Skip to main content

Energy Sustainability Evaluation of Anaerobic Digestion

  • Chapter
  • First Online:
BioH2 & BioCH4 Through Anaerobic Digestion

Part of the book series: Green Energy and Technology ((GREEN))

  • 1474 Accesses

Abstract

In the present chapter, the energy sustainability of anaerobic digestion (AD) technology is discussed. A procedure in three steps is described and then applied to AD. The suggested procedure can help in local planning, in allocation financial resources for the exploitation of new energy processes as well as in selecting the most sustainable choice of several research programs from an energetic point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Ruggeri, S. Sanfilippo, T. Tommasi, Sustainability of (H2+CH4) by anaerobic digestion via EROI approach and LCA evaluations, in Life Cycle Assessment of Renewable Energy Sources, ed. by A. Singh, D. Pant, S.I. Olsen (Springer, New York, 2013), pp. 169–194

    Google Scholar 

  2. L.T. Angenent, K. Karim, M.H. Al-Dahhan, R. Domiguez-Espinosa, Production of bioenergy and biochemicals from industrial and agricultures waste water. Trends Biotechnol. 22(9), 477–485 (2004)

    Article  Google Scholar 

  3. G. Evans, Biowaste and Biological Waste Treatment (James and James Science Publishers, London, 2001)

    Google Scholar 

  4. J.T. Pfeffer, J.C. Liebman, Energy from refuse by bioconversion, fermentation and residue disposal processes. Resour. Recovery Conserv. 1(3), 295–313 (1976)

    Article  Google Scholar 

  5. G. Guéhenneux, P. Baussand, M. Brothier, C. Poletiko, G. Boissonnet, Energy production from biomass pyrolysis: a new coefficient of pyrolytic valorization. Fuel 84(6), 733–739 (2005)

    Article  Google Scholar 

  6. B.E. Logan, Microbial Fuel Cells (Wiley, Hoboken, 2008)

    Google Scholar 

  7. P. Aelterman, K. Rabaey, P. Clauwaert, W. Verstraete, Microbial fuel cell for wastewater treatment. Water Sci. Technol. 54, 9–15 (2006)

    Article  Google Scholar 

  8. E. Sentimenti, U. Biorgi, Energia ed economia. Tpoint Eni Tecnologie 8(2), 22–26 (2006)

    Google Scholar 

  9. C.J. Cleveland, R. Costanza, C.A.S. Hall, R. Kaufmann, Comparing different energy processes from energy and the U.S. economy: a biophysical perspective. Science 225, 890–897 (1984)

    Article  Google Scholar 

  10. G.D. Najafpour, Bioprocess scale-up, in Biochemical Engineering and Biotechnology (Elsevier, Amsterdam, 2007), pp. 287–330

    Google Scholar 

  11. R.E. Mejìas, in Optimization of biogas production in two-stage anaerobic fermentation of organic waste market using alkaline pretreatment. Master of science thesis, Politecnico di Torino, Turin, Italy (2013)

    Google Scholar 

  12. G. Rametta, in Verifica sperimentale della valorizzazione energetic dei rifiuti mercatali mediante fermentazione anaerobica bistadio. Master of science thesis, Politecnico di Torino, Turin, Italy (2013)

    Google Scholar 

  13. B. Ruggeri, F. Battista, M. Bernardi, D. Fino, G. Mancini, The selection of pretreatment options for anaerobic digestion (AD): a case study in olive oil waste production. Chem. Eng. J. 259, 630–639 (2015)

    Article  Google Scholar 

  14. The Ecoinvent Database, http://www.ecoinvent.org/database. Accessed 27 Feb 2014

  15. P.P. Franzese, T. Rydberg, G.F. Russo, S. Ulgiati, Sustainable biomass production: a comparison between gross energy requirement and energy synthesis methods. Ecol. Ind. 9, 959–970 (2009)

    Article  Google Scholar 

  16. S. Sanfilippo, B. Ruggeri, LCA Alimentazione: stima del consumo energetico per la produzione, il trasporto e la preparazione del cibo in Italia. La Rivista di Scienza dell’Alimentazione 38(4), 1–16 (2009)

    Google Scholar 

  17. Product ecology consultants, SimaPro 7.2.4 Software. Pré Consultants, Amersfoort, The Netherlands (2010)

    Google Scholar 

  18. D.J. Murphy, C.A.S. Hall, M. Dale, C. Cleveland, Order for chaos: a preliminary protocol for determining the EROI of fuels. Sustainability 3, 1888–1907 (2011)

    Article  Google Scholar 

  19. Agenzia Servizi Settore Agroalimentare delle Marche, La filiera del biogas, http://www.laboratoriobiomasse.it/media/docs/downloads/103-1.pdf. Accessed 17 Oct 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Ruggeri .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Ruggeri, B., Tommasi, T., Sanfilippo, S. (2015). Energy Sustainability Evaluation of Anaerobic Digestion. In: BioH2 & BioCH4 Through Anaerobic Digestion. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-6431-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6431-9_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6430-2

  • Online ISBN: 978-1-4471-6431-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics