 58.
    Jiang L, Hsu A, Chu D, Chen R (2010) Electrochim Acta 55(15):4506–4511Google Scholar
  59. 59.
    Shao MH, Sasaki K, Adzic RR (2006) J Am Chem Soc 128(11):3526–3527Google Scholar
  60. 60.
    Jung CH, Sanchez-Sanchez CM, Lin CL, Rodriguez-Lopez J, Bard AJ (2009) Anal Chem 81(16):7003–7008Google Scholar
  61. 61.
    Fernandez JL, Raghuveer V, Manthiram A, Bard AJ (2005) J Am Chem Soc 127(38):13100–13101Google Scholar
  62. 62.
    Maiyalagan T, Scott K (2010) J Power Sources 195(16):5246–5251Google Scholar
  63. 63.
    He QG, Chen W, Mukerjee S, Chen SW, Laufek F (2009) J Power Sources 187(2):298–304Google Scholar
  64. 64.
    Zhu CZ, Guo SJ, Dong SJ (2012) Adv Mater 24(17):2326–2331Google Scholar
  65. 65.
    Zhu CZ, Guo SJ, Dong SJ (2012) J Mater Chem 22(30):14851–14855Google Scholar
  66. 66.
    Koenigsmann C, Sutter E, Chiesa TA, Adzic RR, Wong SS (2012) Nano Lett 12(4):2013–2020Google Scholar
  67. 67.
    Guo SJ, Dong SJ, Wang EK (2010) Chem Commun 46(11):1869–1871Google Scholar
  68. 68.
    Ksar F, Surendran G, Ramos L, Keita B, Nadjo L, Prouzet E, Beaunier P, Hagege A, Audonnet F, Remita H (2009) Chem Mater 21(8):1612–1617Google Scholar
  69. 69.
    Xu CW, Wang H, Shen PK, Jiang SP (2007) Adv Mater 19(23):4256–4259Google Scholar
  70. 70.
    Lu YZ, Chen W (2012) ACS Catal 2(1):84–90Google Scholar
  71. 71.
    Cheng FL, Wang H, Sun ZH, Ning MX, Cai ZQ, Zhang M (2008) Electrochem Commun 10(5):798–801Google Scholar
  72. 72.
    Wang H, Xu CW, Cheng FL, Zhang M, Wang SY, Jiang SP (2008) Electrochem Commun 10(10):1575–1578Google Scholar
  73. 73.
    Li WZ, Haldar P (2009) Electrochem Commun 11(6):1195–1198Google Scholar
  74. 74.
    Zhang ZY, More KL, Sun K, Wu ZL, Li WZ (2011) Chem Mater 23(6):1570–1577Google Scholar
  75. 75.
    Chen ZW, Waje M, Li WZ, Yan YS (2007) Angew Chem Int Edit 46(22):4060–4063Google Scholar
  76. 76.
    Lu YZ, Chen W (2010) J Phys Chem C 114(49):21190–21200Google Scholar
  77. 77.
    Xu CX, Zhang Y, Wang LQ, Xu LQ, Bian XF, Ma HY, Ding Y (2009) Chem Mater 21(14):3110–3116Google Scholar
  78. 78.
    Song YJ, Lee YW, Han SB, Park KW (2012) Mater Chem Phys 134(2–3):567–570Google Scholar
  79. 79.
    Alia SM, Jensen KO, Pivovar BS, Yan YS (2012) ACS Catal 2(5):858–863Google Scholar
  80. 80.
    Cui CH, Yu JW, Li HH, Gao MR, Liang HW, Yu SH (2011) ACS Nano 5(5):4211–4218Google Scholar
  81. 81.
    Koenigsmann C, Wong SS (2011) Energy Environ Sci 4(4):1161–1176Google Scholar
  82. 82.
    Huang XQ, Zheng NF (2009) J Am Chem Soc 131(13):4602–4603Google Scholar
  83. 83.
    Hoshi N, Kida K, Nakamura M, Nakada M, Osada K (2006) J Phys Chem B 110(25):12480–12484Google Scholar
  84. 84.
    Baldauf M, Kolb DM (1996) J Phys Chem 100(27):11375–11381Google Scholar
  85. 85.
    Smith PA, Nordquist CD, Jackson TN, Mayer TS, Martin BR, Mbindyo J, Mallouk TE (2000) Appl Phys Lett 77(9):1399–1401Google Scholar
  86. 86.
    Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) Adv Mater 15(5):353–389Google Scholar
  87. 87.
    Garbarino S, Ponrouch A, Pronovost S, Gaudet J, Guay D (2009) Electrochem Commun 11(10):1924–1927Google Scholar
  88. 88.
    Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, Nocera DG (2011) Science 334(6056):645–648Google Scholar
  89. 89.
    Kudo A, Miseki Y (2009) Chem Soc Rev 38(1):253–278Google Scholar
  90. 90.
    Youngblood WJ, Lee SHA, Maeda K, Mallouk TE (2009) Acc Chem Res 42(12):1966–1973Google Scholar
  91. 91.
    Li Y, Zhang JZ (2010) Laser Photonics Rev 4(4):517–528MATHGoogle Scholar
  92. 92.
    Maeda K, Domen K (2010) J Phys Chem Lett 1(18):2655–2661Google Scholar
  93. 93.
    Kruk M, Jaroniec M (2001) Chem Mater 13(10):3169–3183Google Scholar
  94. 94.
    Adams BD, Wu GS, Nigrio S, Chen AC (2009) J Am Chem Soc 131(20):6930–6931Google Scholar
  95. 95.
    Yeager E (1984) Electrochim Acta 29(11):1527–1537Google Scholar
  96. 96.
    Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Norskov JK (2006) Angew Chem Int Edit 45(18):2897–2901Google Scholar
  97. 97.
    Koenigsmann C, Santulli AC, Gong KP, Vukmirovic MB, Zhou WP, Sutter E, Wong SS, Adzic RR (2011) J Am Chem Soc 133(25):9783–9795Google Scholar
  98. 98.
    Sarkar A, Murugan AV, Manthiram A (2008) J Phys Chem C 112(31):12037–12043Google Scholar
  99. 99.
    Liu HS, Song CJ, Zhang L, Zhang JJ, Wang HJ, Wilkinson DP (2006) J Power Sources 155(2):95–110Google Scholar
  100. 100.
    Jin MS, Liu HY, Zhang H, Xie ZX, Liu JY, Xia YN (2011) Nano Res 4(1):83–91Google Scholar
  101. 101.
    Lee YW, Ko AR, Han SB, Kim HS, Kim DY, Kim SJ, Park KW (2010) Chem Commun 46(48):9241–9243Google Scholar
  102. 102.
    Wu HX, Li HJ, Zhai YJ, Xu XL, Jin YD (2012) Adv Mater 24(12):1594–1597Google Scholar
  103. 103.
    Sun SH, Zhang GX, Geng DS, Chen YG, Li RY, Cai M, Sun XL (2011) Angew Chem Int Edit 50(2):422–426Google Scholar
  104. 104.
    Guo SJ, Zhang S, Sun XL, Sun SH (2011) J Am Chem Soc 133(39):15354–15357Google Scholar
  105. 105.
    Xu CW, Cheng LQ, Shen PK, Liu YL (2007) Electrochem Commun 9(5):997–1001Google Scholar
  106. 106.
    Roudgar A, Gross A (2004) Surf Sci 559(2–3):L180–L186Google Scholar
  107. 107.
    Capon A, Parsons R (1973) J Electroanal Chem 45(2):205–231Google Scholar
  108. 108.
    Neurock M, Janik M, Wieckowski A (2008) Faraday Discuss 140:363–378Google Scholar
  109. 109.
    Samjeske G, Miki A, Ye S, Osawa M (2006) J Phys Chem B 110(33):16559–16566Google Scholar
  110. 110.
    Kang YJ, Qi L, Li M, Diaz RE, Su D, Adzic RR, Stach E, Li J, Murray CB (2012) ACS Nano 6(3):2818–2825Google Scholar
  111. 111.
    Miyake H, Okada T, Samjeske G, Osawa M (2008) Phys Chem Chem Phys 10(25):3662–3669Google Scholar
  112. 112.
    McKeown NB, Budd PM (2006) Chem Soc Rev 35(8):675–683Google Scholar
  113. 113.
    Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Science 300(5622):1127–1129Google Scholar
  114. 114.
    Zhao XB, Xiao B, Fletcher AJ, Thomas KM, Bradshaw D, Rosseinsky MJ (2004) Science 306(5698):1012–1015Google Scholar
  115. 115.
    Nakamori Y, Li HW, Matsuo M, Miwa K, Towata S, Orimo S (2008) J Phys Chem Solids 69(9):2292–2296Google Scholar
  116. 116.
    Bardhan R, Ruminski AM, Brand A, Urban JJ (2011) Energy Environ Sci 4(12):4882–4895Google Scholar
  117. 117.
    Pumera M (2011) Energy Environ Sci 4(3):668–674Google Scholar
  118. 118.
    Stephens FH, Baker RT, Matus MH, Grant DJ, Dixon DA (2007) Angew Chem Int Edit 46(5):746–749Google Scholar
  119. 119.
    Sun YG, Tao ZL, Chen J, Herricks T, Xia YN (2004) J Am Chem Soc 126(19):5940–5941Google Scholar
  120. 120.
    Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M (2008) J Am Chem Soc 130(6):1818–1819Google Scholar
  121. 121.
    Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M (2010) J Am Chem Soc 132(16):5576–5577Google Scholar
  122. 122.
    Weiss A, Ramaprabhu S, Rajalakshmi N (1997) Z Phys Chem 199:165–212Google Scholar
  123. 123.
    Uemiya S, Matsuda T, Kikuchi E (1991) J Membr Sci 56(3):315–325Google Scholar
  124. 124.
    Barlag H, Opara L, Zuchner H (2002) J Alloys Compd 330:434–437Google Scholar
  125. 125.
    Lu YZ, Jin RT, Chen W (2011) Nanoscale 3(6):2476–2480Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations