Hydrogen Production from Biowaste

  • Bernardo Ruggeri
  • Tonia Tommasi
  • Sara Sanfilippo
Part of the Green Energy and Technology book series (GREEN)


In this chapter the feasibility of hydrogen production from organic waste (OW) is highlighted. Possible sources are the residue of municipal solid waste (MSW) sorting by mechanical/physical treatment, the OW separately collected from households and the waste produced along the entire food production chain.


Municipal Solid Waste Anaerobic Digestion Hydrogen Production Organic Waste Food Waste 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.E.H. Sims, The Brilliance of Bioenergy, in Business and in Practise (James and James Press, London, 2002)Google Scholar
  2. 2.
    G. Evans, Biowaste and Biological Waste Treatment (James and James Press, London, 2001)Google Scholar
  3. 3.
    D.M. Mousdale, Biofuels-Biotechnology, Chemistry and Sustainable Development (CRC Press, Boca Raton, FL, 2008)Google Scholar
  4. 4.
    H. Röper, Perspektiven der industriellen Nutzung nachwachsender Rohstoffe, insbesondere von Stärke und Zucker. Mitt Fachgruppe Umweltchem Ökotoxikol Ges Dtsch Chemie 7(2), 6–12 (2001)Google Scholar
  5. 5.
    N. Mosier, C. Wyman, B. Dale, R. Elander, Y.Y. Lee, M. Holtzapple, M. Ladisch, Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96(6), 673–686 (2005)CrossRefGoogle Scholar
  6. 6.
    L.T. Fan, Y. Lee, D.H. Beardmore, Mechanism of the enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol. Bioeng. 22(1), 177–199 (1980)CrossRefGoogle Scholar
  7. 7.
    C.E. Wyman, Handbook on Bioethanol: Production and Utilization, Applied Energy Technology Series (CRC Press, Taylor and Francis, Washington DC, 1996)Google Scholar
  8. 8.
    L. Zhu, J.P. O’Dwyer, V.S. Chang, C.B. Granda, M.T. Holtzapple, Structural features affecting biomass enzymatic digestibility. Bioresour. Technol. 99(19), 3817–3828 (2008)Google Scholar
  9. 9.
    A. Berlin, M. Balakshin, N. Gilkes, J. Kadla, V. Maximenko, S. Kubo, J. Saddler, Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. J. Biotechnol. 125(2), 198–209 (2006)CrossRefGoogle Scholar
  10. 10.
    B. Ruggeri, M. Bernardi, T. Tommasi, On the pretreatment of municipal organic waste towards fuel production: a review. Int. J. Environ. Pollut. 49, 226–250 (2012)CrossRefGoogle Scholar
  11. 11.
    C.E. Wyman, Handbook on Bioethanol: Production and Utilization (CRC Press, Boca Raton, FL, 1996)Google Scholar
  12. 12.
    Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production. Bioresour. Technol. 83, 1–11 (2002)CrossRefGoogle Scholar
  13. 13.
    W.R. Grous, A.O. Converse, H.E. Grethlein, Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzym. Microb. Technol. 8(5), 274–280 (1986)CrossRefGoogle Scholar
  14. 14.
    T.A. Clark, K.L. Mackie, Steam Explosion of the Softwood Pinus Radiata with sulphur dioxide addition. I. Process optimization. J. Wood Chem. Technol. 7(3), 373–403 (1987)CrossRefGoogle Scholar
  15. 15.
    O.E. Solheim, Method of and arrangement for continuous hydrolysis of organic material. US Patent 0,168,990 (2004)Google Scholar
  16. 16.
    J. Kim, C. Park, T.H. Kim, M. Lee, S. Kim, S.W. Kim, J. Lee, Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 95, 271–275 (2003)CrossRefGoogle Scholar
  17. 17.
    V.P. Puri, H. Mamers, Explosive pretreatment of lignocellulosic residues with High-pressure Carbon dioxide for the production of fermentation substrates. Biotechnol. Bioeng. 25, 3149–3161 (1983)CrossRefGoogle Scholar
  18. 18.
    W.P. Xiao, W.W. Clarkson, Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation 8, 61–66 (1997)CrossRefGoogle Scholar
  19. 19.
    T. Jeoh, C.I. Ishizawa, M.F. Davis, M.E. Himmel, W.S. Adney, D.K. Johnson, Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Bioeng. 98(1), 112–122 (2007)CrossRefGoogle Scholar
  20. 20.
    L.T. Fan, M.M. Gharpuray, Y.H. Lee, Cellulose Hydrolysis Biotechnology (Monographs Springer, Berlin, 1987)CrossRefGoogle Scholar
  21. 21.
    M. Beccari, M. Majone, M.P. Papini, L. Torrisi, Enhancement of anaerobic treatability of olive oil mill effluents by addition of Ca(OH)2 and bentonite without intermediate solid/liquid separation. Water Sci. Technol. 43, 275–282 (2001)Google Scholar
  22. 22.
    S. Ghosh, M.P. Henry, A. Sajjad, M.C. Mensiger, J.L. Arora, Pilot-scale gasification of municipal solid wastes by high-rate and two-phase anaerobic digestion (TPAD). Water Sci. Technol. 41(3), 101–110 (2000)Google Scholar
  23. 23.
    N.H.M. Yasin, T. Mumtaz, M.A. Hassan, N.A.A. Rahman, Food waste and food processing waste for biohydrogen production: a review. J. Environ. Manage. 130, 375–385 (2013)CrossRefGoogle Scholar
  24. 24.
    G. De Gioannis, A. Muntoni, A. Polettini, R. Pomi, A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manag. 33, 1345–1361 (2013)CrossRefGoogle Scholar
  25. 25.
    K. Vijayaraghavan, D. Ahmad, M.K. Ibrahim, Biohydrogen generation from jackfruit peel using anaerobic contact filter. Int. J. Hydrogen Energy 31, 569–579 (2006)CrossRefGoogle Scholar
  26. 26.
    S.W. Van Ginkel, S.E. Oha, B.E. Logan, Biohydrogen gas production from food processing and domestic wastewaters. Int. J. Hydrogen Energy 30, 1535–1542 (2005)CrossRefGoogle Scholar
  27. 27.
    S.K. Han, H.S. Shin, Biohydrogen production by anaerobic fermentation of food waste. Int. J. Hydrogen Energy 29, 569–577 (2004)CrossRefGoogle Scholar
  28. 28.
    N.Q. Ren, J.Z. Li, B.K. Li, Y. Wang, S.R. Liu, Biohydrogen production from molasses by anaerobic fermentation with a pilot scale bioreactor system. Int. J. Hydrogen Energy 31, 2147–2157 (2006)CrossRefGoogle Scholar
  29. 29.
    H.H.P. Fang, C.L. Li, T. Zhang, Acidophilic biohydrogen production from rice slurry. Int. J. Hydrogen Energy 31, 683–692 (2006)CrossRefGoogle Scholar
  30. 30.
    Y. Akutsu, D.Y. Lee, Y.Y. Li, T. Noike, Hydrogen production potential and fermentative characteristics of various substrates with different heat-pretreated natural microflora. Int. J. Hydrogen Energy 34, 5365–5372 (2009)CrossRefGoogle Scholar
  31. 31.
    M. Cui, Z. Yuan, X. Zhi, J. Shen, Optimization of biohydrogen production from beer lees using anaerobic mixed bacteria. Int. J. Hydrogen Energy 34, 7971–7978 (2009)CrossRefGoogle Scholar
  32. 32.
    E. Castello, C. Garcia y Santos, T. Iglesias, G. Paolino, J. Wenzel, L. Borzacconi, C. Etchebehere, Feasibility of biohydrogen production from cheese whey using a UASB: links between microbial community and reactor performance, Int. J. Hydrogen Energy 34, 5674–5682 (2009)Google Scholar
  33. 33.
    S. Jayalakshmi, K. Joseph, V. Sukumaran, Biohydrogen generation from kitchen waste in an inclined plug flow reactor. Int. J. Hydrogen Energy 34, 8854–8858 (2009)CrossRefGoogle Scholar
  34. 34.
    X. Wu, J. Zhu, C. Dong, C. Miller, Y. Li, L. Wang, W. Yao, Continuous biohydrogen production from liquid swine manure supplemented with glucose using an anaerobic sequencing batch reactor. Int. J. Hydrogen Energy 34, 6636–6645 (2009)CrossRefGoogle Scholar
  35. 35.
    K. Vijayaraghavan, D. Ahmad, Biohydrogen generation from palm oil effluent using anaerobic contact filter. Int. J. Hydrogen Energy 31, 1284–1291 (2006)CrossRefGoogle Scholar
  36. 36.
    B. Ruggeri, T. Tommasi, Efficiency and efficacy of pretreatment and bioreaction for bio-H2 energy production from organic waste. Int. J. Hydrogen Energy 37, 6491–6502 (2012)CrossRefGoogle Scholar
  37. 37.
    INRAN, Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione. Accessed 15 Oct 2014
  38. 38.
    B. Ruggeri, A.C. Luongo Malave, M. Bernardi, D. Fino, Energy efficacy used to score organic refuse pretreatment processes for hydrogen anaerobic production. Waste Manage. 33, 2225–2233 (2013)Google Scholar
  39. 39.
    I. Del Campo, I. Alegría, M. Zazpe, M. Echeverría, I. Echeverría, Diluted acid hydrolysis pretreatment of agri-food wastes for bioethanol production. Ind. Crops Prod. 24(3), 214–221 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Bernardo Ruggeri
    • 1
  • Tonia Tommasi
    • 2
  • Sara Sanfilippo
    • 1
  1. 1.Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
  2. 2.Center for Space Human RoboticsIstituto Italiano di TecnologiaTurinItaly

Personalised recommendations