Nutrition in the PICU

  • Nilesh Mehta


Nutritional therapy is recognized as an important cornerstone in the management of the critically ill child. However, optimal nutrient delivery in the PICU is challenging and results in nutritional deterioration and negatively impacts on clinical outcomes. There is increasing evidence that energy and protein intake in the PICU are far lower than their estimated requirement during critical illness. Recent data show an association between decreased macronutrient intake and mortality in mechanically ventilated children. Hence, optimal energy and protein intake in the PICU needs to be prioritized.

Enteral nutrition (EN) is the preferred mode of feeding in the PICU. Current evidence suggests benefit of early initiation of EN, followed by rapid advancement using a protocolized strategy and subsequent maintenance of uninterrupted EN. While the gastric route is preferred, patients at risk of aspiration or those who have failed gastric feeding may benefit from transpyloric feeding in centers with available resources and expertise. The role of routine prokinetics in the PICU is unclear. EN is probably safe in hemodynamically stable patients on a single vasopressor agent. Both avoidable and unavoidable barriers to EN exist, and need to be addressed by multidisciplinary commitment. Immunonutrition has been inadequately studied in critically ill children, and its role needs further clarification with the help of well-designed clinical trials. In the current era of limited evidence base for most nutrition practices, uniform consensus based strategies might be prudent. Protocols that provide guidelines for early initiation, rapid advancement and maintenance of EN in the PICU have been shown to improve the ability to reach nutrition goals and their use is associated with improved clinical outcomes. Future studies must examine strategies to optimize EN, improve protein intake to preserve lean body mass, role of supplementary PN, and clarify the role of immunontrition in the PICU.


Nutrition Enteral Parenteral Energy Protein Outcomes Immunonutrition 


  1. 1.
    Leite HP, Isatugo MK, Sawaki L, Fisberg M. Anthropometric nutritional assessment of critically ill hospitalized children. Rev Paul Med. 1993;111(1):309–13.PubMedGoogle Scholar
  2. 2.
    Merritt RJ, Suskind RM. Nutritional survey of hospitalized pediatric patients. Am J Clin Nutr. 1979;32(6):1320–5.PubMedGoogle Scholar
  3. 3.
    Pollack MM, Wiley JS, Kanter R, Holbrook PR. Malnutrition in critically ill infants and children. JPEN J Parenter Enteral Nutr. 1982;6(1):20–4.CrossRefPubMedGoogle Scholar
  4. 4.
    Hulst J, Joosten K, Zimmermann L, et al. Malnutrition in critically ill children: from admission to 6 months after discharge. Clin Nutr. 2004;23(2):223–32.CrossRefPubMedGoogle Scholar
  5. 5.
    Mehta NM, Bechard LJ, Leavitt K, Duggan C. Cumulative energy imbalance in the pediatric intensive care unit: role of targeted indirect calorimetry. JPEN J Parenter Enteral Nutr. 2009;33(3):336–44.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chima CS, Barco K, Dewitt ML, Maeda M, Teran JC, Mullen KD. Relationship of nutritional status to length of stay, hospital costs, and discharge status of patients hospitalized in the medicine service. J Am Diet Assoc. 1997;97(9):975–8. quiz 979–980.CrossRefPubMedGoogle Scholar
  7. 7.
    Pollack MM, Ruttimann UE, Wiley JS. Nutritional depletions in critically ill children: associations with physiologic instability and increased quantity of care. JPEN J Parenter Enteral Nutr. 1985;9(3):309–13.CrossRefPubMedGoogle Scholar
  8. 8.
    Lohman TG, Roche AF, Martdroll R. Anthropometrics standardization reference manual. Champaign: Human Kinetics Books; 1988.Google Scholar
  9. 9.
    Deane A, Chapman MJ, Fraser RJ, Bryant LK, Burgstad C, Nguyen NQ. Mechanisms underlying feed intolerance in the critically ill: implications for treatment. World J Gastroenterol. 2007;13(29):3909–17.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Heyland DK, Dhaliwal R, Jiang X, Day AG. Identifying critically ill patients who benefit the most from nutrition therapy: the development and initial validation of a novel risk assessment tool. Crit Care. 2011;15(6):R268.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hulst JM, Zwart H, Hop WC, Joosten KF. Dutch national survey to test the STRONGkids nutritional risk screening tool in hospitalized children. Clin Nutr. 2010;29(1):106–11.CrossRefPubMedGoogle Scholar
  12. 12.
    Gerasimidis K, Keane O, Macleod I, Flynn DM, Wright CM. A four-stage evaluation of the Paediatric Yorkhill Malnutrition Score in a tertiary paediatric hospital and a district general hospital. Br J Nutr. 2010;104(5):751–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Kelleher DK, Laussen P, Teixeira-Pinto A, Duggan C. Growth and correlates of nutritional status among infants with hypoplastic left heart syndrome (HLHS) after stage 1 Norwood procedure. Nutrition. 2006;22(3):237–44.CrossRefPubMedGoogle Scholar
  14. 14.
    Hart DW, Wolf SE, Mlcak R, et al. Persistence of muscle catabolism after severe burn. Surgery. 2000;128(2):312–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Rutan RL, Herndon DN. Growth delay in postburn pediatric patients. Arch Surg. 1990;125(3):392–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Menezes FD, Leite HP, Nogueira PC. Malnutrition as an independent predictor of clinical outcome in critically ill children. Nutrition. 2012;28(3):267–70. doi: 10.1016/j.nut.2011.05.015.CrossRefGoogle Scholar
  17. 17.
    Gore DC, Rutan RL, Hildreth M, Desai MH, Herndon DN. Comparison of resting energy expenditures and caloric intake in children with severe burns. J Burn Care Rehabil. 1990;11(5):400–4.CrossRefPubMedGoogle Scholar
  18. 18.
    Mehta NM, Bechard LJ, Leavitt K, Duggan C. Severe weight loss and hypermetabolic paroxysmal dysautonomia following hypoxic ischemic brain injury: the role of indirect calorimetry in the intensive care unit. JPEN J Parenter Enteral Nutr. 2008;32(3):281–4.CrossRefPubMedGoogle Scholar
  19. 19.
    Fung EB. Estimating energy expenditure in critically ill adults and children. AACN Clin Issues. 2000;11(4):480–97.CrossRefPubMedGoogle Scholar
  20. 20.
    McCall M, Jeejeebhoy K, Pencharz P, Moulton R. Effect of neuromuscular blockade on energy expenditure in patients with severe head injury. JPEN J Parenter Enteral Nutr. 2003;27(1):27–35.CrossRefPubMedGoogle Scholar
  21. 21.
    Oosterveld MJ, Van Der Kuip M, De Meer K, De Greef HJ, Gemke RJ. Energy expenditure and balance following pediatric intensive care unit admission: a longitudinal study of critically ill children. Pediatr Crit Care Med. 2006;7(2):147–53.CrossRefPubMedGoogle Scholar
  22. 22.
    Verhoeven JJ, Hazelzet JA, van der Voort E, Joosten KF. Comparison of measured and predicted energy expenditure in mechanically ventilated children. Intensive Care Med. 1998;24(5):464–8.CrossRefPubMedGoogle Scholar
  23. 23.
    White MS, Shepherd RW, McEniery JA. Energy expenditure in 100 ventilated, critically ill children: improving the accuracy of predictive equations. Crit Care Med. 2000;28(7):2307–12.CrossRefPubMedGoogle Scholar
  24. 24.
    Chwals WJ, Letton RW, Jamie A, Charles B. Stratification of injury severity using energy expenditure response in surgical infants. J Pediatr Surg. 1995;30(8):1161–4.CrossRefPubMedGoogle Scholar
  25. 25.
    White MS, Shepherd RW, McEniery JA. Energy expenditure measurements in ventilated critically ill children: within- and between-day variability. JPEN J Parenter Enteral Nutr. 1999;23(5):300–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Filioti J, Spiroglou K, Panteliadis CP, Roilides E. Invasive candidiasis in pediatric intensive care patients: epidemiology, risk factors, management, and outcome. Intensive Care Med. 2007;33(7):1272–83.CrossRefPubMedGoogle Scholar
  27. 27.
    Johnstone AM, Rance KA, Murison SD, Duncan JS, Speakman JR. Additional anthropometric measures may improve the predictability of basal metabolic rate in adult subjects. Eur J Clin Nutr. 2006;60(12):1437–44.CrossRefPubMedGoogle Scholar
  28. 28.
    Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr. 1985;39 Suppl 1:5–41.PubMedGoogle Scholar
  29. 29.
    Mehta NM, Bechard LJ, Dolan M, Ariagno K, Jiang H, Duggan C. Energy imbalance and the risk of overfeeding in critically ill children. Pediatr Crit Care Med. 2011;12(4):398–405.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Vazquez Martinez JL, Martinez-Romillo PD, Diez Sebastian J, Ruza TF. Predicted versus measured energy expenditure by continuous, online indirect calorimetry in ventilated, critically ill children during the early postinjury period. Pediatr Crit Care Med. 2004;5(1):19–27.CrossRefPubMedGoogle Scholar
  31. 31.
    van der Kuip M, Oosterveld MJ, van Bokhorst-de van der Schueren MA, Schueren MA, De Meer K, Lafeber HN, Gemke RJ. Nutritional support in 111 pediatric intensive care units: a European survey. Intensive Care Med. 2004;30(9):1807–13.CrossRefPubMedGoogle Scholar
  32. 32.
    Briassoulis G, Briassoulis P, Michaeloudi E, Fitrolaki DM, Spanaki AM, Briassouli E. The effects of endotracheal suctioning on the accuracy of oxygen consumption and carbon dioxide production measurements and pulmonary mechanics calculated by a compact metabolic monitor. Anesth Analg. 2009;109(3):873–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Briassoulis G, Michaeloudi E, Fitrolaki DM, Spanaki AM, Briassouli E. Influence of different ventilator modes on Vo(2) and Vco(2) measurements using a compact metabolic monitor. Nutrition. 2009;25(11–12):1106–14.CrossRefPubMedGoogle Scholar
  34. 34.
    Mehta NM, Compher C. A.S.P.E.N clinical guidelines: nutrition support of the critically ill child. JPEN J Parenter Enteral Nutr. 2009;33(3):260–76.CrossRefPubMedGoogle Scholar
  35. 35.
    Villet S, Chiolero RL, Bollmann MD, et al. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr. 2005;24(4):502–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Bartlett RH, Dechert RE, Mault JR, Ferguson SK, Kaiser AM, Erlandson EE. Measurement of metabolism in multiple organ failure. Surgery. 1982;92(4):771–9.PubMedGoogle Scholar
  37. 37.
    Rubinson L, Diette GB, Song X, Brower RG, Krishnan JA. Low caloric intake is associated with nosocomial bloodstream infections in patients in the medical intensive care unit. Crit Care Med. 2004;32(2):350–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Hulst JM, van Goudoever JB, Zimmermann LJ, et al. The effect of cumulative energy and protein deficiency on anthropometric parameters in a pediatric ICU population. Clin Nutr. 2004;23(6):1381–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Chwals WJ. Overfeeding the critically ill child: fact or fantasy? New Horiz. 1994;2(2):147–55.PubMedGoogle Scholar
  40. 40.
    Askanazi J, Rosenbaum SH, Hyman AI, Silverberg PA, Milic-Emili J, Kinney JM. Respiratory changes induced by the large glucose loads of total parenteral nutrition. JAMA. 1980;243(14):1444–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Alaedeen DI, Walsh MC, Chwals WJ. Total parenteral nutrition-associated hyperglycemia correlates with prolonged mechanical ventilation and hospital stay in septic infants. J Pediatr Surg. 2006;41(1):239–44. discussion 239–244.CrossRefPubMedGoogle Scholar
  42. 42.
    Bechard LJ, Parrott JS, Mehta NM. Systematic review of the influence of energy and protein intake on protein balance in critically ill children. J Pediatr. 2012;161(2):333–9.e331.CrossRefPubMedGoogle Scholar
  43. 43.
    Briassoulis G, Filippou O, Kanariou M, Hatzis T. Comparative effects of early randomized immune or non-immune-enhancing enteral nutrition on cytokine production in children with septic shock. Intensive Care Med. 2005;31(6):851–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Briassoulis G, Filippou O, Kanariou M, Papassotiriou I, Hatzis T. Temporal nutritional and inflammatory changes in children with severe head injury fed a regular or an immune-enhancing diet: a randomized, controlled trial. Pediatr Crit Care Med. 2006;7(1):56–62.CrossRefPubMedGoogle Scholar
  45. 45.
    van Waardenburg DA, de Betue CT, Goudoever JB, Zimmermann LJ, Joosten KF. Critically ill infants benefit from early administration of protein and energy-enriched formula: a randomized controlled trial. JPEN J Parenter Enteral Nutr. 2009;28(3):249–55.Google Scholar
  46. 46.
    Botran M, Lopez-Herce J, Mencia S, Urbano J, Solana MJ, Garcia A. Enteral nutrition in the critically ill child: comparison of standard and protein-enriched diets. J Pediatr. 2011;159(1):27–32.e21.CrossRefPubMedGoogle Scholar
  47. 47.
    Weber TR, Shah M, Stephens C, Tracy Jr T. Nitrogen balance in patients treated with extracorporeal membrane oxygenation. J Pediatr Surg. 1993;28(7):906–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Briassoulis G, Tsorva A, Zavras N, Hatzis T. Influence of an aggressive early enteral nutrition protocol on nitrogen balance in critically ill children. J Nutr Biochem. 2002;13(9):560.CrossRefPubMedGoogle Scholar
  49. 49.
    Coss-Bu JA, Jefferson LS, Walding D, David Y, Smith EO, Klish WJ. Resting energy expenditure in children in a pediatric intensive care unit: comparison of Harris-Benedict and Talbot predictions with indirect calorimetry values. Am J Clin Nutr. 1998;67(1):74–80.PubMedGoogle Scholar
  50. 50.
    Coss-Bu JA, Klish WJ, Walding D, Stein F, Smith EO, Jefferson LS. Energy metabolism, nitrogen balance, and substrate utilization in critically ill children. Am J Clin Nutr. 2001;74(5):664–9.PubMedGoogle Scholar
  51. 51.
    Keshen TH, Miller RG, Jahoor F, Jaksic T. Stable isotopic quantitation of protein metabolism and energy expenditure in neonates on- and post-extracorporeal life support. J Pediatr Surg. 1997;32(7):958–62. discussion 962–953.CrossRefPubMedGoogle Scholar
  52. 52.
    Mehta NM, McAleer D, Hamilton S, et al. Challenges to optimal enteral nutrition in a multidisciplinary pediatric intensive care unit. JPEN J Parenter Enteral Nutr. 2010;34(1):38–45.CrossRefPubMedGoogle Scholar
  53. 53.
    Rogers EJ, Gilbertson HR, Heine RG, Henning R. Barriers to adequate nutrition in critically ill children. Nutrition. 2003;19(10):865–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Mehta NM, Bechard LJ, Cahill N, et al. Nutritional practices and their relationship to clinical outcomes in critically ill children–an international multicenter cohort study*. Crit Care Med. 2012;40(7):2204–11.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    ASPEN Board of Directors and the Clinical Guidelines Task Force. Guidelines for the use of parenteral and enteral nutrition in adult and pediatric patients. JPEN J Parenter Enteral Nutr. 2002;26(1 Suppl):1SA–38.Google Scholar
  56. 56.
    Doig GS, Simpson F, Delaney A. A review of the true methodological quality of nutritional support trials conducted in the critically ill: time for improvement. Anesth Analg. 2005;100(2):527–33.CrossRefPubMedGoogle Scholar
  57. 57.
    Simpson F, Doig GS. Parenteral vs. enteral nutrition in the critically ill patient: a meta-analysis of trials using the intention to treat principle. Intensive Care Med. 2005;31(1):12–23.CrossRefPubMedGoogle Scholar
  58. 58.
    Hadfield RJ, Sinclair DG, Houldsworth PE, Evans TW. Effects of enteral and parenteral nutrition on gut mucosal permeability in the critically ill. Am J Respir Crit Care Med. 1995;152(5 Pt 1):1545–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Heyland DK, Dhaliwal R, Drover JW, Gramlich L, Dodek P. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr. 2003;27(5):355–73.CrossRefPubMedGoogle Scholar
  60. 60.
    Panadero E, Lopez-Herce J, Caro L, et al. Transpyloric enteral feeding in critically ill children. J Pediatr Gastroenterol Nutr. 1998;26(1):43–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Meert KL, Daphtary KM, Metheny NA. Gastric vs small-bowel feeding in critically ill children receiving mechanical ventilation: a randomized controlled trial. Chest. 2004;126(3):872–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Marik PE, Zaloga GP. Gastric versus post-pyloric feeding: a systematic review. Crit Care. 2003;7(3):R46–51.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    McClave SA, DeMeo MT, DeLegge MH, et al. North American summit on aspiration in the critically ill patient: consensus statement. JPEN J Parenter Enteral Nutr. 2002;26(6 Suppl):S80–5.CrossRefPubMedGoogle Scholar
  64. 64.
    Dimand RJ, Veereman-Wauters G, Braner DA. Bedside placement of pH-guided transpyloric small bowel feeding tubes in critically ill infants and small children. JPEN J Parenter Enteral Nutr. 1997;21(2):112–4.CrossRefPubMedGoogle Scholar
  65. 65.
    Gabriel SA, Ackermann RJ. Placement of nasoenteral feeding tubes using external magnetic guidance. JPEN J Parenter Enteral Nutr. 2004;28(2):119–22.CrossRefPubMedGoogle Scholar
  66. 66.
    Levy H, Hayes J, Boivin M, Tomba T. Transpyloric feeding tube placement in critically ill patients using electromyogram and erythromycin infusion. Chest. 2004;125(2):587–91.CrossRefPubMedGoogle Scholar
  67. 67.
    Da Silva PS, Paulo CS, De Oliveira Iglesias SB, De Carvalho WB, Santana e Meneses F. Bedside transpyloric tube placement in the pediatric intensive care unit: a modified insufflation air technique. Intensive Care Med. 2002;28(7):943–6.CrossRefPubMedGoogle Scholar
  68. 68.
    Hull MA, Rawlings J, Murray FE, et al. Audit of outcome of long-term enteral nutrition by percutaneous endoscopic gastrostomy. Lancet. 1993;341(8849):869–72.CrossRefPubMedGoogle Scholar
  69. 69.
    Ellett ML, Maahs J, Forsee S. Prevalence of feeding tube placement errors & associated risk factors in children. MCN Am J Matern Child Nurs. 1998;23(5):234–9.CrossRefPubMedGoogle Scholar
  70. 70.
    Powers J, Chance R, Bortenschlager L, et al. Bedside placement of small-bowel feeding tubes in the intensive care unit. Crit Care Nurse. 2003;23(1):16–24.PubMedGoogle Scholar
  71. 71.
    de Lucas C, Moreno M, Lopez-Herce J, Ruiz F, Perez-Palencia M, Carrillo A. Transpyloric enteral nutrition reduces the complication rate and cost in the critically ill child. J Pediatr Gastroenterol Nutr. 2000;30(2):175–80.CrossRefPubMedGoogle Scholar
  72. 72.
    McClave SA, Sexton LK, Spain DA, et al. Enteral tube feeding in the intensive care unit: factors impeding adequate delivery. Crit Care Med. 1999;27(7):1252–6.CrossRefPubMedGoogle Scholar
  73. 73.
    Adam S, Batson S. A study of problems associated with the delivery of enteral feed in critically ill patients in five ICUs in the UK. Intensive Care Med. 1997;23(3):261–6.CrossRefPubMedGoogle Scholar
  74. 74.
    King W, Petrillo T, Pettignano R. Enteral nutrition and cardiovascular medications in the pediatric intensive care unit. JPEN J Parenter Enteral Nutr. 2004;28(5):334–8.CrossRefPubMedGoogle Scholar
  75. 75.
    Meyer R, Harrison S, Sargent S, Ramnarayan P, Habibi P, Labadarios D. The impact of enteral feeding protocols on nutritional support in critically ill children. J Hum Nutr Diet. 2009;22(5):428–36.CrossRefPubMedGoogle Scholar
  76. 76.
    Petrillo-Albarano T, Pettignano R, Asfaw M, Easley K. Use of a feeding protocol to improve nutritional support through early, aggressive, enteral nutrition in the pediatric intensive care unit. Pediatr Crit Care Med. 2006;7(4):340–4.CrossRefPubMedGoogle Scholar
  77. 77.
    Horn D, Chaboyer W. Gastric feeding in critically ill children: a randomized controlled trial. Am J Crit Care. 2003;12(5):461–8.PubMedGoogle Scholar
  78. 78.
    Cahill NE, Murch L, Jeejeebhoy K, et al. When early enteral feeding is not possible in critically ill patients: results of a multicenter observational study. JPEN J Parenter Enteral Nutr. 2011;35(2):160–8.CrossRefPubMedGoogle Scholar
  79. 79.
    Casaer MP, Mesotten D, Hermans G, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365(6):506–17.CrossRefPubMedGoogle Scholar
  80. 80.
    Gurgueira GL, Leite HP, Taddei JA, de Carvalho WB. Outcomes in a pediatric intensive care unit before and after the implementation of a nutrition support team. JPEN J Parenter Enteral Nutr. 2005;29(3):176–85.CrossRefGoogle Scholar
  81. 81.
    Lambe C, Hubert P, Jouvet P, Cosnes J, Colomb V. A nutritional support team in the pediatric intensive care unit: changes and factors impeding appropriate nutrition. Clin Nutr. 2007;26(3):355–63.CrossRefPubMedGoogle Scholar
  82. 82.
    Heyland DK, Novak F, Drover JW, Jain M, Su X, Suchner U. Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA. 2001;286(8):944–53.CrossRefPubMedGoogle Scholar
  83. 83.
    Heyland DK, Dhaliwal R, Suchner U, Berger MM. Antioxidant nutrients: a systematic review of trace elements and vitamins in the critically ill patient. Intensive Care Med. 2005;31(3):327–37.CrossRefPubMedGoogle Scholar
  84. 84.
    Mayes T, Gottschlich MM, Kagan RJ. An evaluation of the safety and efficacy of an anti-inflammatory, pulmonary enteral formula in the treatment of pediatric burn patients with respiratory failure. J Burn Care Res. 2008;29(1):82–8.CrossRefPubMedGoogle Scholar
  85. 85.
    Carcillo J, Holubkov R, Dean JM, et al. Rationale and design of the pediatric critical illness stress-induced immune suppression (CRISIS) prevention trial. JPEN J Parenter Enteral Nutr. 2009;33(4):368–74.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Mehta N. Optimal nutritional therapy for the critically ill child. Crit Connect. 2011;10:13.Google Scholar
  87. 87.
    Mehta NM. Approach to enteral feeding in the PICU. Nutr Clin Pract. 2009;24(3):377–87.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Department of Critical Care MedicineChildren’s Hospital BostonBostonUSA
  2. 2.Department of AnesthesiaHarvard Medical SchoolBostonUSA

Personalised recommendations