Skip to main content

Zeilberger’s Algorithm

  • Chapter
  • First Online:
Book cover Hypergeometric Summation

Part of the book series: Universitext ((UTX))

Abstract

In this chapter, we introduce Zeilberger’s extension of Gosper’s algorithm, using which one can not only prove hypergeometric identities but also sum definite series in many cases, if they represent hypergeometric terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The sum can also have bounds \([-n,\ldots ,n]\) as the Dixon example has. We need mainly \(s_0=F(0,0)\ne 0\).

  2. 2.

    “To convince ourselves of the validity of Apéry’s proof we need only complete the following exercise: show that (7.9) is valid for (7.8). Neither Cohen nor I had been able to prove this in the intervening two months...”.

  3. 3.

    This can fail only if some of the zeros of the highest or lowest coefficient polynomials are integers.

  4. 4.

    Closedform is the same as closedform, with hyperterm replaced by the inert form Hyperterm in the output, preventing evaluation, and hence emphasizing the hypergeometric structure.

  5. 5.

    Without the option recursion=up, the procedure gives the recurrence equation in terms of downward shifts.

  6. 6.

    There is no recurrence w.r.t. \(x\), but w.r.t. \(y=ix\).

References

  1. Abramov, S.A.: Applicability of Zeilberger’s algorithm to hypergeometric terms. In: Proceedings of ISSAC 02, pp. 1–7. ACM Press, New York (2002).

    Google Scholar 

  2. Abramov, S.A., Le, H.Q.: Applicability of Zeilberger’s algorithm to rational functions. In: Proceedings FPSAC’2000, pp. 91–102. Springer LNCS (2000).

    Google Scholar 

  3. Apagodu, M., Zeilberger, D.: Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory. Adv. Appl. Math. 37, 139–152 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Apéry, R.: Irrationalité de \(\zeta (2)\) et \(\zeta (3)\). Astérisque 61, 11–13 (1979)

    MATH  Google Scholar 

  5. Askey, R.: Dual equations and classical orthogonal polynomials. J. Math. Anal. Appl. 24, 677–685 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  6. Askey, R., Fitch, J.: Integral representations for Jacobi polynomials and some applications. J. Math. Anal. Appl. 26, 411–437 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  7. Askey, R., Gasper, G.: Jacobi polynomial expansions of Jacobi polynomials with non-negative coefficients. Proc. Camb. Phil. Soc. 70, 243–255 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  8. Askey, R., Gasper, G.: Positive Jacobi polynomial sums II. Amer. J. Math. 98, 709–737 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  9. Böing, H., Koepf, W.: Algorithms for \(q\)-hypergeometric summation in computer algebra. J. Symbolic Comput. 28, 777–799 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. CAOP: Computer Algebra and Orthogonal Polynomials. Web resource www.caop.org. Idea by Tom H. Koornwinder, first realization by René Swarttouw, now designed by Torsten Sprenger and maintained by Wolfram Koepf.

  11. Chen, W.Y.C., Hou, Q.-H., Mu, Y.-P.: Non-terminating basic hypergeometric series and the \(q\)-Zeilberger algorithm. Proc. Edinb. Math. Soc. 2(51), 609–633 (2008)

    Article  MathSciNet  Google Scholar 

  12. Chyzak, F.: An extension of Zeilberger’s fast algorithm to general holonomic functions. Discrete Math. 217, 115–134 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chyzak, F., Kauers, M., Salvy, B.: A non-holonomic systems approach to special function identities. In: Proceedings of ISSAC 09, pp. 111–118. ACM Press, New York (2009).

    Google Scholar 

  14. Chyzak, F., Salvy, B.: Non-commutative elimination in Ore algebras proves multivariate identities. J. Symbolic Comput. 26, 187–227 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. De Branges, L.: A proof of the Bieberbach conjecture. Acta Math. 154, 137–152 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. Feldheim, E.: Relations entre les polynomes de Jacobi. Laguerre et Hermite. Acta Math. 75, 117–138 (1943)

    Article  MathSciNet  Google Scholar 

  17. Fröhlich, J.: Parameter derivatives of the Jacobi polynomials and the Gaussian hypergeometric function. Integr. Transform. Spec. Funct. 2, 252–266 (1994)

    Google Scholar 

  18. Gasper, G.: Projection formulas for orthogonal polynomials of a discrete variable. J. Math. Anal. Appl. 45, 176–198 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gasper, G.: A short proof of an inequality used by de Branges in his proof of the Bieberbach. Robertson and Milin conjectures. Complex Variables 7, 45–50 (1986)

    MATH  MathSciNet  Google Scholar 

  20. Gasper, G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications, vol. 35. Cambridge University Press, London and New York (1990) (2nd edn 2004).

    Google Scholar 

  21. Gerhard, J.: Modular algorithms in symbolic summation and symbolic integration. PhD thesis, Universität Paderborn (2001).

    Google Scholar 

  22. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. A Foundation for Computer Science. Addison-Wesley, Reading, Massachussets (1994)

    MATH  Google Scholar 

  23. Ierley, G.R., Ruehr, O.G.: Problem 96–16. SIAM Rev. 38, 668 (1996)

    Article  Google Scholar 

  24. Koekoek, R., Lesky, P., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and their q-Analogues. Springer Monographs in Mathematics, Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  25. Koepf, W., Schmersau, D.: On the de Branges theorem. Complex Variables 31, 213–230 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  26. Koepf, W.: Identities for families of orthogonal polynomials and special functions. Integr. Transform. Spec. Funct. 5, 69–102 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Koepf, W.: The algebra of holonomic equations. Math. Semesterberichte 44, 173–194 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Koepf, W.: Computeralgebra. Springer, Berlin (2006)

    MATH  Google Scholar 

  29. Koepf, W., Schmersau, D.: Representations of orthogonal polynomials. J. Comput. Appl. Math. 90, 57–94 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Koornwinder, T.H.: On Zeilberger’s algorithm and its \(q\)-analogue. J. Comput. Appl. Math. 48, 91–111 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  31. Koornwinder, T.H.: Identities of nonterminating series by Zeilberger’s algorithm. J. Comput. Appl. Math. 99, 449–461 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  32. Mohammed, M., Zeilberger, D.: Sharp upper bounds for the orders of the recurrences outputted by the Zeilberger and \(q\)-Zeilberger algorithms. J. Symbolic Comput. 39, 201–207 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Paule, P., Riese, A.: A Mathematica \(q\)-analogue of Zeilberger’s algorithm based on an algebraically motivated approach to \(q\)-hypergeometric telescoping. In: Ismail, M.E.H., et al. (eds.) Fields Institute Communications, vol. 14, pp. 179–210. American Mathematical Society, Rhode Island (1997)

    Google Scholar 

  34. Paule, P., Schorn, M.: A Mathematica version of Zeilberger’s algorithm for proving binomial coefficient identities. J. Symbolic Comput. 20, 673–698 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  35. Petkovšek, M., Wilf, H., Zeilberger, D.: \(A=B\). AK Peters, Wellesley (1996)

    Google Scholar 

  36. Rainville, E.D.: Special Functions. The MacMillan Co., New York (1960)

    MATH  Google Scholar 

  37. Stölting, G.: Algorithmische Berechnung von Summen. Diploma thesis, Freie Universität Berlin (1996).

    Google Scholar 

  38. Todorov, P.: A simple proof of the Bieberbach conjecture. Bull. Cl. Sci., VI. Sér., Acad. R. Belg. 3 12, 335–356 (1992).

    Google Scholar 

  39. van der Poorten, A.: A proof that Euler missed. Apéry’s proof of the irrationality of \(\zeta (3)\). Math. Intelligencer 1, 195–203 (1978)

    Article  MathSciNet  Google Scholar 

  40. Vidunas, R.: Maple package infhsum. http://staff.science.uva.nl/thk/specfun/infhsum.mpl

  41. Vidunas, R.: A Generalization of Kummer’s Identity. Rocky Mountain J. Math. 32, 919–936 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  42. Weinstein, L.: The Bieberbach conjecture. Int. Math. Res. Not. 5, 61–64 (1991)

    Article  Google Scholar 

  43. Wilf, H.S.: A footnote on two proofs of the Bieberbach-de Branges theorem. Bull. London Math. Soc. 26, 61–63 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  44. Wilf, H.S., Zeilberger, D.: An algorithmic proof theory for hypergeometric (ordinary and “\(q\)”) multisum/integral identities. Invent. Math. 108, 575–633 (1992)

    Article  MathSciNet  Google Scholar 

  45. Wilson, J.A.: Some hypergeometric orthogonal polynomials. Siam J. Math. Anal. 11, 690–701 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  46. Xin-Rong, M., Tian-Ming, W.: Problem 95–1. SIAM Rev. 37, 98 (1995)

    Article  Google Scholar 

  47. Zeilberger, D.: A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 32, 321–368 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  48. Zeilberger, D.: A fast algorithm for proving terminating hypergeometric identities. Discrete Math. 80, 207–211 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  49. Zeilberger, D.: The method of creative telescoping. J. Symbolic Comput. 11, 195–204 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  50. Zeilberger, D.: A Maple program for proving hypergeometric identities. SIGSAM Bull. 25, 1–13 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Koepf .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Koepf, W. (2014). Zeilberger’s Algorithm. In: Hypergeometric Summation. Universitext. Springer, London. https://doi.org/10.1007/978-1-4471-6464-7_7

Download citation

Publish with us

Policies and ethics