Skip to main content

Introduction, Preliminaries and I/O Data Set Models

  • Chapter
  • First Online:
Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems

Part of the book series: Advances in Industrial Control ((AIC))

  • 3663 Accesses

Abstract

Process monitoring and fault diagnosis for dynamic processes are currently receiving considerably increasing attention in the application and research domains. Thanks to their intimate relations to automatic control systems, model-based schemes are widely accepted as a powerful technology in dealing with process monitoring and fault diagnosis for dynamic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russell EL, Chiang L, Braatz RD (2000) Data-driven techniques for fault detection and diagnosis in chemical processes. Springer-Verlag, London

    Book  Google Scholar 

  2. Russell EL, Chiang LH, Braatz RD (2000) Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. Chemom Intell Lab Syst 51:81–93

    Article  Google Scholar 

  3. Li W, Qin SJ (2001) Consistent dynamic PCA based on errors-in-variables subspace identification. J Process Control 11:661–678

    Article  Google Scholar 

  4. Li W, Yue HH, Valle-Cervantes S, Qin SJ (2000) Recursive PCA for adaptive process monitoring. J Process Control 10:471–486

    Article  Google Scholar 

  5. Qin SJ (1998) Recursive PLS algorithms for adaptive data modeling. Comput Chem Eng 22:503–514

    Article  Google Scholar 

  6. Wang X, Kruger U, Irwin GW (2005) Process monitoring approach using fast moving window PCA. Ind Eng Chem Res 44:5691–5702

    Article  Google Scholar 

  7. Garcia-Alvares D, Fuente MJ, Sainz GJ (2012) Fault detection and isolation in transient states using principal component analysis. J Process Control 22:551–563

    Article  Google Scholar 

  8. Favoreel W, Moor BD, Overschee PV (2000) Subspace state space system identification for industrial processes. J Process Control 10:149–155

    Article  Google Scholar 

  9. Overschee PV, Moor BD (1996) Subspace identification for linear systems. Kluwer Academic Publishers, USA

    Book  MATH  Google Scholar 

  10. Qin SJ (2006) An overview of subspace identification. Comp Chem Eng 30:1502–1513

    Article  Google Scholar 

  11. Huang B, Kadali R (2008) Dynamic modelling, predictive control and performance monitoring, a data-driven subspace approach. Springer-Verlag, London

    Google Scholar 

  12. Qin SJ, Li W (2001) Detection and identification of faulty sensors in dynamic processes. AIChE J 47:1581–1593

    Article  Google Scholar 

  13. Ding SX, Zhang P, Naik A, Ding E, Huang B (2009) Subspace method aided data-driven design of fault detection and isolation systems. J Process Control 19:1496–1510

    Article  Google Scholar 

  14. Dong J, Verhaegen M (2009) Subspace based fault detection and identification for LTI systems. In: Proceedings of the 7th IFAC symposium SAFEPROCESS, pp 330–335

    Google Scholar 

  15. Dong J (2009) Data driven fault tolerant control: a subspace approach. PhD dissertation, Technische Universiteit Delft

    Google Scholar 

  16. Gertler JJ (1998) Fault detection and diagnosis in engineering systems. Marcel Dekker, New York, Basel, Hong Kong

    Google Scholar 

  17. Mangoubi R (1998) Robust estimation and failure detection. Springer, London

    Book  Google Scholar 

  18. Chen J, Patton RJ (1999) Robust model-based fault diagnosis for dynamic systems. Kluwer Academic Publishers, Boston

    Google Scholar 

  19. Patton RJ, Frank PM, Clark RN (eds) (2000) Issues of fault diagnosis for dynamic systems. Springer, London

    Google Scholar 

  20. Gustafsson F (2000) Adaptive filtering and change detection. Wiley, Chichester

    Google Scholar 

  21. Chiang LH, Russell EL, Braatz RD (2001) Fault detection and diagnosis in industrial systems. Springer, London

    Google Scholar 

  22. Blanke M, Kinnaert M, Lunze J, Staroswiecki M (2006) Diagnosis and fault-tolerant control, 2nd edn. Springer, Berlin Heidelberg

    Google Scholar 

  23. Simani S, Fantuzzi S, Patton RJ (2003) Model-based fault diagnosis in dynamic systems using identification techniques. Springer-Verlag, London

    Google Scholar 

  24. Isermann R (2006) Fault diagnosis systems. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  25. Ding SX (2013) Model-based fault diagnosis techniques—design schemes, algorithms and tools, 2nd edn. Springer-Verlag, London

    Google Scholar 

  26. Frank PM, Ding X (1997) Survey of robust residual generation and evaluation methods in observer-based fault detection systems. J Process Control 7(6):403–424

    Google Scholar 

  27. Zhang P, Ding SX (2008) On fault detection in linear discrete-time, periodic, and sampled-data systems (survey). J Control Sci Eng 2008:1–18

    Google Scholar 

  28. Mangoubi R, Desai M, Edelmayer A, Sammak P (2009) Robust detection and estimation in dynamic systems and statistical signal processing: intersection, parallel paths and applications. Eur J Control 15:348–369

    Article  MathSciNet  Google Scholar 

  29. Hwang I, Kim S, Kim Y, Seah C (2010) A survey of fault detection, isolation, and reconfiguration methods. IEEE Trans Control Syst Tech 18:636–653

    Article  Google Scholar 

  30. Beard R (1971) Failure accomondation in linear systems through self-reorganization. PhD dissertation, MIT

    Google Scholar 

  31. Jones H (1973) Failure detection in linear systems. PhD dissertation, MIT

    Google Scholar 

  32. Chow EY, Willsky AS (1984) Analytical redundancy and the design of robust failure detection systems. IEEE Trans Autom Control 29:603–614

    Article  MATH  MathSciNet  Google Scholar 

  33. Van der Schaft A (2000) L2—gain and passivity techniques in nonlinear control. Springer, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven X. Ding .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Ding, S.X. (2014). Introduction, Preliminaries and I/O Data Set Models. In: Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-6410-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6410-4_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6409-8

  • Online ISBN: 978-1-4471-6410-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics