Advertisement

The Brain Computer Interface: Barriers to Becoming Pervasive

  • G. Lightbody Email author
  • L. Galway
  • P. McCullagh
Chapter
Part of the Human–Computer Interaction Series book series (HCIS)

Abstract

The ability to communicate one’s intentions without speech or muscular engagement has been a topic of great scientific interest over the last 30 years.

Keywords

Motor Imagery Assistive Technology Input Modality Brain Computer Interface Flicker Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Allison, B. Z., Wolpaw, E. W., & Wolpaw, J. R. (2007). Brain computer interface systems: progress and prospects. British Review of Medical Devices, 4(4), 463–474.CrossRefGoogle Scholar
  2. 2.
    Allison, B. Z., Luth, T., Valbuena, D., Teymourian, A., Volosyak, I., & Graser, A. (2010a). Bci demographics: how many (and what kinds of) people can use an ssvep bci? IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(2), 107–116.CrossRefGoogle Scholar
  3. 3.
    Allison, B. Z., & Neuper, C. (2010). Could anyone use a BCI? In Brain-Computer Interfaces (pp. 35–54). London: Springer.Google Scholar
  4. 4.
    Allison, B. Z. (2011). Future BNCI: A roadmap for future directions in Brain / Neuronal computer interaction research. [Online] http://future-bnci.org/images/stories/Future_BNCI_Roadmap.pdf [Accessed: December 2013]
  5. 5.
    Allison, B. Z., Leeb, R., Brunner, C., Müller-Putz, G. R., Bauernfeind, G., Kelly, J. W., et al. (2012). Toward smarter bcis: extending bcis through hybridization and intelligent control. Journal of Neural Engineering, 9(1), 013001.CrossRefGoogle Scholar
  6. 6.
    Allison, B. Z., Dunne, S., Leeb, R., Millán, J. D. R., & Nijholt, A. (2013). Recent and upcoming BCI progress: Overview, analysis, and recommendations. In Towards Practical Brain-Computer Interfaces (pp. 1–13). Berlin, Heidelberg: Springer.Google Scholar
  7. 7.
    Aspinall, P., Mavros, P., Coyne, R., & Roe, J. (2013). The urban brain: Analysing outdoor physical activity with mobile EEG. British Journal of Sports Medicine. doi: 10.1136/bjsports-2012-091877
  8. 8.
    BackHome. (2013). Brain-neural computer interfaces on track to home—Development of a practical generation of BNCI for independent home use, EU FP7 Project. [Online] http://www.backhome-fp7.eu/ [Accessed: May 2013]
  9. 9.
    BCI Appliance. (2013). INCF neuro informatics 2012, BCI appliance presented at CeBit 2012. [Online] http://www.neuroinformatics2012.org/abstracts/bci-appliance [Accessed: August 2013]
  10. 10.
    BCInet. (2013). BCInet NIA game controller. [online] http://www.bcinet.com/products/ [Accessed December 2013]
  11. 11.
    Birbaumer, N., & Cohen, L. G. (2007). Brain-computer interfaces: communication and restoration of movement in paralysis. The Journal of Physiology, 579(3), 621–636.CrossRefGoogle Scholar
  12. 12.
    Blain-Moraes, S., Schaff, R., Gruis, K. L., Huggins, J. E., & Wren, P. A. (2012). Barriers to and mediators of brain-computer interface user acceptance: focus group findings. Ergonomics, 55(5), 516–525.CrossRefGoogle Scholar
  13. 13.
    BRAIN. (2011). BCIs with rapid automated interfaces for nonexperts EU FP7 (ICT-2007-224156). [online] http://www.brain-project.org/ [Accessed December 2013]
  14. 14.
    Brainable. (2012). Autonomy and social inclusion through mixed reality Brain-Computer Interfaces. [online] http://www.brainable.org/ [Accessed December 2013]
  15. 15.
    Chumerin, N., Manyakov, N. V., van Vliet, M., Robben, A., Combaz, A., & Van Hulle, M. M. (2013). Steady-state visual evoked potential-based computer gaming on a consumer-grade eeg device. IEEE Transactions on Computational Intelligence and AI in Games, 5(2), 100–110.CrossRefGoogle Scholar
  16. 16.
    Coyle, D., Principe, J., & Lotte, F. (2013). Nijholt, A. Brain/neuronal computer games interfaces and interaction: Guest editorial.Google Scholar
  17. 17.
    Durka, P., Kus, R., Zygierewicz, J., Milanowski, P., & Garcia, G. (2009). High-frequency SSVEP responses parametrized by multichannel matching pursuit. In Frontiers in Neuroinformatics. Conference Abstract: 2nd INCF Congress of Neuroinformatics.Google Scholar
  18. 18.
    Ehlers, J., Volosyak, I., & Lüth, T. (2010). “toward a bci wizard”, in methods and applications in automation. Publication Series of the Institute of Automation: Shaker Verlag, 2010, 65–73.Google Scholar
  19. 19.
    Emotiv. (2013). Home page for Emotiv. [Online] http://www.emotiv.com [Accessed August 2013]
  20. 20.
    Emotiv App Store. (2013). [Online] http://www.emotiv.com/store [Accessed August 2013]
  21. 21.
    Emotiv Insight. (2013). Emotiv insight. [Online] http://emotivinsight.com/ [Accessed December 2013]
  22. 22.
    EU. (2013). The human brain project. [online] https://www.humanbrainproject.eu/ [Accessed December 2013]
  23. 23.
    Favela, J. (2013). Behavior-aware computing: applications and challenges. Pervasive Computing, 12(3), 14–17.CrossRefGoogle Scholar
  24. 24.
    Ferscha, A. (2012). 20 yeas past weiser: what’s next? Pervasive Computing, 11(1), 52–61.CrossRefGoogle Scholar
  25. 25.
    Friman, O., Lüth, T., Volosyak, I., & Gräser, A. (2007). Spelling with steady-state visual evoked potentials. Proceedings of the 3rd International IEEE EMBS Conference on Neural Engineering Kohala Coast, Hawaii, USA, May 2–5, 2007.Google Scholar
  26. 26.
    Frontier Nerds. (2010). [Online] http://frontiernerds.com/brain-hack [Accessed August 2013]
  27. 27.
    Gartner. (2011). Gartner’s 2011 hype cycle special report evaluates the maturity of 1,900 technologies. [Online] http://www.gartner.com/newsroom/id/1763814 [Accessed May 2013]
  28. 28.
    Graimann, B., Allison, B., & Pfurtscheller, G., (Eds). (2010). Brain-computer interfaces: Revolutionizing human-computer interaction (The Frontiers Collection). Springer.Google Scholar
  29. 29.
    Grübler, G. (2011). Beyond the responsibility gap. discussion note on responsibility and liability in the use of brain-computer interfaces (pp. 1–6). AI & Society.Google Scholar
  30. 30.
    Guger, C., Daban, S., Sellers, E., Holzner, C., Krausz, G., Carabalona, R., et al. (2009). How many people are able to control a p300-based brain-computer interface (bci)? Neuroscience Letters, 462(1), 94–98.CrossRefGoogle Scholar
  31. 31.
    gTec Sahara. (2013). gTec sahara dry electrodes. [Online] http://www.gtec.at/Products/Electrodes-and-Sensors/g.SAHARA-Specs-Features [Accessed August 2013]
  32. 32.
    Hill, J., Brunner, P., & Vaughan, T. (2011). Interface design challenge for brain-computer interaction. In Foundations of Augmented Cognition. Directing the Future of Adaptive Systems (pp. 500–506). Berlin Heidelberg: Springer.Google Scholar
  33. 33.
    Hood, D., Joseph, D., Rakotonirainy, A., Sridharan, S., & Fookes, C. (2012, October). Use of brain computer interface to drive: preliminary results. In Proceedings of the 4th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 103–106). ACM.Google Scholar
  34. 34.
  35. 35.
    Instructables. (2013). [Online] http://www.instructables.com/id/How-to-hack-EEG-toys-with-arduino/ [Accessed August 2013]
  36. 36.
    Intendix. (2013). [Online] http://www.intendix.com/ [Accessed August 2013]
  37. 37.
    Jackson, M. M., & Mappus, R. (2010). Applications for brain-computer interfaces. In Brain-Computer Interfaces (pp. 89–103). London: Springer.Google Scholar
  38. 38.
    Kaplan, A. Y., Shishkin, S. L., Ganin, I. P., Basyul, I. A., & Zhigalov, A. (2013). Adapting the p300-based brain-computer interface for gaming: a review. IEEE Transactions on Computational Intelligence and AI in Games, 5(2), 141–149.CrossRefGoogle Scholar
  39. 39.
    Kharrazi, H., Lu, A. S., Gharghabi, F., & Coleman, W. (2012). A scoping review of health game research: past, present, and future. Games For Health Journal, 1(2), 153–164.CrossRefGoogle Scholar
  40. 40.
    Kickstarter. (2013a). Emotiv insight. [Online] http://www.kickstarter.com/projects/tanttle/emotiv-insight-optimize-your-brain-fitness-and-per [Accessed August 2013]
  41. 41.
  42. 42.
    Kleih, S. C., Nijboer, F., Halder, S., & Kübler, A. (2010). Motivation modulates the p300 amplitude during brain-computer interface use. Clinical Neurophysiology, 121(7), 1023–1031.CrossRefGoogle Scholar
  43. 43.
    Kokar, M. W., & Endsley, M. R. (2012). Situation awareness and cognitive modeling. IEEE Intelligent Systems, 27(3), 91–96.CrossRefGoogle Scholar
  44. 44.
    Kübler, A., Kotchoubey, B., Kaiser, J., Wolpaw, J. R., & Birbaumer, N. (2001). Brain-computer communication: unlocking the locked in. Psychological Bulletin, 127(3), 358.CrossRefGoogle Scholar
  45. 45.
    Lance, B. J., Kerick, S. E., Ries, A. J., Oie, K. S., & McDowell, K. (2012). Brain-computer interface technologies in the coming decades. Proceedings of the IEEE, 100, 1585–1599.CrossRefGoogle Scholar
  46. 46.
  47. 47.
    Lightbody, G., Ware, M., McCullagh, P., Mulvenna, M., Thomson, E., & Martin, S. (2010). A user centred approach for developing brain-computer interfaces. 2010 4th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 1–8.Google Scholar
  48. 48.
    López, J. F., Muñoz, J., Henao, O., & Villada, J. F. (2013). BKI: Brain Kinect Interface, a new hybrid BCI for rehabilitation. In Games for Health (pp. 233–245). Wiesbaden: Springer Fachmedien.Google Scholar
  49. 49.
    Luo, A., & Sullivan, T. (2010). A user-friendly ssvep-based brain-computer interface using a time-domain classifier. Journal of Neural Engineering, 7, 1–10. doi: 10.1088/1741-2560/7/2/026010.CrossRefGoogle Scholar
  50. 50.
    Marshall, D., Coyle, D., Wilson, S., & Callaghan, M. (2013). Games, gameplay, and bci: the state of the art. IEEE Transactions on Computational Intelligence and AI in Games, 5(2), 82–99.CrossRefGoogle Scholar
  51. 51.
    McCullagh, P.J., Ware, M., Mulvenna, M., Lightbody, G., Nugent, C. D., & McAllister, H. G. (2010a). Can brain computer interfaces become practical assistive devices in the community? In: Medinfo 2010. Studies in Health Technology and Informatics, 160, 314–318.Google Scholar
  52. 52.
    McCullagh, P. J., Ware, M., Lightbody, G., Mulvenna, M., McAllister, H. G., & Nugent, C. D. (2010b). Can brain computer interfaces become personal health devices? In 7th International Conference on Wearable Micro and Nano Technologies for Personalized Health, May 26–28, 2010, CD Conference Proceedings.Google Scholar
  53. 53.
    McCullagh, P., Ware, M., McRoberts, A., Lightbody, G., Mulvenna, M., McAllister G., González J. L., and Medina, V. C. (2011). Towards standardized user and application interfaces for the brain computer interface. In Universal Access in Human-Computer Interaction. Users Diversity (pp. 573–582). Berlin, Heidelberg: Springer.Google Scholar
  54. 54.
    McCullagh, P.J., Galway, L., & Lightbody, G. (2013a) Investigation into a mixed hybrid using SSVEP and eye gaze for optimising user interaction within a virtual environment. In Universal Access in Human-Computer Interaction. Design Methods, Tools, and Interaction Techniques for EInclusion (pp. 530–539). Berlin, Heidelberg: Springer.Google Scholar
  55. 55.
    McCullagh, P., Lightbody, G., Zygierewicz, J., & Kernohan, W.G. (2013b). Ethical challenges associated with the development and deployment of brain computer interface technology. Neuroethics, 1–14.Google Scholar
  56. 56.
    Melon. (2013). Melon headband for improving focus. [online] http://www.usemelon.com [Accessed December 2013]
  57. 57.
    Millán, J., Rupp, R., Müller-Putz, G. R., Murray-Smith, R., Giugliemma, C., Tangermann, M., et al. (2010). Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges. Frontiers in Neuroscience, 4, 161.Google Scholar
  58. 58.
    MindFlex. (2013). Mind flex duel from mattel incorporated. [online] http://mindflexgames.com/ [Accessed December 2013]
  59. 59.
    MindSet. (2013). NeuroSky mindSet. [online] http://www.neurosky.com/products/mindset.aspx [Accessed December 2013]
  60. 60.
    Müller-Putz, G. R., Breitwieser, C., Cincotti, F., Leeb, R., Schreuder, M., Leotta, F., et al. (2011). Tools for brain-computer interaction: a general concept for a hybrid bci. Frontiers in Neuroinformatics, 5, 30. doi: 10.3389/fninf.2011.00030.CrossRefGoogle Scholar
  61. 61.
    Mulvenna, M., Lightbody, G., Thomson, E., McCullagh, P., Ware, M., & Martin, S. (2012). Realistic expectations with brain computer interfaces. Journal of Assistive Technologies, 6(4), 233–244.CrossRefGoogle Scholar
  62. 62.
    Muse. (2013). Interaxon muse brain sensing headband. [online] http://www.interaxon.ca/muse/ [Accessed December 2013]
  63. 63.
    MyndPlay. (2013). MyndPlay. [online] http://www.myndplay.com/products.php [Accessed December 2013]
  64. 64.
    Neuper, C., & Pfurtscheller, G. (2010). Neurofeedback training for BCI control. In Brain-Computer Interfaces (pp. 65–78). Berlin, Heidelberg: Springer.Google Scholar
  65. 65.
    NeuroElectrics. (2013). Neuro electrics. [online] http://www.neuroelectrics.com [Accessed December 2013]
  66. 66.
    NeuroSky. (2009). Instruction Manual NeuroSky MindSet. [Online] http://developer.neurosky.com/docs/doku.php?id=mindset_instruction_manual [Accessed: August 2013]
  67. 67.
    NeuroSky. (2013). NeuroSky incorporated website. [online] http://www.neurosky.com/ [Accessed December 2013]
  68. 68.
    NeuroSky App Store. (2013). [Online] http://store.neurosky.com/collections/applications [Accessed: August 2013]
  69. 69.
    Nijboer, F., & Broermann, U. (2010). Brain-computer interfaces for communication and control in locked-in patients. In Brain-Computer Interfaces (pp. 185–201). Berlin, Heidelberg: Springer.Google Scholar
  70. 70.
    Nijholt, A., van Erp, J. B. F., & Heylen, D. K. J. (2008). BrainGain: BCI for HCI and Games. In Symposium Brain Computer Interfaces and Human Computer Interaction: A Convergence of Ideas at the AISB 2008 Convention “Communication, Interaction and Social Intelligence”, Aberdeen, UK, 32–35, 2008.Google Scholar
  71. 71.
    Nijholt, A., Plass-Oude Bos, D., & Reuderink, B. (2009). Turning shortcomings into challenges: brain-computer interfaces for games. Entertainment Computing, 1, 85–94.CrossRefGoogle Scholar
  72. 72.
    Nuffield Council on Bioethics. (2012). Novel neurotechnologies: Intervening in the brain. [Online] http://www.nuffieldbioethics.org/neurotechnology [Accessed: April 2013]
  73. 73.
    Obama. (2013). Obama proposes brain mapping project. [online] http://www.bbc.co.uk/news/science-environment-22007007 [Accessed December 2013]
  74. 74.
    OpenBCI. (2013). [Online] http://bci.fuw.edu.pl/wiki/OpenBCI_system [Accessed: August 2013]
  75. 75.
    OpenEEG. (2013) OpenEEG project. [online] http://openeeg.sourceforge.net/doc/ [Accessed December 2013]
  76. 76.
    Ortner, R., Ram, D., Kollreider, A., Pitsch, H., Wojtowicz, J., & Edlinger, G. (2013). Human-Computer Confluence for Rehabilitation Purposes after Stroke. In Virtual, Augmented and Mixed Reality. Systems and Applications (pp. 74–82). Berlin, Heidelberg: Springer.Google Scholar
  77. 77.
    Piccini, L., Parini, S., Maggi, L., & Andreoni, G. (2005). A Wearable Home BCI system: preliminary results with SSVEP protocol. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, September 1–4, 2005.Google Scholar
  78. 78.
    Pfurtscheller, G., Allison, B. Z., Brunner, C., Bauemfeind, G., Solis-Escalante, T., Scherer, R., et al. (2010). The hybrid bci. Frontiers in Neuroscience, 4, 42. doi: 10.3389/fnpro.2010.00003
  79. 79.
    Plass-Oude Bos, D., Reuderink, B., van de Laar, B., Gürkök, H., Mühl, C., Poel, M., et al. (2010). Brain-computer interfacing and games. In D. S. Tan & A. Nijholt (Eds.), Brain-computer interfaces, human-computer interaction series (pp. 149–178). London: Springer.Google Scholar
  80. 80.
    Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., & Wolpaw, J. R. (2004). BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Transactions on Biomedical Engineering, 51(6), 1034–1043.Google Scholar
  81. 81.
    Sellers, E. W., Vaughan, T. M., & Wolpaw, J. R. (2010). A brain-computer interface for long-term independent home use. Amyotrophic Lateral Sclerosis, 11(5), 449–455.CrossRefGoogle Scholar
  82. 82.
    Spüler, M., Rosenstiel, W., & Bogdan, M. (2012a). Online adaptation of a c-vep brain-computer interface (bci) based on error-related potentials and unsupervised learning. PloS One, 7(12), e51077.CrossRefGoogle Scholar
  83. 83.
    Spüler, M., Bensch, M., Kleih, S., Rosenstiel, W., Bogdan, M., & Kübler, A. (2012b). Online use of error-related potentials in healthy users and people with severe motor impairment increases performance of a p300-bci. Clinical Neurophysiology, 123(7), 1328–1337.CrossRefGoogle Scholar
  84. 84.
    Star Wars. (2013). Uncle Milton industries incorporated star wars force trainer. [online] http://unclemilton.com/star_wars_science/#/the_force_trainer/ [Accessed December 2013]
  85. 85.
    Sung, Y., Cho, K., & Um, K. (2012). A development architecture for serious games using bci (brain computer interface) sensors. Sensors, 12, 15671–15688.CrossRefGoogle Scholar
  86. 86.
    Tan, D. S., & Nijholt, A. (Eds.). (2010). Brain-computer interfaces—Applying our minds to human-computer interaction. Springer.Google Scholar
  87. 87.
    Vaadia E. & Birbaumer, N. (2009). Grand challenges in brain computer interface. Frontiers in Neuroscience, 3(2).Google Scholar
  88. 88.
    van de Laar, B. L. A., Brugman, I., Nijboer, F., Poel, M. & Nijholt, A. (2013). BrainBrush, a multimodal application for creative expressivity. In Sixth International Conference on Advances in Computer-Human Interactions (ACHI 2013), pp. 62–67.Google Scholar
  89. 89.
    van de Laar, B., Gürkök, H., Poel, M., & Nijholt, A. (2013). Experiencing bci control in a popular computer game. IEEE Transactions on Computational Intelligence and AI in Games, 5(2), 176–184.CrossRefGoogle Scholar
  90. 90.
    Varshney, U. (2007). Pervasive healthcare and wireless health monitoring. Mobile Networks and Applications, 12(2–3), 113–127.CrossRefGoogle Scholar
  91. 91.
    Vlek, R. J., Steines, D., Szibbo, D., Kübler, A., Schneider, M. J., Haselager, P., et al. (2012). Ethical issues in brain-computer interface research, development, and dissemination. Journal of Neurologic Physical Therapy, 36(2), 94.CrossRefGoogle Scholar
  92. 92.
    Volosyak, I., Valbuena, D., Malechka, T., Peuscher, J., & Gräser, A. (2010). Brain-computer interface using water-based electrodes. Journal of Neural Engineering, 7(6), 066007.CrossRefGoogle Scholar
  93. 93.
    Ware, M. P., McCullagh, P. J., McRoberts, A., Lightbody, G., Nugent, C., McAllister, G., et al. (2010). Contrasting levels of accuracy in command interaction sequences for a domestic brain-computer interface using SSVEP. In 2010 5th Cairo International Biomedical Engineering Conference (CIBEC) (pp. 150–153). IEEE.Google Scholar
  94. 94.
    Weiser, M. (1991). The computer for the 21st century. Scientific American, 265(3), 94–104.CrossRefGoogle Scholar
  95. 95.
    Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain computer inter-faces for communication and control. Clin Neurophysiol, 113(6), 767–791.CrossRefGoogle Scholar
  96. 96.
    Wolpaw, J. R., & Wolpaw, E. (Eds.). (2012). Brain-computer interfaces: Principles and practice. USA: Oxford University Press.Google Scholar
  97. 97.
    Yoh, M. -S., Kwon, J., & Kim, S. (2010). NeuroWander: A BCI game in the form of interactive fairy tale. In Proceedings of the 12th ACM International Conference Adjunct Papers on Ubiquitous Computing, New York, USA, pp. 389–390.Google Scholar
  98. 98.
    Yong, X., Fatourechi, M., Ward, R. K. & Birch, G. E. (2011). The design of a point-and-click system by integrating a self-paced brain-computer interface with an eye-tracker. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 1(4), 590–602.Google Scholar
  99. 99.
    Zander, T. O., Kothe, C., Welke, S., & Roetting, M. (2008). Enhancing human-machine systems with secondary input from passive brain-computer interfaces. In Proceedings of the 4th International BCI Workshop and Training Course (Graz, Austria, 2008). Graz University of Technology Publishing House.Google Scholar
  100. 100.
    Zander, T. O., Kothe, C., Jatzev, S., & Gaertner, M. (2010). Enhancing human-computer interaction with input from active and passive brain-computer interfaces. In D. S. Tan & A. Nijholt (Eds.), Brain-computer interfaces (pp. 181–199). London: Springer.CrossRefGoogle Scholar
  101. 101.
    Zander, T. O., Gaertner, M., Kothe, C., & Vilimek, R. (2011). Combining eye gaze input with a brain-computer interface for touchless human-computer interaction. International Journal of Human-Computer Studies, 27, 38–51.CrossRefGoogle Scholar
  102. 102.
    Zander, T. O., & Jatzev, S. (2012). Context-aware brain-computer interfaces: exploring the information space of user, technical system and environment. Journal of Neural Engineering, 9(1), 016003.CrossRefGoogle Scholar
  103. 103.
    Zhu, D., Bieger, J., Molina, G. G., & Aarts, R. M. (2010). A survey of stimulation methods used in SSVEP-based BCIs. Computational Intelligence and Neuroscience, 1.Google Scholar

Further Readings

  1. 104.
    Allison, B. Z. (2011). Future BNCI: A roadmap for future directions in brain/Neuronal computer interaction research. [Online] http://future-bnci.org/images/stories/Future_BNCI_Roadmap.pdf [Accessed: September 2012]

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Smart Environments Research Group School of Computing and MathematicsUniversity of UlsterNewtownabbeyUK

Personalised recommendations