Skip to main content

Introduction of Genes via Sonoporation and Electroporation

  • Chapter
  • First Online:
Anticancer Genes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 818))

Abstract

Gene therapy delivery using viral vectors has demonstrated efficient transfection but has safety issues. The need for safer yet effective delivery systems has led to the active development of non-viral techniques. In this chapter, we will discuss two evolving techniques – sonoporation with microbubble contrast agents and electroporation with focus on their basic principle, parameters affecting delivery efficiency, current evolving techniques and future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taniyama Y et al (2002) Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther 9:372–380

    CAS  PubMed  Google Scholar 

  2. Endoh M et al (2002) Fetal gene transfer by intrauterine injection with microbubble-enhanced ultrasound. Mol Ther 5:501–508

    CAS  PubMed  Google Scholar 

  3. Bao S et al (1997) Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol 23:953–959

    CAS  PubMed  Google Scholar 

  4. Taniyama Y et al (2002) Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation 105:1233–1239

    CAS  PubMed  Google Scholar 

  5. Miller DL, Song J (2003) Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo. Ultrasound Med Biol 29:887–893

    PubMed  Google Scholar 

  6. Sirsi SR et al (2012) Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors. J Control Release 157:224–234. doi:10.1016/j.jconrel.2011.09.071, Epub 17 Sept 2011

    CAS  PubMed  Google Scholar 

  7. Haag P et al (2006) Microbubble-enhanced ultrasound to deliver an antisense oligodeoxynucleotide targeting the human androgen receptor into prostate tumours. J Steroid Biochem Mol Biol 102:103–113, Epub 20 Oct 2006

    CAS  PubMed  Google Scholar 

  8. Escoffre JM et al (2013) In-vivo gene delivery by sonoporation: recent progress and prospects. Curr Gene Ther 13:2–14

    CAS  PubMed  Google Scholar 

  9. Huber PE et al (2003) Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery. Gene Ther 10:1600–1607

    CAS  PubMed  Google Scholar 

  10. Lu QL et al (2003) Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther 10:396–405

    CAS  PubMed  Google Scholar 

  11. Chen YC et al (2011) P85, Optison microbubbles and ultrasound cooperate in mediating plasmid DNA transfection in mouse skeletal muscles in vivo. Ultrason Sonochem 18:513–519. doi:10.1016/j.ultsonch.2010.08.013, Epub 21 Sept 2010

    CAS  PubMed  Google Scholar 

  12. Leong-Poi H et al (2007) Therapeutic arteriogenesis by ultrasound-mediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle. Circ Res 101:295–303, Epub 21 June 2007

    CAS  PubMed  Google Scholar 

  13. Escoffre J-M et al (2009) What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues. Mol Biotechnol 41:286–295

    CAS  PubMed  Google Scholar 

  14. Zemanek J (1970) Beam behavior within the nearfield of a vibrating piston. J Acoust Soc Am 49:181–191

    Google Scholar 

  15. Averkiou MA (2010) Notes on the acoustic field of focused and unfocused sources. Department of Mechanical and Manufacturing Engineering, University of Cyprus, Cyprus

    Google Scholar 

  16. Blackstock DT (2000) Fundamentals of physical acoustics. Wiley, New York

    Google Scholar 

  17. Meyer DE et al (2001) Drug targeting using thermally responsive polymers and local hyperthermia. J Control Release 74:213–224

    CAS  PubMed  Google Scholar 

  18. Kong G et al (2000) Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res 60:4440–4445

    CAS  PubMed  Google Scholar 

  19. Greenleaf WJ et al (1998) Artificial cavitation nuclei significantly enhance acoustically induced cell transfection. Ultrasound Med Biol 24:587–595

    CAS  PubMed  Google Scholar 

  20. Kim HJ et al (1996) Ultrasound-mediated transfection of mammalian cells. Hum Gene Ther 7:1339–1346

    CAS  PubMed  Google Scholar 

  21. Alter J et al (2009) Microbubble stability is a major determinant of the efficiency of ultrasound and microbubble mediated in vivo gene transfer. Ultrasound Med Biol 35:976–984

    PubMed  Google Scholar 

  22. Sirsi S, Borden M (2009) Microbubble compositions, properties and biomedical applications. Bubble Sci Eng Technol 1:3–17

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Averkiou M et al (2004) Pulsing schemes for the detection of nonlinear echoes from contrast microbubbles. The Netherlands: 9th European symposium on ultrasound contrast imaging, pp 17–24

    Google Scholar 

  24. Wei K et al (1998) Basis for detection of stenosis using venous administration of microbubbles during myocardial contrast echocardiography: bolus or continuous infusion? J Am Coll Cardiol 32:252–260

    CAS  PubMed  Google Scholar 

  25. Unger EC et al (2001) Local drug and gene delivery through microbubbles. Prog Cardiovasc Dis 44:45–54

    CAS  PubMed  Google Scholar 

  26. Sorace AG et al (2012) Microbubble-mediated ultrasonic techniques for improved chemotherapeutic delivery in cancer. J Drug Target 20:43–54, Epub 10 Oct 2011

    PubMed Central  PubMed  Google Scholar 

  27. Frenkel V (2008) Ultrasound mediated delivery of drugs and genes to solid tumors. Adv Drug Deliv Rev 60:1193–1208

    CAS  PubMed Central  PubMed  Google Scholar 

  28. SONODRUGS (2008) Deliverable: 1.1 first materials ready for ultrasound induced drug delivery in vitro. Available www.sonodrugs.eu/

  29. Huang S-L (2008) Liposomes in ultrasonic drug and gene delivery. Adv Drug Deliv Rev 60:1167–1176

    CAS  PubMed  Google Scholar 

  30. Schroeder A et al (2009) Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem Phys Lipids 162:1–16, Epub 22 Aug 2009

    CAS  PubMed  Google Scholar 

  31. Qin S et al (2009) Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys Med Biol 54:R27–R57. doi:10.1088/0031-9155/54/6/R01, Epub 19 Feb 2009

    PubMed Central  PubMed  Google Scholar 

  32. van Wamel A et al (2004) Radionuclide tumour therapy with ultrasound contrast microbubbles. Ultrasonics 42:903–906

    PubMed  Google Scholar 

  33. Lum AFH et al (2006) Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J Control Release 111:128–134

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Urban MW, Fatemi M, Greenleaf JF (2010) Modulation of ultrasound to produce multifrequency radiation force. J Acoust Soc Am 127(3):1228–1238, 20100324 DCOM- 20100617

    Google Scholar 

  35. Delalande A et al (2013) Sonoporation: mechanistic insights and ongoing challenges for gene transfer. Gene 6:00364–00368

    Google Scholar 

  36. Doinikov AA, Bouakaz A (2010) Acoustic microstreaming around an encapsulated particle. J Acoust Soc Am 127:1218–1227

    PubMed  Google Scholar 

  37. Kuliszewski MA et al (2011) Vascular gene transfer of SDF-1 promotes endothelial progenitor cell engraftment and enhances angiogenesis in ischemic muscle. Mol Ther 19:895–902. doi:10.1038/mt.2011.18, Epub 11 Mar 2011

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Wu J et al (2002) Reparable sonoporation generated by microstreaming. J Acoust Soc Am 111:1460–1464

    PubMed  Google Scholar 

  39. Liang HD, Tang J et al (2010) Sonoporation, drug delivery, and gene therapy. Proc Inst Mech Eng 224(2):343–361, 20100330 DCOM- 20100422

    Google Scholar 

  40. Mehier-Humbert S, Guy RH (2005) Physical methods for gene transfer: improving the kinetics of gene delivery into cells. Adv Drug Deliv Rev 57:733–753

    CAS  PubMed  Google Scholar 

  41. Tachibana K et al (1999) Induction of cell-membrane porosity by ultrasound. Lancet 353:1409

    CAS  PubMed  Google Scholar 

  42. Zhou Y et al (2009) The size of sonoporation pores on the cell membrane. Ultrasound Med Biol 35:1756–1760

    PubMed Central  PubMed  Google Scholar 

  43. Qiu Y et al (2012) Microbubble-induced sonoporation involved in ultrasound-mediated DNA transfection in vitro at low acoustic pressures. J Biomech 45:1339–1345

    PubMed  Google Scholar 

  44. Zhao YZ et al (2008) Phospholipids-based microbubbles sonoporation pore size and reseal of cell membrane cultured in vitro. J Drug Target 16:18–25

    PubMed  Google Scholar 

  45. Wilson SR, Burns PN (2010) Microbubble-enhanced US in body imaging: what role? Radiology 257:24–39

    PubMed  Google Scholar 

  46. Hou CC et al (2005) Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-beta signaling and fibrosis in rat remnant kidney. Am J Pathol 166:761–771

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Ramirez LH et al (1998) Electrochemotherapy on liver tumours in rabbits. Br J Cancer 77(12):2104

    Google Scholar 

  48. Miller DL et al (2008) Bioeffects considerations for diagnostic ultrasound contrast agents. J Ultrasound Med 27:611–632

    PubMed  Google Scholar 

  49. Shohet RV et al (2000) Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation 101:2554–2556

    CAS  PubMed  Google Scholar 

  50. Tsai KC et al (2009) Differences in gene expression between sonoporation in tumor and in muscle. J Gene Med 11:933–940

    CAS  PubMed  Google Scholar 

  51. Zhou Y et al (2011) Controlled permeation of cell membrane by single bubble acoustic cavitation. J Control Release 157:103–111

    PubMed Central  PubMed  Google Scholar 

  52. Yang F et al (2008) Experimental study on cell self-sealing during sonoporation. J Control Release 131:205–210

    CAS  PubMed  Google Scholar 

  53. Choi JJ et al (2011) Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles. Proc Natl Acad Sci 108:16539–16544

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Song J et al (2002) Influence of injection site, microvascular pressure and ultrasound variables on microbubble-mediated delivery of microspheres to muscle. J Am Coll Cardiol 39:726–731

    PubMed  Google Scholar 

  55. Pinto de Carvalho L et al (2007) Hydrodynamics- and ultrasound-based transfection of heart with naked plasmid DNA. Hum Gene Ther 18:1233–1243

    CAS  PubMed  Google Scholar 

  56. Brayman AA et al (1999) Transient poration and cell surface receptor removal from human lymphocytes in vitro by 1 MHz ultrasound. Ultrasound Med Biol 25:999–1008

    CAS  PubMed  Google Scholar 

  57. Guzman HR et al (2001) Ultrasound-mediated disruption of cell membranes. II. Heterogeneous effects on cells. J Acoust Soc Am 110:597–606

    CAS  PubMed  Google Scholar 

  58. Keyhani K et al (2001) Intracellular drug delivery using low-frequency ultrasound: quantification of molecular uptake and cell viability. Pharm Res 18:1514–1520

    CAS  PubMed  Google Scholar 

  59. Jordao JF et al (2010) Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer’s disease. PLoS One 5:e10549. doi:10.1371/journal.pone.0010549

    PubMed Central  PubMed  Google Scholar 

  60. Liao ZK et al (2011) Sonoporation-mediated anti-angiogenic gene transfer into muscle effectively regresses distant orthotopic tumors. Cancer Gene Ther 19:171–180

    PubMed  Google Scholar 

  61. Ka SM et al (2007) Smad7 gene therapy ameliorates an autoimmune crescentic glomerulonephritis in mice. J Am Soc Nephrol 18:1777–1788, Epub 2 May 2007

    CAS  PubMed  Google Scholar 

  62. Tinkov S et al (2010) New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: in-vivo characterization. J Control Release 148:368–372. doi:10.1016/j.jconrel.2010.09.004, Epub 2010 Sep 22., 2010

    CAS  PubMed  Google Scholar 

  63. Caskey CF et al (2007) Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall. J Acoust Soc Am 122:1191–1200

    CAS  PubMed  Google Scholar 

  64. Chen H et al (2011) Blood vessel deformations on microsecond time scales by ultrasonic cavitation. Phys Rev Lett 106:034301, Epub 18 Jan 2011

    PubMed Central  PubMed  Google Scholar 

  65. Dayton PA et al (2002) The magnitude of radiation force on ultrasound contrast agents. J Acoust Soc Am 112:2183–2192

    CAS  PubMed  Google Scholar 

  66. Caskey CF et al (2009) Microbubble tunneling in gel phantoms. J Acoust Soc Am 125:EL183–EL189

    PubMed Central  PubMed  Google Scholar 

  67. Arvanitis CD et al (2011) Cavitation-enhanced extravasation for drug delivery. Ultrasound Med Biol 37:1838–1852

    PubMed  Google Scholar 

  68. Meijering BD et al (2009) Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ Res 104:679–687. doi:10.1161/CIRCRESAHA.108.183806, Epub 22 Jan 2009

    CAS  PubMed  Google Scholar 

  69. Hauser J et al (2009) Ultrasound enhanced endocytotic activity of human fibroblasts. Ultrasound Med Biol 35:2084–2092

    PubMed  Google Scholar 

  70. Jelenc J et al (2012) Low-frequency sonoporation in vitro: experimental system evaluation. J Mech Eng 5:319–326

    Google Scholar 

  71. Cochran M, Wheatley MA (2013) In vitro gene delivery with ultrasound-triggered polymer microbubbles. Ultrasound Med Biol 39:1102–1119. doi:10.1016/j.ultrasmedbio.2013.01.013, Epub 3 Apr 2013

    PubMed Central  PubMed  Google Scholar 

  72. Qiu Y et al (2010) The correlation between acoustic cavitation and sonoporation involved in ultrasound-mediated DNA transfection with polyethylenimine (PEI) in vitro. J Control Release 145:40–48. doi:10.1016/j.jconrel.2010.04.010, Epub 14 Apr 2010

    CAS  PubMed  Google Scholar 

  73. Iwanaga K et al (2007) Local delivery system of cytotoxic agents to tumors by focused sonoporation. Cancer Gene Ther 14:354–363

    CAS  PubMed  Google Scholar 

  74. Miller DL, Averkiou MA et al (2008) Bioeffects considerations for diagnostic ultrasound contrast agents. J Ultrasound Med 27(4):611–632, 20080324 DCOM- 20080807

    Google Scholar 

  75. Hu X et al (2012) Insonation of targeted microbubbles produces regions of reduced blood flow within tumor vasculature. Invest Radiol 47:398–405

    PubMed Central  PubMed  Google Scholar 

  76. Chen Y-C et al (2011) Enhanced gene transduction into skeletal muscle of mice in vivo with pluronic block copolymers and ultrasound exposure. Cell Biochem Biophys 60:267–273

    CAS  PubMed  Google Scholar 

  77. Sakai T et al (2009) siRNA-mediated gene silencing in the salivary gland using in vivo microbubble-enhanced sonoporation. Oral Dis 15:505–511

    CAS  PubMed  Google Scholar 

  78. Mehier-Humbert S et al (2007) Ultrasound-mediated gene delivery: influence of contrast agent on transfection. Bioconjug Chem 18:652–662

    CAS  PubMed  Google Scholar 

  79. Sheyn D et al (2007) Ultrasound-based nonviral gene delivery induces bone formation in vivo. Gene Ther 15:257–266

    PubMed  Google Scholar 

  80. Kotopoulis S, Dimcevski G et al (2013) Treatment of human pancreatic cancer using combined ultrasound, microbubbles, and gemcitabine: a clinical case study. Med Phys 40(7):072902 20130704

    Google Scholar 

  81. Sirsi SR, Borden MA (2012) Advances in ultrasound mediated gene therapy using microbubble contrast agents. Theranostics 2:1208–1222. doi:10.7150/thno.4306, Epub 31 Dec 2012

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    CAS  Google Scholar 

  83. Kotnik T et al (2012) Cell membrane electroporation- part 1: the phenomenon. Electr Insul Mag IEEE 28:14–23

    Google Scholar 

  84. Rubinsky B (2010) Irreversible electroporation. Springer, Berlin

    Google Scholar 

  85. Garcia PA et al (2010) Intracranial nonthermal irreversible electroporation: in vivo analysis. J Membr Biol 236(1):127–136

    Google Scholar 

  86. Nickoloff JA (1995) Electroporation protocols for microorganisms. Humana Press, Totowa

    Google Scholar 

  87. Lee EW et al (2010) Irreversible electroporation: a novel image-guided cancer therapy. Gut Liver 4:S99–S104. doi:10.5009/gnl.2010.4.S1.S99, Epub 10 Sept 2010

    PubMed Central  PubMed  Google Scholar 

  88. Belehradek M et al (1993) Electrochemotherapy, a new antitumor treatment. First clinical phase I-II trial. Cancer 72:3694–3700

    CAS  PubMed  Google Scholar 

  89. Mir LM et al (1991) Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur J Cancer Clin Oncol 27:68–72

    CAS  Google Scholar 

  90. Gothelf A et al (2003) Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat Rev 29:371–387

    CAS  PubMed  Google Scholar 

  91. Heller LC, Heller R (2006) In vivo electroporation for gene therapy. Hum Gene Ther 17(9):890–897, 20060915 DCOM- 20061101

    Google Scholar 

  92. Zimmermann U et al (1980) Dielectric breakdown of cell membranes. Biophys Structure Mechanism 6:113

    Google Scholar 

  93. Neumann E, Kakorin S (2002) Digression on membrane electroporation for drug and gene delivery. Technol Cancer Res Treat 1(5):329–340, 20030310 DCOM- 20030501

    CAS  PubMed  Google Scholar 

  94. Gehl J (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177(4):437–447, 20030321 DCOM- 20030812

    CAS  PubMed  Google Scholar 

  95. Chang DC (1992) Structure and dynamics of electric field-induced membrane pores as revealed by rapid-freezing electron microscopy. In: Chang DC et al (eds) Guide to electroporation and electrofusion. Elsevier, San Diego, pp 9–27

    Google Scholar 

  96. Gehl J (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177:437–447

    CAS  PubMed  Google Scholar 

  97. Escoffre JM, Portet T et al (2009) What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues. Mol Biotechnol 41(3):286–295, 20090121 DCOM- 20090803

    CAS  PubMed  Google Scholar 

  98. Weaver J (1995) Electroporation theory. In: Nickoloff J (ed) Electroporation protocols for microorganisms, vol 47. Humana Press, Totowa, pp 1–26

    Google Scholar 

  99. Chen SW, Smye C et al (2006) Membrane electroporation theories: a review. Med Biol Eng Comput 44(1–2):5–14, 20060825 DCOM- 20070810

    CAS  PubMed  Google Scholar 

  100. Andre F, Mir LM (2004) DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Ther 11(Suppl 1):S33–S42, 20040929 DCOM- 20041217

    CAS  PubMed  Google Scholar 

  101. Kinosita K, Tsong TY (1977) Voltage-induced pore formation and hemolysis of human erythrocytes. Biochim Biophys Acta 471:227–242

    CAS  PubMed  Google Scholar 

  102. Rols MP, Teissie J (1990) Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys J 58:1089–1098

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Lee RC et al (1992) Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proc Natl Acad Sci U S A 89:4524–4528

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Chang DC, Reese TS (1990) Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys J 58(1):1–12

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Pothayee N et al (2012) Magnetic block ionomer complexes for potential dual imaging and therapeutic agents. Chem Mater 24:2056–2063

    CAS  Google Scholar 

  106. Teissie J, Rols MP (1993) An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys J 65:409–413

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Gabriel B, Teissie J (1997) Direct observation in the millisecond time range of fluorescent molecule asymmetrical interaction with the electropermeabilized cell membrane. Biophys J 73:2630–2637

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Tekle E et al (1990) Electro-permeabilization of cell membranes: effect of the resting membrane potential. Biochem Biophys Res Commun 172:282–287

    CAS  PubMed  Google Scholar 

  109. Hofmann GA, Dev SB et al (1999) Electroporation therapy of solid tumors. Crit Rev Ther Drug Carrier Syst 16(6):523–569, 20000308 DCOM- 20000308

    CAS  PubMed  Google Scholar 

  110. Smith LC, Nordstrom JL (2000) Advances in plasmid gene delivery and expression in skeletal muscle. Curr Opin Mol Ther 2(2):150–154, 20010315 DCOM- 20010412

    CAS  PubMed  Google Scholar 

  111. Sardesai NY, Fau, Weiner DB Electroporation delivery of DNA vaccines: prospects for success. 20110606 DCOM- 20110831

    Google Scholar 

  112. Sen A, Fau, Zhao YL et al Saturated anionic phospholipids enhance transdermal transport by electroporation. 20020926 DCOM- 20030311

    Google Scholar 

  113. Adeyanju OO, Al-Angari HM et al (2012) The optimization of needle electrode number and placement for irreversible electroporation of hepatocellular carcinoma. Radiol Oncol 46(2):126–135, 20121018 DCOM- 20121019

    PubMed Central  PubMed  Google Scholar 

  114. Wells DJ (2004) Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther 11(18):1363–1369, 20040901 DCOM- 20041223

    CAS  PubMed  Google Scholar 

  115. Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther 9(24)):1647–1652, 20021128 DCOM- 20030131

    CAS  PubMed  Google Scholar 

  116. Mehier-Humbert S, Guy RH (2005) Physical methods for gene transfer: improving the kinetics of gene delivery into cells. Adv Drug Deliv Rev 57(5):733–753, 20050310 DCOM- 20050721

    CAS  PubMed  Google Scholar 

  117. Zorec B et al (2013) Skin electroporation for transdermal drug delivery: the influence of the order of different square wave electric pulses. Int J Pharm 457:214–223

    CAS  PubMed  Google Scholar 

  118. Labanauskienė J et al (2009) Enhancement of photodynamic tumor therapy effectiveness by electroporation in vitro. Medicina (Kaunas) 45:372–377

    Google Scholar 

  119. Todorovic V, Sersa G et al (2013) Gene electrotransfer of siRNAs against CD146 inhibits migration and invasion of human malignant melanoma cells SK-MEL28. Cancer Gene Ther 20(3):208–210, 20130318 DCOM- 20130829

    CAS  PubMed  Google Scholar 

  120. Bigey P, Bureau MF et al (2002) In vivo plasmid DNA electrotransfer. Curr Opin Biotechnol 13(5):443–447, 20021202 DCOM- 20030312

    CAS  PubMed  Google Scholar 

  121. McMahon JM, Wells DJ (2004) Electroporation for gene transfer to skeletal muscles: current status. BioDrugs 18(3):155–165, 20040526 DCOM- 20040809

    CAS  PubMed  Google Scholar 

  122. Bloquel C, Fabre E et al (2004) Plasmid DNA electrotransfer for intracellular and secreted proteins expression: new methodological developments and applications. J Gene Med 6(Suppl 1):S11–S23, 20040223 DCOM- 20041007

    CAS  PubMed  Google Scholar 

  123. Li Y, Wang J et al (2010) A novel system for in vivo neprilysin gene delivery using a syringe electrode. J Neurosci Methods 193(2):226–231, 20101102 DCOM- 20110224

    CAS  PubMed  Google Scholar 

  124. Liu F, Huang L (2002) Electric gene transfer to the liver following systemic administration of plasmid DNA. Gene Ther 9(16):1116–1119, 20020725 DCOM- 20020916

    CAS  PubMed  Google Scholar 

  125. Dean DA, Machado-Aranda D et al (2003) Electroporation as a method for high-level nonviral gene transfer to the lung. Gene Ther 10(18):1608–1615, 20030808 DCOM- 20030917

    CAS  PubMed  Google Scholar 

  126. Tamura T, Nishi T et al (2003) Combination of IL-12 and IL-18 of electro-gene therapy synergistically inhibits tumor growth. Anticancer Res 23(2B):1173–1179, 20030624 DCOM- 20030725

    CAS  PubMed  Google Scholar 

  127. Kishida T, Asada H et al (2003) Electrochemo-gene therapy of cancer: intratumoral delivery of interleukin-12 gene and bleomycin synergistically induced therapeutic immunity and suppressed subcutaneous and metastatic melanomas in mice. Mol The 8:738–745, 20031105 DCOM- 20040123

    CAS  Google Scholar 

  128. Daud AI, DeConti RC et al (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26(36):5896–5903, 20081219 DCOM- 20090113

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Kasivisvanathan V, Thapar A et al (2012) Irreversible electroporation for focal ablation at the porta hepatis. Cardiovasc Intervent Radiol 35(6):1531–1534, 20121211 DCOM- 20130524

    PubMed  Google Scholar 

  130. Kingham TP et al (2012) Ablation of perivascular hepatic malignant tumors with irreversible electroporation. J Am Coll Surg 215:379–387

    PubMed  Google Scholar 

  131. Lee EW et al (2010) Advanced hepatic ablation technique for creating complete cell death: irreversible electroporation. Radiology 255:426–433

    PubMed  Google Scholar 

  132. Martin RG II et al (2012) Irreversible electroporation in locally advanced pancreatic cancer: potential improved overall survival. Ann Surg Oncol 20:1–7

    Google Scholar 

  133. Pech M, Janitzky A et al (2011) Irreversible electroporation of renal cell carcinoma: a first-in-man phase I clinical study. Cardiovasc Intervent Radiol 34(1):132–138, 20110113 DCOM- 20110602

    PubMed  Google Scholar 

  134. Roche JA, Ford-Speelman DL et al (2011) Physiological and histological changes in skeletal muscle following in vivo gene transfer by electroporation. Am J Physiol Cell Physiol 301(5):C1239–C1250, 20111027 DCOM- 20111227

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Leen M.D., F.R.C.R .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Kalli, C., Teoh, W.C., Leen, E. (2014). Introduction of Genes via Sonoporation and Electroporation. In: Grimm, S. (eds) Anticancer Genes. Advances in Experimental Medicine and Biology, vol 818. Springer, London. https://doi.org/10.1007/978-1-4471-6458-6_12

Download citation

Publish with us

Policies and ethics