Skip to main content

Kidney Disorders in the PICU: Thrombotic Microangiopathies and Glomerulonephritis

  • Chapter
  • First Online:
Pediatric Critical Care Medicine

Abstract

Renal diseases presenting in the Pediatric Intensive Care Unit are diverse. Amongst the most severe lesions are the thrombotic microangiopathies (TMA) and the glomerulonephritides. Both clinical scenarios necessitate nephrology consultation to facilitate diagnosis and timely treatment initiation in order to limit renal mobidity.

TMAs are represented by intravascular platelet aggregation, red blood cell shearing and thrombus formation. The resultant microangiopathic hemolytic anemia and thrombocytopenia are the clinical markers that suggest a risk for the ischemic loss of renal function. The broad differential for TMA includes typical hemolytic uremic syndrome (HUS), atypical hemolytic uremic syndrome (aHUS), and thrombotic thrombocytopenic purpura (TTP). Though histologically similar, typical HUS, aHUS, and TTP have different causal mechanisms and diverse treatments may be warrented. In contrast to the TMAs, glomerulonephritis is an inflammatory process leading to direct glomerular injury and loss of renal filtering function. The differential for glomerulonephritis can be broad with etiologies ranging from collagen abnormalities (e.g., Alport Syndrome) to antibody-mediated disease (e.g., anti-glomerular basement membrane disease). Acute renal replacement therapy and/or plasmapheresis may be required for successful treatment of disease due to TMA as well as glomerulonephritis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moake JL. Thrombotic microangiopathies. N Engl J Med. 2002;347(8):589–600.

    Article  CAS  PubMed  Google Scholar 

  2. Laszik Z, Silvaa F. Hemolytic uremic syndrome, thrombotic thrombocytopenia purpura and other thrombotic microantiopathies and coagulopathies. In: Jennett J, Olson J, Schwartz M, Silva F, editors. Heptinstall’s pathology of the kidney. 6th ed. Philadelphia: Lippincott, Williams & Wilkins; 2007. p. 699–762.

    Google Scholar 

  3. Egan JA, Bandarenko N, Hay SN, et al. Differentiating thrombotic microangiopathies induced by severe hypertension from anemia and thrombocytopenia seen in thrombotic thrombocytopenia purpura. J Clin Apher. 2004;19(3):125–9.

    Article  CAS  PubMed  Google Scholar 

  4. George JN. How I, treat patients with thrombotic thrombocytopenic purpura: 2010. Blood. 2010;116(20):4060–9.

    Article  CAS  PubMed  Google Scholar 

  5. Rock GA, Shumak KH, Buskard NA, et al. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. Canadian Apheresis Study Group. N Engl J Med. 1991;325(6):393–7.

    Article  CAS  PubMed  Google Scholar 

  6. Tarr PI, Gordon CA, Chandler WL. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet. 2005;365(9464):1073–86, Mar 19–25.

    CAS  PubMed  Google Scholar 

  7. Waters AM, Kerecuk L, Luk D, et al. Hemolytic uremic syndrome associated with invasive pneumococcal disease: the United Kingdom experience. J Pediatr. 2007;151(2):140–4.

    Article  PubMed  Google Scholar 

  8. Tsai HM, Chandler WL, Sarode R, et al. von Willebrand factor and von Willebrand factor-cleaving metalloprotease activity in Escherichia coli O157:H7-associated hemolytic uremic syndrome. Pediatr Res. 2001;49(5):653–9.

    Article  CAS  PubMed  Google Scholar 

  9. Terrell DR, Williams LA, Vesely SK, Lammle B, Hovinga JA, George JN. The incidence of thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: all patients, idiopathic patients, and patients with severe ADAMTS-13 deficiency. J Thromb Haemost. 2005;3(7):1432–6.

    Article  CAS  PubMed  Google Scholar 

  10. Amorosi EL. Thrombotic thrombocytopenic purpura: report of 16 cases and review of the literature. Medicine. 1966;45(2):139–59.

    Article  Google Scholar 

  11. Furlan M, Lammle B. Deficiency of von Willebrand factor-cleaving protease in familial and acquired thrombotic thrombocytopenic purpura. Baillieres Clin Haematol. 1998;11(2):509–14.

    Article  CAS  PubMed  Google Scholar 

  12. Vesely SK, George JN, Lammle B, et al. ADAMTS13 activity in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: relation to presenting features and clinical outcomes in a prospective cohort of 142 patients. Blood. 2003;102(1):60–8.

    Article  CAS  PubMed  Google Scholar 

  13. Tsai HM, Lian EC. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med. 1998;339(22):1585–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Levy GG, Nichols WC, Lian EC, et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature. 2001;413(6855):488–94.

    Article  CAS  PubMed  Google Scholar 

  15. Kremer Hovinga JA, Vesely S, Terrell D, Lammle B, George J. Survival and relapse in patients with thrombotic thrombocytopenic purpura. Blood. 2010;115(8):1500–11.

    Article  PubMed  Google Scholar 

  16. Patton JF, Manning KR, Case D, Owen J. Serum lactate dehydrogenase and platelet count predict survival in thrombotic thrombocytopenic purpura. Am J Hematol. 1994;47(2):94–9.

    Article  CAS  PubMed  Google Scholar 

  17. Francis KK, Kalyanam N, Terrell DR, Vesely SK, George JN. Disseminated malignancy misdiagnosed as thrombotic thrombocytopenic purpura: a report of 10 patients and a systematic review of published cases. Oncologist. 2007;12(1):11–9.

    Article  PubMed  Google Scholar 

  18. Booth KK, Terrell DR, Vesely SK, George JN. Systemic infections mimicking thrombotic thrombocytopenic purpura. Am J Hematol. 2011;86(9):743–51.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Michael M, Elliott E, Craig J, Ridley G, Hodson E. Interventions for hemolytic uremic syndrome and thrombotic thrombocytopenic purpura: a systematic review of randomized controlled trials. Am J Kidney Dis. 2009;53(2):259–72.

    Article  PubMed  Google Scholar 

  20. Rizvi MA, Vesely SK, George JN, et al. Complications of plasma exchange in 71 consecutive patients treated for clinically suspected thrombotic thrombocytopenic purpura-hemolytic-uremic syndrome. Transfusion. 2000;40(8):896–901.

    Article  CAS  PubMed  Google Scholar 

  21. McMinn Jr JR, Thomas IA, Terrell DR, Duvall D, Vesely SK, George JN. Complications of plasma exchange in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: a study of 78 additional patients. Transfusion. 2003;43(3):415–6.

    Article  PubMed  Google Scholar 

  22. Howard MA, Williams LA, Terrell DR, Duvall D, Vesely SK, George JN. Complications of plasma exchange in patients treated for clinically suspected thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Transfusion. 2006;46(1):154–6.

    Article  PubMed  Google Scholar 

  23. Swisher KK, Terrell DR, Vesely SK, Kremer Hovinga JA, Lammle B, George JN. Clinical outcomes after platelet transfusions in patients with thrombotic thrombocytopenic purpura. Transfusion. 2009;49(5):873–87.

    Article  PubMed  Google Scholar 

  24. George JN, Kremer Hovinga JA, Terrell DR, Vesely SK, Lämmle B. The Oklahoma thrombotic thrombocytopenic purpura–hemolytic uremic syndrome registry: the Swiss connection. Eur J Haematol. 2008;80(4):277–86.

    Article  PubMed  Google Scholar 

  25. Zheng XL, Kaufman RM, Goodnough LT, Sadler JE. Effect of plasma exchange on plasma ADAMTS13 metalloprotease activity, inhibitor level, and clinical outcome in patients with idiopathic and nonidiopathic thrombotic thrombocytopenic purpura. Blood. 2004;103(11):4043–9.

    Article  CAS  PubMed  Google Scholar 

  26. Scully M, Cohen H, Cavenagh J, et al. Remission in acute refractory and relapsing thrombotic thrombocytopenic purpura following rituximab is associated with a reduction in IgG antibodies to ADAMTS-13. Br J Haematol. 2007;136(3):451–61.

    Article  CAS  PubMed  Google Scholar 

  27. Ferrari S, Mudde GC, Rieger M, Veyradier A, Kremer Hovinga JA, Scheiflinger F. IgG subclass distribution of anti-ADAMTS13 antibodies in patients with acquired thrombotic thrombocytopenic purpura. J Thromb Haemost. 2009;7(10):1703–10.

    Article  CAS  PubMed  Google Scholar 

  28. Lewis QF, Lanneau MS, Mathias SD, Terrell DR, Vesely SK, George JN. Long-term deficits in health-related quality of life after recovery from thrombotic thrombocytopenic purpura. Transfusion. 2009;49(1):118–24.

    Article  PubMed  Google Scholar 

  29. Nguyen T, Hall M, Han Y, et al. Microvascular thrombosis in pediatric multiple organ failure: is it a therapeutic target? Pediatr Crit Care Med. 2001;2(3):187–96.

    Article  PubMed  Google Scholar 

  30. Nguyen TC, Han YY, Kiss JE, et al. Intensive plasma exchange increases a disintegrin and metalloprotease with thrombospondin motifs-13 activity and reverses organ dysfunction in children with thrombocytopenia-associated multiple organ failure. Crit Care Med. 2008;36(10):2878–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Karpman D, Sartz L, Johnson S. Pathophysiology of typical hemolytic uremic syndrome. Semin Thromb Hemost. 2010;36(6):575–85.

    Article  CAS  PubMed  Google Scholar 

  32. Karmali MA. Infection by Shiga toxin-producing Escherichia coli: an overview. Mol Biotechnol. 2004;26(2):117–22.

    Article  CAS  PubMed  Google Scholar 

  33. Butler T, Islam MR, Azad MA, Jones PK. Risk factors for development of hemolytic uremic syndrome during shigellosis. J Pediatr. 1987;110(6):894–7.

    Article  CAS  PubMed  Google Scholar 

  34. Karmali MA, Steele BT, Petric M, Lim C. Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet. 1983;1(8325):619–20.

    Article  CAS  PubMed  Google Scholar 

  35. Karmali MA. Host and pathogen determinants of verocytotoxin-producing Escherichia coli-associated hemolytic uremic syndrome. Kidney Int Suppl. 2009;112:S4–7.

    Article  CAS  Google Scholar 

  36. Borczyk AA, Karmali MA, Lior H, Duncan LM. Bovine reservoir for verotoxin-producing Escherichia coli O157:H7. Lancet. 1987;1(8524):98.

    Article  CAS  PubMed  Google Scholar 

  37. Noris M, Remuzzi G. Hemolytic uremic syndrome. J Am Soc Nephrol. 2005;16(4):1035–50.

    Article  CAS  PubMed  Google Scholar 

  38. Lynn RM, O’Brien SJ, Taylor CM, et al. Childhood hemolytic uremic syndrome, United Kingdom and Ireland. Emerg Infect Dis. 2005;11(4):590–6.

    Article  PubMed  PubMed Central  Google Scholar 

  39. McKee ML, O’Brien AD. Investigation of enterohemorrhagic Escherichia coli O157:H7 adherence characteristics and invasion potential reveals a new attachment pattern shared by intestinal E. coli. Infect Immun. 1995;63(5):2070–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004;2(2):123–40.

    Article  CAS  PubMed  Google Scholar 

  41. Malyukova I, Murray KF, Zhu C, et al. Macropinocytosis in Shiga toxin 1 uptake by human intestinal epithelial cells and transcellular transcytosis. Am J Physiol Gastrointest Liver Physiol. 2009;296(1):G78–92.

    Article  CAS  PubMed  Google Scholar 

  42. Chong Y, Fitzhenry R, Heuschkel R, Torrente F, Frankel G, Phillips AD. Human intestinal tissue tropism in Escherichia coli O157: H7–initial colonization of terminal ileum and Peyer’s patches and minimal colonic adhesion ex vivo. Microbiology. 2007;153(Pt 3):794–802.

    Article  CAS  PubMed  Google Scholar 

  43. Phillips AD, Navabpour S, Hicks S, Dougan G, Wallis T, Frankel G. Enterohaemorrhagic Escherichia coli O157:H7 target Peyer’s patches in humans and cause attaching/effacing lesions in both human and bovine intestine. Gut. 2000;47(3):377–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dean P, Kenny B. The effector repertoire of enteropathogenic E. coli: ganging up on the host cell. Curr Opin Microbiol. 2009;12(1):101–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Delahay RM, Frankel G, Knutton S. Intimate interactions of enteropathogenic Escherichia coli at the host cell surface. Curr Opin Infect Dis. 2001;14(5):559–65.

    Article  CAS  PubMed  Google Scholar 

  46. Fraser ME, Chernaia MM, Kozlov YV, James MN. Crystal structure of the holotoxin from Shigella dysenteriae at 2.5 a resolution. Nat Struct Biol. 1994;1(1):59–64.

    Article  CAS  PubMed  Google Scholar 

  47. Fraser ME, Fujinaga M, Cherney MM, et al. Structure of shiga toxin type 2 (Stx2) from Escherichia coli O157:H7. J Biol Chem. 2004;279(26):27511–7.

    Article  CAS  PubMed  Google Scholar 

  48. Zoja C, Corna D, Farina C, et al. Verotoxin glycolipid receptors determine the localization of microangiopathic process in rabbits given verotoxin-1. J Lab Clin Med. 1992;120(2):229–38.

    CAS  PubMed  Google Scholar 

  49. Obrig TG, Moran TP, Brown JE. The mode of action of Shiga toxin on peptide elongation of eukaryotic protein synthesis. Biochem J. 1987;244(2):287–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Obrig TG, Louise CB, Lingwood CA, Boyd B, Barley-Maloney L, Daniel TO. Endothelial heterogeneity in Shiga toxin receptors and responses. J Biol Chem. 1993;268(21):15484–8.

    CAS  PubMed  Google Scholar 

  51. Zoja C, Angioletti S, Donadelli R, et al. Shiga toxin-2 triggers endothelial leukocyte adhesion and transmigration via NF-kappaB dependent up-regulation of IL-8 and MCP-1. Kidney Int. 2002;62(3):846–56.

    Article  CAS  PubMed  Google Scholar 

  52. Karpman D, Manea M, Vaziri-Sani F, Stahl AL, Kristoffersson AC. Platelet activation in hemolytic uremic syndrome. Semin Thromb Hemost. 2006;32(2):128–45.

    Article  PubMed  Google Scholar 

  53. Karpman D, Papadopoulou D, Nilsson K, Sjogren AC, Mikaelsson C, Lethagen S. Platelet activation by Shiga toxin and circulatory factors as a pathogenetic mechanism in the hemolytic uremic syndrome. Blood. 2001;97(10):3100–8.

    Article  CAS  PubMed  Google Scholar 

  54. Guessous F, Marcinkiewicz M, Polanowska-Grabowska R, Keepers TR, Obrig T, Gear AR. Shiga toxin 2 and lipopolysaccharide cause monocytic THP-1 cells to release factors which activate platelet function. Thromb Haemost. 2005;94(5):1019–27.

    CAS  PubMed  Google Scholar 

  55. Tazzari PL, Ricci F, Carnicelli D, et al. Flow cytometry detection of Shiga toxins in the blood from children with hemolytic uremic syndrome. Cytometry B Clin Cytom. 2004;61(1):40–4.

    Article  PubMed  CAS  Google Scholar 

  56. Stahl AL, Sartz L, Nelsson A, Bekassy ZD, Karpman D. Shiga toxin and lipopolysaccharide induce platelet-leukocyte aggregates and tissue factor release, a thrombotic mechanism in hemolytic uremic syndrome. PLoS One. 2009;4(9):e6990.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. van Setten PA, Monnens LA, Verstraten RG, van den Heuvel LP, van Hinsbergh VW. Effects of verocytotoxin-1 on nonadherent human monocytes: binding characteristics, protein synthesis, and induction of cytokine release. Blood. 1996;88(1):174–83.

    PubMed  Google Scholar 

  58. Liu J, Akahoshi T, Sasahana T, et al. Inhibition of neutrophil apoptosis by verotoxin 2 derived from Escherichia coli O157:H7. Infect Immun. 1999;67(11):6203–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Cohen A, Madrid-Marina V, Estrov Z, Freedman MH, Lingwood CA, Dosch HM. Expression of glycolipid receptors to Shiga-like toxin on human B lymphocytes: a mechanism for the failure of long-lived antibody response to dysenteric disease. Int Immunol. 1990;2(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  60. Fitzpatrick MM, Shah V, Filler G, Dillon MJ, Barratt TM. Neutrophil activation in the haemolytic uraemic syndrome: free and complexed elastase in plasma. Pediatr Nephrol. 1992;6(1):50–3.

    Article  CAS  PubMed  Google Scholar 

  61. Walters MD, Matthei IU, Kay R, Dillon MJ, Barratt TM. The polymorphonuclear leucocyte count in childhood haemolytic uraemic syndrome. Pediatr Nephrol. 1989;3(2):130–4.

    Article  CAS  PubMed  Google Scholar 

  62. Keepers TR, Psotka MA, Gross LK, Obrig TG. A murine model of HUS: Shiga toxin with lipopolysaccharide mimics the renal damage and physiologic response of human disease. J Am Soc Nephrol. 2006;17(12):3404–14.

    Article  CAS  PubMed  Google Scholar 

  63. Nestoridi E, Tsukurov O, Kushak RI, Ingelfinger JR, Grabowski EF. Shiga toxin enhances functional tissue factor on human glomerular endothelial cells: implications for the pathophysiology of hemolytic uremic syndrome. J Thromb Haemost. 2005;3(4):752–62.

    Article  CAS  PubMed  Google Scholar 

  64. Turi S, Nemeth I, Vargha I, Matkovics B. Oxidative damage of red blood cells in haemolytic uraemic syndrome. Pediatr Nephrol. 1994;8(1):26–9.

    Article  CAS  PubMed  Google Scholar 

  65. Bitzan M, Bickford BB, Foster GH. Verotoxin (shiga toxin) sensitizes renal epithelial cells to increased heme toxicity: possible implications for the hemolytic uremic syndrome. J Am Soc Nephrol. 2004;15(9):2334–43.

    Article  CAS  PubMed  Google Scholar 

  66. Riley LW, Remis RS, Helgerson SD, et al. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med. 1983;308(12):681–5.

    Article  CAS  PubMed  Google Scholar 

  67. Bitzan M, Schaefer F, Reymond D. Treatment of typical (enteropathic) hemolytic uremic syndrome. Semin Thromb Hemost. 2010;36(6):594–610.

    Article  CAS  PubMed  Google Scholar 

  68. Kaneko K, Kiyokawa N, Ohtomo Y, et al. Apoptosis of renal tubular cells in Shiga-toxin-mediated hemolytic uremic syndrome. Nephron. 2001;87(2):182–5.

    Article  CAS  PubMed  Google Scholar 

  69. van Setten PA, van Hinsbergh VW, van der Velden TJ, et al. Effects of TNF alpha on verocytotoxin cytotoxicity in purified human glomerular microvascular endothelial cells. Kidney Int. 1997;51(4):1245–56.

    Article  PubMed  Google Scholar 

  70. Obata F, Tohyama K, Bonev AD, et al. Shiga toxin 2 affects the central nervous system through receptor globotriaosylceramide localized to neurons. J Infect Dis. 2008;198(9):1398–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Oakes RS, Siegler RL, McReynolds MA, Pysher T, Pavia AT. Predictors of fatality in postdiarrheal hemolytic uremic syndrome. Pediatrics. 2006;117(5):1656–62.

    Article  PubMed  Google Scholar 

  72. Taylor CM, White RH, Winterborn MH, Rowe B. Haemolytic-uraemic syndrome: clinical experience of an outbreak in the West Midlands. Br Med J (Clin Res Ed). 1986;292(6534):1513–6.

    Article  CAS  Google Scholar 

  73. Bale Jr JF, Brasher C, Siegler RL. CNS manifestations of the hemolytic-uremic syndrome. Relationship to metabolic alterations and prognosis. Am J Dis Child. 1980;134(9):869–72.

    Article  PubMed  Google Scholar 

  74. Rowe PC, Orrbine E, Lior H, Wells GA, McLaine PN. Diarrhoea in close contacts as a risk factor for childhood haemolytic uraemic syndrome. The CPKDRC co-investigators. Epidemiol Infect. 1993;110(1):9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tuttle J, Gomez T, Doyle MP, et al. Lessons from a large outbreak of Escherichia coli O157:H7 infections: insights into the infectious dose and method of widespread contamination of hamburger patties. Epidemiol Infect. 1999;122(2):185–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ruggenenti P, Noris M, Remuzzi G. Thrombotic microangiopathy, hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura. Kidney Int. 2001;60(3):831–46.

    Article  CAS  PubMed  Google Scholar 

  77. Ake JA, Jelacic S, Ciol MA, et al. Relative nephroprotection during Escherichia coli O157:H7 infections: association with intravenous volume expansion. Pediatrics. 2005;115(6):e673–80.

    Article  PubMed  Google Scholar 

  78. Araujo M, Welch WJ. Cyclooxygenase 2 inhibition suppresses tubuloglomerular feedback: roles of thromboxane receptors and nitric oxide. Am J Physiol Renal Physiol. 2009;296(4):F790–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ho KM, Sheridan DJ. Meta-analysis of frusemide to prevent or treat acute renal failure. BMJ. 2006;333(7565):420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ariceta G, Besbas N, Johnson S, et al. Guideline for the investigation and initial therapy of diarrhea-negative hemolytic uremic syndrome. Pediatr Nephrol. 2009;24(4):687–96.

    Article  PubMed  Google Scholar 

  81. Kavanagh D, Richards A, Atkinson J. Complement regulatory genes and hemolytic uremic syndromes. Annu Rev Med. 2008;59:293–309.

    Article  CAS  PubMed  Google Scholar 

  82. Wong CS, Jelacic S, Habeeb RL, Watkins SL, Tarr PI. The risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infections. N Engl J Med. 2000;342(26):1930–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sauter KA, Melton-Celsa AR, Larkin K, Troxell ML, O’Brien AD, Magun BE. Mouse model of hemolytic-uremic syndrome caused by endotoxin-free Shiga toxin 2 (Stx2) and protection from lethal outcome by anti-Stx2 antibody. Infect Immun. 2008;76(10):4469–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lopez EL, Contrini MM, Glatstein E, et al. Safety and pharmacokinetics of urtoxazumab, a humanized monoclonal antibody, against Shiga-like toxin 2 in healthy adults and in pediatric patients infected with Shiga-like toxin-producing Escherichia coli. Antimicrob Agents Chemother. 2010;54(1):239–43.

    Article  CAS  PubMed  Google Scholar 

  85. Bell BP, Griffin PM, Lozano P, Christie DL, Kobayashi JM, Tarr PI. Predictors of hemolytic uremic syndrome in children during a large outbreak of Escherichia coli O157:H7 infections. Pediatrics. 1997;100(1):E12.

    Article  CAS  PubMed  Google Scholar 

  86. Buteau C, Proulx F, Chaibou M, et al. Leukocytosis in children with Escherichia coli O157:H7 enteritis developing the hemolytic-uremic syndrome. Pediatr Infect Dis J. 2000;19(7):642–7.

    Article  CAS  PubMed  Google Scholar 

  87. Kawamura N, Yamazaki T, Tamai H. Risk factors for the development of Escherichia coli O157:H7 associated with hemolytic uremic syndrome. Pediatr Int. 1999;41(2):218–22.

    Article  CAS  PubMed  Google Scholar 

  88. Decaluwe H, Harrison LM, Mariscalco MM, et al. Procalcitonin in children with Escherichia coli O157:H7 associated hemolytic uremic syndrome. Pediatr Res. 2006;59(4 Pt 1):579–83.

    Article  CAS  PubMed  Google Scholar 

  89. Siegler R, Oakes R. Hemolytic uremic syndrome; pathogenesis, treatment, and outcome. Curr Opin Pediatr. 2005;17(2):200–4.

    Article  PubMed  Google Scholar 

  90. Noris M, Remuzzi G. Atypical hemolytic uremic syndrome. N Engl J Med. 2009;361:1676–87.

    Article  CAS  PubMed  Google Scholar 

  91. Zipfel PF, Skerka C. Complement factor H and related proteins: an expanding family of complement-regulatory proteins? Immunol Today. 1994;15(3):121–6.

    Article  CAS  PubMed  Google Scholar 

  92. Loirat C, Noris M, Fremeaux-Bacchi V. Complement and the atypical hemolytic uremic syndrome in children. Pediatr Nephrol. 2008;23(11):1957–72.

    Article  PubMed  Google Scholar 

  93. Saunders RE, Abarrategui-Garrido C, Fremeaux-Bacchi V, et al. The interactive Factor H-atypical hemolytic uremic syndrome mutation database and website: update and integration of membrane cofactor protein and Factor I mutations with structural models. Hum Mutat. 2007;28(3):222–34.

    Article  CAS  PubMed  Google Scholar 

  94. Heinen S, Jozsi M, Hartmann A, et al. Hemolytic uremic syndrome: a factor H mutation (E1172Stop) causes defective complement control at the surface of endothelial cells. J Am Soc Nephrol. 2007;18(2):506–14.

    Article  CAS  PubMed  Google Scholar 

  95. Dragon-Durey MA, Loirat C, Cloarec S, et al. Anti-Factor H autoantibodies associated with atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2005;16(2):555–63.

    Article  CAS  PubMed  Google Scholar 

  96. Dragon-Durey MA, Blanc C, Marliot F, et al. The high frequency of complement factor H related CFHR1 gene deletion is restricted to specific subgroups of patients with atypical haemolytic uraemic syndrome. J Med Genet. 2009;46(7):447–50.

    Article  CAS  PubMed  Google Scholar 

  97. Liszewski MK, Leung M, Cui W, et al. Dissecting sites important for complement regulatory activity in membrane cofactor protein (MCP; CD46). J Biol Chem. 2000;275(48):37692–701.

    Article  CAS  PubMed  Google Scholar 

  98. Caprioli J, Noris M, Brioschi S, et al. Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood. 2006;108(4):1267–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Caprioli J, Castelletti F, Bucchioni S, et al. Complement factor H mutations and gene polymorphisms in haemolytic uraemic syndrome: the C-257 T, the A2089G and the G2881T polymorphisms are strongly associated with the disease. Hum Mol Genet. 2003;12(24):3385–95.

    Article  CAS  PubMed  Google Scholar 

  100. Kaplan BS, Chesney RW, Drummond KN. Hemolytic uremic syndrome in families. N Engl J Med. 1975;292(21):1090–3.

    Article  CAS  PubMed  Google Scholar 

  101. Besbas N, Karpman D, Landau D, et al. A classification of hemolytic uremic syndrome and thrombotic thrombocytopenic purpura and related disorders. Kidney Int. 2006;70(3):423–31.

    Article  CAS  PubMed  Google Scholar 

  102. Zakarija A, Bennett C. Drug-induced thrombotic microangiopathy. Semin Thromb Hemost. 2005;31(6):681–90.

    Article  CAS  PubMed  Google Scholar 

  103. Ruggenenti P. Post-transplant hemolytic-uremic syndrome. Kidney Int. 2002;62(3):1093–104.

    Article  PubMed  Google Scholar 

  104. Zarifian A, Meleg-Smith S, O’Donovan R, Tesi RJ, Batuman V. Cyclosporine-associated thrombotic microangiopathy in renal allografts. Kidney Int. 1999;55(6):2457–66.

    Article  CAS  PubMed  Google Scholar 

  105. Karthikeyan V, Parasuraman R, Shah V, Vera E, Venkat KK. Outcome of plasma exchange therapy in thrombotic microangiopathy after renal transplantation. Am J Transplant. 2003;3(10):1289–94.

    Article  PubMed  Google Scholar 

  106. Kaplan BS, Meyers KE, Schulman SL. The pathogenesis and treatment of hemolytic uremic syndrome. J Am Soc Nephrol. 1998;9(6):1126–33.

    CAS  PubMed  Google Scholar 

  107. Sellier-Leclerc AL, Fremeaux-Bacchi V, Dragon-Durey MA, et al. Differential impact of complement mutations on clinical characteristics in atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2007;18(8):2392–400.

    Article  CAS  PubMed  Google Scholar 

  108. Benz K, Amann K. Pathological aspects of membranoproliferative glomerulonephritis (MPGN) and haemolytic uraemic syndrome (HUS)/thrombocytic thrombopenic purpura (TTP). Thromb Haemost. 2009;101(2):265–70.

    CAS  PubMed  Google Scholar 

  109. Lapeyraque AL, Wagner E, Phan V, et al. Efficacy of plasma therapy in atypical hemolytic uremic syndrome with complement factor H mutations. Pediatr Nephrol. 2008;23(8):1363–6.

    Article  PubMed  Google Scholar 

  110. Davin JC, Strain L, Goodship TH. Plasma therapy in atypical haemolytic uremic syndrome: lessons from a family with a factor H mutation. Pediatr Nephrol. 2008;23(9):1517–21.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kwon T, Dragon-Durey MA, Macher MA, et al. Successful pre-transplant management of a patient with anti-factor H autoantibodies-associated haemolytic uraemic syndrome. Nephrol Dial Transplant. 2008;23(6):2088–90.

    Article  PubMed  Google Scholar 

  112. Fremeaux-Bacchi V, Miller EC, Liszewski MK, et al. Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood. 2008;112(13):4948–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nathanson S, Fremeaux-Bacchi V, Deschenes G. Successful plasma therapy in hemolytic uremic syndrome with factor H deficiency. Pediatr Nephrol. 2001;16(7):554–6.

    Article  CAS  PubMed  Google Scholar 

  114. Licht C, Weyersberg A, Heinen S, et al. Successful plasma therapy for atypical hemolytic uremic syndrome caused by factor H deficiency owing to a novel mutation in the complement cofactor protein domain 15. Am J Kidney Dis. 2005;45(2):415–21.

    Article  CAS  PubMed  Google Scholar 

  115. Constantinescu AR, Bitzan M, Weiss LS, et al. Non-enteropathic hemolytic uremic syndrome: causes and short-term course. Am J Kidney Dis. 2004;43(6):976–82.

    Article  PubMed  Google Scholar 

  116. Remuzzi G, Ruggenenti P, Colledan M, et al. Hemolytic uremic syndrome: a fatal outcome after kidney and liver transplantation performed to correct factor h gene mutation. Am J Transplant. 2005;5(5):1146–50.

    Article  PubMed  Google Scholar 

  117. Bresin E, Daina E, Noris M, et al. Outcome of renal transplantation in patients with non-Shiga toxin-associated hemolytic uremic syndrome: prognostic significance of genetic background. Clin J Am Soc Nephrol. 2006;1(1):88–99.

    Article  CAS  PubMed  Google Scholar 

  118. Loirat C, Fremeaux-Bacchi V. Hemolytic uremic syndrome recurrence after renal transplantation. Pediatr Transplant. 2008;12(6):619–29.

    Article  CAS  PubMed  Google Scholar 

  119. Chan MR, Thomas CP, Torrealba JR, et al. Recurrent atypical hemolytic uremic syndrome associated with factor I mutation in a living related renal transplant recipient. Am J Kidney Dis. 2009;53(2):321–6.

    Article  CAS  PubMed  Google Scholar 

  120. Donne RL, Abbs I, Barany P, et al. Recurrence of hemolytic uremic syndrome after live related renal transplantation associated with subsequent de novo disease in the donor. Am J Kidney Dis. 2002;40(6):E22.

    Article  PubMed  Google Scholar 

  121. Nester C, Stewart Z, Myers D, et al. Pre-emptive eculizumab and plasmapheresis for renal transplant in atypical hemolytic uremic syndrome. Clin J Am Soc Nephrol. 2011;6(6):1488–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Seifert PS, Hansson GK. Complement receptors and regulatory proteins in human atherosclerotic lesions. Arteriosclerosis. 1989;9(6):802–11.

    Article  CAS  PubMed  Google Scholar 

  123. Sharma AP, Greenberg CR, Prasad AN, Prasad C. Hemolytic uremic syndrome (HUS) secondary to cobalamin C (cblC) disorder. Pediatr Nephrol. 2007;22(12):2097–103.

    Article  PubMed  Google Scholar 

  124. Izzedine H, Rixe O, Billemont B, Baumelou A, Deray G. Angiogenesis inhibitor therapies: focus on kidney toxicity and hypertension. Am J Kidney Dis. 2007;50(2):203–18.

    Article  CAS  PubMed  Google Scholar 

  125. Bollee G, Patey N, Cazajous G, et al. Thrombotic microangiopathy secondary to VEGF pathway inhibition by sunitinib. Nephrol Dial Transplant. 2009;24(2):682–5.

    Article  CAS  PubMed  Google Scholar 

  126. Mehta RL, Pascual MT, Soroko S, et al. Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int. 2004;66(4):1613–21.

    Article  PubMed  Google Scholar 

  127. Couser WG. Rapidly progressive glomerulonephritis: classification, pathogenetic mechanisms, and therapy. Am J Kidney Dis. 1988;11(6):449–64.

    Article  CAS  PubMed  Google Scholar 

  128. A clinico-pathologic study of crescentic glomerulonephritis in 50 children. A report of the Southwest Pediatric Nephrology Study Group. Kidney Int. 1985;27(2):450–8.

    Google Scholar 

  129. Kalluri R, Gattone 2nd VH, Hudson BG. Identification and localization of type IV collagen chains in the inner ear cochlea. Connect Tissue Res. 1998;37(1–2):143–50.

    Article  CAS  PubMed  Google Scholar 

  130. Kalluri R, Shield CF, Todd P, Hudson BG, Neilson EG. Isoform switching of type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J Clin Invest. 1997;99(10):2470–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cosgrove D, Samuelson G, Meehan DT, et al. Ultrastructural, physiological, and molecular defects in the inner ear of a gene-knockout mouse model for autosomal Alport syndrome. Hear Res. 1998;121(1–2):84–98.

    Article  CAS  PubMed  Google Scholar 

  132. Kumar V, Abul A, Fausto N, Aster J. Pathologic basis of disease. Philadelphia: Elsevier Saunders; 2010.

    Google Scholar 

  133. Kashtan CE. Familial hematuric syndromes–Alport syndrome, thin glomerular basement membrane disease and Fechtner/Epstein syndromes. Contrib Nephrol. 2001;136:79–99.

    Article  CAS  Google Scholar 

  134. Martin P, Heiskari N, Zhou J, et al. High mutation detection rate in the COL4A5 collagen gene in suspected Alport syndrome using PCR and direct DNA sequencing. J Am Soc Nephrol. 1998;9(12):2291–301.

    CAS  PubMed  Google Scholar 

  135. Barker DF, Hostikka SL, Zhou J, et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science. 1990;248(4960):1224–7.

    Article  CAS  PubMed  Google Scholar 

  136. Gubler M, Levy M, Broyer M, et al. Alport’s syndrome. A report of 58 cases and a review of the literature. Am J Med. 1981;70(3):493–505.

    Article  CAS  PubMed  Google Scholar 

  137. Jais JP, Knebelmann B, Giatras I, et al. X-linked Alport syndrome: natural history in 195 families and genotype- phenotype correlations in males. J Am Soc Nephrol. 2000;11(4):649–57.

    CAS  PubMed  Google Scholar 

  138. Gross O, Netzer KO, Lambrecht R, Seibold S, Weber M. Meta-analysis of genotype-phenotype correlation in X-linked Alport syndrome: impact on clinical counselling. Nephrol Dial Transplant. 2002;17(7):1218–27.

    Article  PubMed  Google Scholar 

  139. Bekheirnia MR, Reed B, Gregory MC, et al. Genotype-phenotype correlation in X-linked Alport syndrome. J Am Soc Nephrol. 2010;21(5):876–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Williamson DA. Alport’s syndrome of hereditary nephritis with deafness. Lancet. 1961;2(7216):1321–3.

    Article  CAS  PubMed  Google Scholar 

  141. Grunfeld JP. Contemporary diagnostic approach in Alport’s syndrome. Ren Fail. 2000;22(6):759–63.

    Article  CAS  PubMed  Google Scholar 

  142. Kashtan CE, McEnery PT, Tejani A, Stablein DM. Renal allograft survival according to primary diagnosis: a report of the North American Pediatric Renal Transplant Cooperative Study. Pediatr Nephrol. 1995;9(6):679–84.

    Article  CAS  PubMed  Google Scholar 

  143. Wilson CB, Dixon FJ. Anti-glomerular basement membrane antibody-induced glomerulonephritis. Kidney Int. 1973;3(2):74–89.

    Article  CAS  PubMed  Google Scholar 

  144. Wieslander J, Barr JF, Butkowski RJ, et al. Goodpasture antigen of the glomerular basement membrane: localization to noncollagenous regions of type IV collagen. Proc Natl Acad Sci U S A. 1984;81(12):3838–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Borza DB, Netzer KO, Leinonen A, et al. The goodpasture autoantigen. Identification of multiple cryptic epitopes on the NC1 domain of the alpha3(IV) collagen chain. J Biol Chem. 2000;275(8):6030–7.

    Article  CAS  PubMed  Google Scholar 

  146. David M, Borza DB, Leinonen A, Belmont JM, Hudson BG. Hydrophobic amino acid residues are critical for the immunodominant epitope of the Goodpasture autoantigen. A molecular basis for the cryptic nature of the epitope. J Biol Chem. 2001;276(9):6370–7.

    Article  CAS  PubMed  Google Scholar 

  147. Gunnarsson A, Hellmark T, Wieslander J. Molecular properties of the Goodpasture epitope. J Biol Chem. 2000;275(40):30844–8.

    Article  CAS  PubMed  Google Scholar 

  148. Stevenson A, Yaqoob M, Mason H, Pai P, Bell GM. Biochemical markers of basement membrane disturbances and occupational exposure to hydrocarbons and mixed solvents. QJM. 1995;88(1):23–8.

    CAS  PubMed  Google Scholar 

  149. Donaghy M, Rees AJ. Cigarette smoking and lung haemorrhage in glomerulonephritis caused by autoantibodies to glomerular basement membrane. Lancet. 1983;2(8364):1390–3.

    Article  CAS  PubMed  Google Scholar 

  150. Kalluri R, Meyers K, Mogyorosi A, Madaio MP, Neilson EG. Goodpasture syndrome involving overlap with Wegener’s granulomatosis and anti-glomerular basement membrane disease. J Am Soc Nephrol. 1997;8(11):1795–800.

    CAS  PubMed  Google Scholar 

  151. Bosch X, Mirapeix E, Font J, et al. Prognostic implication of anti-neutrophil cytoplasmic autoantibodies with myeloperoxidase specificity in anti-glomerular basement membrane disease. Clin Nephrol. 1991;36(3):107–13.

    CAS  PubMed  Google Scholar 

  152. Lockwood CM, Boulton-Jones JM, Lowenthal RM, Simpson IJ, Peters DK. Recovery from Goodpasture’s syndrome after immunosuppressive treatment and plasmapheresis. Br Med J. 1975;2(5965):252–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Johnson JP, Whitman W, Briggs WA, Wilson CB. Plasmapheresis and immunosuppressive agents in antibasement membrane antibody-induced Goodpasture’s syndrome. Am J Med. 1978;64(2):354–9.

    Article  CAS  PubMed  Google Scholar 

  154. Wyatt RJ, Rivas ML, Julian BA, et al. Regionalization in hereditary IgA nephropathy. Am J Hum Genet. 1987;41(1):36–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Julian BA, Quiggins PA, Thompson JS, Woodford SY, Gleason K, Wyatt RJ. Familial IgA nephropathy. Evidence of an inherited mechanism of disease. N Engl J Med. 1985;312(4):202–8.

    Article  CAS  PubMed  Google Scholar 

  156. Scolari F, Amoroso A, Savoldi S, et al. Familial clustering of IgA nephropathy: further evidence in an Italian population. Am J Kidney Dis. 1999;33(5):857–65.

    Article  CAS  PubMed  Google Scholar 

  157. Gharavi AG, Yan Y, Scolari F, et al. IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22-23. Nat Genet. 2000;26(3):354–7.

    Article  CAS  PubMed  Google Scholar 

  158. Julian BA, Wyatt RJ, McMorrow RG, Galla JH. Serum complement proteins in IgA nephropathy. Clin Nephrol. 1983;20(5):251–8.

    CAS  PubMed  Google Scholar 

  159. Wyatt RJ, Julian BA, Bhathena DB, Mitchell BL, Holland NH, Malluche HH. Iga nephropathy: presentation, clinical course, and prognosis in children and adults. Am J Kidney Dis. 1984;4(2):192–200.

    Article  CAS  PubMed  Google Scholar 

  160. Wyatt RJ, Kritchevsky SB, Woodford SY, et al. IgA nephropathy: long-term prognosis for pediatric patients. J Pediatr. 1995;127(6):913–9.

    Article  CAS  PubMed  Google Scholar 

  161. Yoshikawa N, Ito H, Yoshiara S, et al. Clinical course of immunoglobulin A nephropathy in children. J Pediatr. 1987;110(4):555–60.

    Article  CAS  PubMed  Google Scholar 

  162. Hogg RJ. Prognostic indicators and treatment of childhood IgA nephropathy. Contrib Nephrol. 1995;111:194–9; discussion 199–200.

    Article  CAS  PubMed  Google Scholar 

  163. Coppo R, Peruzzi L, Amore A, et al. IgACE: a placebo-controlled, randomized trial of angiotensin-converting enzyme inhibitors in children and young people with IgA nephropathy and moderate proteinuria. J Am Soc Nephrol. 2007;18(6):1880–8.

    Article  CAS  PubMed  Google Scholar 

  164. Manno C, Strippoli GF, D’Altri C, Torres D, Rossini M, Schena FP. A novel simpler histological classification for renal survival in IgA nephropathy: a retrospective study. Am J Kidney Dis. 2007;49(6):763–75.

    Article  PubMed  Google Scholar 

  165. Manno C, Torres DD, Rossini M, Pesce F, Schena FP. Randomized controlled clinical trial of corticosteroids plus ACE-inhibitors with long-term follow-up in proteinuric IgA nephropathy. Nephrol Dial Transplant. 2009;24(12):3694–701.

    Article  CAS  PubMed  Google Scholar 

  166. Yoshikawa N, Ito H, Nakamura H. Prognostic indicators in childhood IgA nephropathy. Nephron. 1992;60(1):60–7.

    Article  CAS  PubMed  Google Scholar 

  167. Kamei K, Nakanishi K, Ito S, et al. Long-term results of a randomized controlled trial in childhood IgA nephropathy. Clin J Am Soc Nephrol. 2011;6(6):1301–7.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Davin JC, Ten Berge IJ, Weening JJ. What is the difference between IgA nephropathy and Henoch-Schonlein purpura nephritis? Kidney Int. 2001;59(3):823–34.

    Article  CAS  PubMed  Google Scholar 

  169. Delos Santos NM, Wyatt RJ. Pediatric IgA nephropathies: clinical aspects and therapeutic approaches. Semin Nephrol. 2004;24(3):269–86.

    Article  PubMed  Google Scholar 

  170. Levy M, Broyer M, Arsan A, Levy-Bentolila D, Habib R. Anaphylactoid purpura nephritis in childhood: natural history and immunopathology. Adv Nephrol Necker Hosp. 1976;6:183–228.

    CAS  PubMed  Google Scholar 

  171. Watanabe T, Takada T, Kihara I, Oda Y. Three cases of Henoch-Schonlein purpura preceded by IgA nephropathy. Pediatr Nephrol. 1995;9(5):674.

    Article  CAS  PubMed  Google Scholar 

  172. Waldo FB. Is Henoch-Schonlein purpura the systemic form of IgA nephropathy? Am J Kidney Dis. 1988;12(5):373–7.

    Article  CAS  PubMed  Google Scholar 

  173. Platt JL, Burke BA, Fish AJ, Kim Y, Michael AF. Systemic lupus erythematosus in the first two decades of life. Am J Kidney Dis. 1982;2(1 Suppl 1):212–22.

    CAS  PubMed  Google Scholar 

  174. Cameron JS. Lupus nephritis. J Am Soc Nephrol. 1999;10(2):413–24.

    CAS  PubMed  Google Scholar 

  175. Weening JJ, D’Agati VD, Schwartz MM, et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. J Am Soc Nephrol. 2004;15(2):241–50.

    Article  PubMed  Google Scholar 

  176. Cameron JS. Lupus and lupus nephritis in children. Adv Nephrol Necker Hosp. 1993;22:59–119.

    CAS  PubMed  Google Scholar 

  177. Mina R, von Scheven E, Ardoin SP, et al. Consensus treatment plans for induction therapy of newly diagnosed proliferative lupus nephritis in juvenile systemic lupus erythematosus. Arthritis Care Res. 2012;64(3):375–83.

    Article  Google Scholar 

  178. West CD. Idiopathic membranoproliferative glomerulonephritis in childhood. Pediatr Nephrol. 1992;6(1):96–103.

    Article  CAS  PubMed  Google Scholar 

  179. Wyatt RJ, McAdams AJ, Forristal J, Snyder J, West CD. Glomerular deposition of complement-control proteins in acute and chronic glomerulonephritis. Kidney Int. 1979;16(4):505–12.

    Article  CAS  PubMed  Google Scholar 

  180. Spitzer RE, Vallota EH, Forristal J, et al. Serum C'3 lytic system in patients with glomerulonephritis. Science. 1969;164(3878):436–7.

    Article  CAS  PubMed  Google Scholar 

  181. Sethi S, Fervenza FC. Membranoproliferative glomerulonephritis: pathogenetic heterogeneity and proposal for a new classification. Semin Nephrol. 2011;31(4):341–8.

    Article  CAS  PubMed  Google Scholar 

  182. Sethi S, Fervenza FC. Membranoproliferative glomerulonephritis–a new look at an old entity. N Engl J Med. 2012;366(12):1119–31.

    Article  CAS  PubMed  Google Scholar 

  183. Cattran DC. Current status of cyclosporin A in the treatment of membranous, IgA and membranoproliferative glomerulonephritis. Clin Nephrol. 1991;35 Suppl 1:S43–7.

    PubMed  Google Scholar 

  184. Choi MJ, Eustace JA, Gimenez LF, et al. Mycophenolate mofetil treatment for primary glomerular diseases. Kidney Int. 2002;61(3):1098–114.

    Article  CAS  PubMed  Google Scholar 

  185. Yuan M, Zou J, Zhang X, et al. Combination therapy with mycophenolate mofetil and prednisone in steroid-resistant idiopathic membranoproliferative glomerulonephritis. Clin Nephrol. 2010;73(5):354–9.

    Article  CAS  PubMed  Google Scholar 

  186. Vivarelli M, Pasini A, Emma F. Eculizumab for the treatment of dense-deposit disease. N Engl J Med. 2012;366(12):1163–5.

    Article  CAS  PubMed  Google Scholar 

  187. Radhakrishnan S, Lunn A, Kirschfink M, et al. Eculizumab and refractory membranoproliferative glomerulonephritis. N Engl J Med. 2012;366(12):1165–6.

    Article  CAS  PubMed  Google Scholar 

  188. Dillon JJ, Hladunewich M, Haley WE, Reich HN, Cattran DC, Fervenza FC. Rituximab therapy for Type I membranoproliferative glomerulonephritis. Clin Nephrol. 2012;77(4):290–5.

    Article  CAS  PubMed  Google Scholar 

  189. Guo S, Kowalewska J, Wietecha TA, et al. Renin-angiotensin system blockade is renoprotective in immune complex-mediated glomerulonephritis. J Am Soc Nephrol. 2008;19(6):1168–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Giri S, Mahajan SK, Sen R, Sharma A. Effects of angiotensin converting enzyme inhibitor on renal function in patients of membranoproliferative glomerulonephritis with mild to moderate renal insufficiency. J Assoc Physicians India. 2002;50:1245–9.

    CAS  PubMed  Google Scholar 

  191. Braun MC, Stablein DM, Hamiwka LA, Bell L, Bartosh SM, Strife CF. Recurrence of membranoproliferative glomerulonephritis type II in renal allografts: the North American Pediatric Renal Transplant Cooperative Study experience. J Am Soc Nephrol. 2005;16(7):2225–33.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick D. Brophy MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Harshman, L.A., Brophy, P.D., Nester, C.M. (2014). Kidney Disorders in the PICU: Thrombotic Microangiopathies and Glomerulonephritis. In: Wheeler, D., Wong, H., Shanley, T. (eds) Pediatric Critical Care Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6416-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6416-6_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6415-9

  • Online ISBN: 978-1-4471-6416-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics