The Dirichlet Problem

  • Lester L. HelmsEmail author
Part of the Universitext book series (UTX)


In this chapter, approximation of solutions of Laplace’s equation requires the study of sequences of harmonic functions, making use of the integral representations and averaging properties of harmonic functions. The latter property is used to incorporate a larger class of functions called superharmonic functions that are used to approximate solutions. Such approximate solutions culminate in Wiener’s theorem that associates with each continuous boundary function a solution of the Dirichlet problem. Theorems due to Poincaré and Zaremba ensure that a solution will take on the prescribed boundary value at points of the boundary.


Superharmonic Function Harmonic Functions Regular Boundary Point Lebesgue Monotone Convergence Theorem Positive Surface Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Royden, H.L.: Real Analysis, 3rd edn. Macmillan Publishing Co., New York (1988)zbMATHGoogle Scholar
  2. 2.
    Weyl, H.: The method of orthoganol projections in potential theory. Duke Math. J. 7, 411–444 (1940)Google Scholar
  3. 3.
    Pinsky, M.A.: Partial Differrential Equations and Boundary Value Problems with Applications, McGraw- Hill, New York (1998)Google Scholar
  4. 4.
    Littlewood, J.E.: Mathematical notes (8): On functions subharmonic in a circle (ii). Proc. London Math. Soc. 2, 383–394 (1928)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Riesz, F.: Sur les fonctions subharmoniques et leur rapport à la theéorie du potentiel. Acta Math. 54, 321–360 (1930)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Privalov, N.: On a boundary problem of subharmonic functions. Mat. Sb. 41, 3–10 (1934)zbMATHGoogle Scholar
  7. 7.
    Privalov, N.: Boundary problems of the theory of harmonic and subharmonic functions in space. Mat. Sb. 45, 3–25 (1938)Google Scholar
  8. 8.
    Dunford, N., Schwartz, J.T.: Linear Operators, Part I. General Theory. Interscience, New York (1958)Google Scholar
  9. 9.
    Fatou, P.: Séries trignométriques et séries de Taylor. Acta Math. 30, 335–400 (1906)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Brelot, M.: Familles de Perron et problème de Dirichlet. Acta Sci. Math. (Szeged) 9, 133–153 (1939)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.University of IllinoisUrbanaUSA

Personalised recommendations