Mathematical Modelling

  • Jenny M. JonesEmail author
  • Amanda R. Lea-Langton
  • Lin Ma
  • Mohamed Pourkashanian
  • Alan Williams
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Modelling of biomass combustion using Computational Fluid Dynamics (CFD) is covered in the chapter. The Reynolds-Averaged Navier-Stokes equations are outlined as well as turbulence-chemistry interactions. Modelling pulverised biomass particle combustion is outlined including the sub-models. These are particle motion, heat transfer, devolatilisation and char combustion. Modelling pulverised fuel co-firing in power stations is next considered using the methods outlined previously. Modelling fixed and fluidised bed combustion is then described. The application of these methods to model the emission of nitrogen and sulphur oxide emissions and aerosol pollutants is outlined.


Combustion modelling techniques Pollutant formation Metal aerosols 


  1. Abbas T, Costen P, Kandamby NH, Lockwood FC, Ou JJ (1994) The influence of burner injection mode on pulverized coal and biomass cofired flames. Combust Flame 99:617–625CrossRefGoogle Scholar
  2. Andersson B, Andersson R, Hakansson LH, Mortensen M, Sudiyo R, van Wachem B (2012) Computational fluid dynamics for engineers. Cambridge University Press, CambridgezbMATHGoogle Scholar
  3. ANSYS FLUENT (2014) ANSYS Inc., USAGoogle Scholar
  4. Backreedy RI, Fletcher L, Jones JM, Ma L, Pourkashanian M, Williams A (2005) Co-firing pulverised coal and biomass: a modelling approach. Proc Combust Inst 30:2955–2964CrossRefGoogle Scholar
  5. Bhaskar Dixit CS, Paul PJ, Mukunda HS (2006) Part I: experimental studies on a pulverised fuel stove. Biomass Bioenergy 30:673–683CrossRefGoogle Scholar
  6. Black S, Szuhánszki J, Pranzitelli A, Ma L, Stanger PJ, Ingham DB, Pourkashanian M (2013) Effects of firing coal and biomass under oxy-fuel conditions in a power plant boiler using CFD modelling. Fuel 113:780–786CrossRefGoogle Scholar
  7. Chemkin (2014) Reaction design.
  8. Chung TJ (2002) Computational fluid dynamics. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  9. Dhanaplan S, Annamalai K, Daripa P (1997) Turbulent combustion modelling coal: biosolid blends in a swirl burner. Energy Week vol IV, ETCE, ASME, Jan 1997, pp 415–423Google Scholar
  10. Eriksson AC, Nordin EZ, Nyström R, Pettersson E, Swietlicki E, Bergvall C, Westerholm R, Boman C, Pagels JH (2014) Particulate PAH emissions from residential biomass combustion: time-resolved analysis with aerosol mass spectrometry. Environ Sci Technol 48:7143–7150CrossRefGoogle Scholar
  11. Galgano A, Di Blasi C, Horvat A, Sinai Y (2006) Experimental validation of a coupled solid- and gas-phase model for combustion and gasification of wood logs. Energy Fuels 20:2223–2232CrossRefGoogle Scholar
  12. Garba MU, Ingham DB, Ma L, Porter RTJ, Pourkashanian M, Williams A, Tan HZ (2012) Prediction of potassium chloride sulfation and its effect on deposition in biomass-fired boilers. Energy Fuels 26:6501–6508Google Scholar
  13. Gera D, Mathur MP, Freeman MC, Robinson A (2002) Effect of large aspect ratio of biomass particles on carbon burnout in a utility boiler. Energy Fuels 16:1523–1532CrossRefGoogle Scholar
  14. Glarborg P, Marshall P (2005) Mechanism and modeling of the formation of gaseous alkali sulfates. Combust Flame 141:22–39CrossRefGoogle Scholar
  15. Hagen DE, Kassner JL Jr (1984) Homogeneous nucleation rate for water. J Chem Phys 81:1416–1418CrossRefGoogle Scholar
  16. Huttunen M, Saastamoinen J, Kilpinen P, Kjaldman L, Oravainen H, Bostrom S (2006a) Emission formation during wood log combustion in fireplaces—part I: volatile combustion stage. Prog Comput Fluid Dyn 6:200–208CrossRefzbMATHGoogle Scholar
  17. Huttunen M, Saastamoinen J, Kilpinen P, Kjaldman L, Oravainen H, Bostrom S (2006b) Emission formation during wood log combustion in fireplaces—part II: char combustion stage. Prog Comput Fluid Dyn 6:209–216CrossRefzbMATHGoogle Scholar
  18. Jöller M, Brunner T, Obernberger I (2007) Modeling of aerosol formation during biomass combustion for various furnace and boiler types. Fuel Process Technol 88:1136–1147CrossRefGoogle Scholar
  19. Kaer SK, Rosendahl L, Overgaard P (1998) Numerical analysis of co-firing coal and straw. In: Proceedings of the 4th European CFD conference, Athens, Greece, 7–11 Sept 1998, 1194–1199Google Scholar
  20. Kausley SB, Pandit AB (2010) Modelling of solid fuel stoves. Fuel 89:782–791CrossRefGoogle Scholar
  21. Klason T, Bai XS (2007) Computational study of the combustion process and NO formation in a small-scale wood pellet furnace. Fuel 86:1465–1474CrossRefGoogle Scholar
  22. Ma L, Jones JM, Pourkashanian M, Williams A (2007) Modelling the combustion of pulverized biomass in an industrial combustion test furnace. Fuel 86:1959–1965CrossRefGoogle Scholar
  23. Mehrabian R, Zahirovic S, Scharler R, Obernberger I, Kleditzsch S, Wirtz S, Scherer V, Lu H, Baxter LL (2012) A CFD model for thermal conversion of thermally thick biomass particles. Fuel Process Technol 95:96–108CrossRefGoogle Scholar
  24. Mehrabian R, Shiehnejadhesar A, Scharler R, Obernberger I (2014) Multi-physics modelling of packed bed biomass combustion. Fuel 122:164–178CrossRefGoogle Scholar
  25. Ndiema CKW, Mpendazoe FM, Williams A (1998) Emission of pollutants from a biomass stove. Energy Convers Manag 39:1357–1367CrossRefGoogle Scholar
  26. Saastamoinen JJ, Taipale R, Horttanainen M, Sarkomaa P (2000) Propagation of the ignition front in beds of wood particles. Combust Flame 123:214–226CrossRefGoogle Scholar
  27. Sami M, Annamalai K, Wooldridge M (2001) Co-firing of coal and biomass fuel blends. Prog Energy Combust Sci 27:171–214CrossRefGoogle Scholar
  28. van Loo S, Koppejan J (eds) (2008) The handbook of biomass combustion and co-firing, Earthscan, Washington, DCGoogle Scholar
  29. Wendt JF (ed) (2009) Computational fluid dynamics: an introduction, 3rd edn. Springer, BerlinGoogle Scholar
  30. Williams A, Pourkashanian M, Jones JM (2001) Combustion of pulverised coal and biomass. Prog Energy Combust Sci 27:587–610CrossRefGoogle Scholar
  31. Yang YB, Ryu C, Khor A, Yates NE, Sharifi VN, Swithenbank J (2005) Effect of fuel properties on biomass combustion Part II. Modelling approach-identification of the controlling factors. Fuel 84:2116–2130CrossRefGoogle Scholar
  32. Yin C, Rosendahl LA, Kaer SK (2008) Grate-firing of biomass for heat and power production. Prog Energy Combust Sci 34:725–754CrossRefGoogle Scholar
  33. Yin C, Kaer SK, Rosendahl L, Hvid SL (2010) Co-firing straw with coal in a swirl-stabilized dual-feed burner: modelling and experimental validation. Bioresour Technol 101:4169–4178CrossRefGoogle Scholar
  34. Zhou H, Jensen AD, Glarborg P, Jensen PA, Kavaliauskas A (2005) Numerical modeling of straw combustion in a fixed bed. Fuel 84:389–403CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Jenny M. Jones
    • 1
    Email author
  • Amanda R. Lea-Langton
    • 1
  • Lin Ma
    • 2
  • Mohamed Pourkashanian
    • 2
  • Alan Williams
    • 2
  1. 1.Energy Research InstituteUniversity of LeedsLeedsUK
  2. 2.Energy Technology and Innovation InitiativeUniversity of LeedsLeedsUK

Personalised recommendations