Skip to main content

Towards BCI-Based Implicit Control in Human–Computer Interaction

Part of the Human–Computer Interaction Series book series (HCIS)

Abstract

In this chapter a specific aspect of Physiological Computing, that of implicit Human–Computer Interaction, is defined and discussed. Implicit Interaction aims at controlling a computer system by behavioural or psychophysiological aspects of user state, independently of any intentionally communicated command. This introduces a new type of Human–Computer Interaction, which in contrast to most forms of interaction implemented nowadays, does not require the user to explicitly communicate with the machine. Users can focus on understanding the current state of the system and developing strategies for optimally reaching the goal of the given interaction. For example, the system can assess the user state by means of passive Brain-Computer Interfaces, which the user needs not even be aware of. Based on this information and the given context the system can adapt automatically to the current strategies of the user. In a first study, a proof of principle is given, by implementing an Implicit Interaction to guide simple cursor movements in a 2D grid to a target. The results of this study clearly indicate the high potential of Implicit Interaction and introduce a new bandwidth of applications for passive Brain-Computer Interfaces.

Keywords

  • Amyotrophic Lateral Sclerosis
  • User State
  • Motor Imagery
  • Technical System
  • Implicit Information

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4471-6392-3_4
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-1-4471-6392-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 4.1

References

  • Acqualagna L, Blankertz B (2011) A gaze independent spelling based on rapid serial visual presentation. In: Proceedings IEEE engineering medicine biology society conference, pp 4560–4563

    Google Scholar 

  • Bai O, Lin P, Vorbach S, Floeter MK, Hattori N, Hallett M (2008) A high performance sensorimotor beta rhythm-based brain-computer interface associated with human natural motor behavior. J Neural Eng 5(1):24–35

    Google Scholar 

  • Balderas D, Zander TO, Bachl F, Neuper C, Scherer R (2011) Restricted boltzmann machines as useful tool for detecting oscillatory EEG components. In: Proceedings of the 5th international brain-computer interface conference, Graz, pp 68–71

    Google Scholar 

  • Beverina F, Palmas G, Silvoni S, Piccione F, Giove S (2003) User adaptive BCIs: SSVEP and P300 based interfaces. J Psych Nology 1:331–354

    Google Scholar 

  • Bin G, Gao X, Yan Z, Hong B, Gao S (2009) An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. J Neural Eng 6(4):046,002

    Google Scholar 

  • Birbaumer N (2006) Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. Psychophysiology 43(6):517–532

    CrossRef  Google Scholar 

  • Birbaumer N, Cohen LG (2007) Brain-computer interfaces: communication and restoration of movement in paralysis. J Physiol 579(3):621–636

    CrossRef  Google Scholar 

  • Birbaumer N, Elbert T, Canavan AG, Rockstroh B (1990) Slow potentials of the cerebral cortex and behavior. Physiol Rev 70(1):1–41

    Google Scholar 

  • Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H (1999) A spelling device for the paralysed. Nature 398(6725):297–298

    CrossRef  Google Scholar 

  • Birbaumer N, Hinterberger T, Kübler A, Neumann N (2003) The thought-translation device (TTD): neurobehavioral mechanisms and clinical outcome. IEEE Trans Neural Syst Rehabil Eng 11(2):120–123

    CrossRef  Google Scholar 

  • Blankertz B, Schäfer C, Dornhege G, Curio G (2002a) Single trial detection of EEG error potentials: a tool for increasing BCI transmission rates. In: Dorronsoro JR (ed) Artificial neural networks—ICANN 2002, vol 2415., Lecture notes in computer science Springer, Berlin, pp 1137–1143

    CrossRef  Google Scholar 

  • Blankertz B, Schäfer C, Dornhege G, Curio G (2002b) Single trial detection of EEG error potentials: a tool for increasing BCI transmission rates. In: Artificial Neural Networks—ICANN 2002, Springer, pp 1137–1143

    Google Scholar 

  • Blankertz B, Krauledat M, Dornhege G, Williamson J, Murray-Smith R, Müller KR (2007) A note on brain actuated spelling with the Berlin brain-computer interface. In: Stephanidis C (ed) Universal access in human-computer interaction, Lecture notes in computer science, vol 4557. Springer, pp 759–768

    Google Scholar 

  • Blankertz B, Sannelli C, Halder S, Hammer E, Kübler A, Müller KR, Curio G, Dickhaus T (2010) Neurophysiological predictor of SMR-based BCI performance. NeuroImage 51(4):1303–1309

    CrossRef  Google Scholar 

  • Blankertz B, Lemm S, Treder M, Haufe S, Müller KR (2011) Single-trial analysis and classification of ERP components—a tutorial. NeuroImage 56(2):814–825

    CrossRef  Google Scholar 

  • Brouwer AM, van Erp J (2010) A tactile P300 brain-computer interface. Frontiers in Neuroscience 4(19):1–11

    Google Scholar 

  • Canento F, Fred A, Silva H, Gamboa H, Lourenço A (2011) Multimodal biosignal sensor data handling for emotion recognition. In: Sensors, 2011 IEEE, pp 647–650

    Google Scholar 

  • Coyle S, Ward T, Markham C, McDarby G (2004) On the suitability of near-infrared (NIR) systems for next-generation brain-computer interfaces. Physiol Meas 25(4):815–822

    CrossRef  Google Scholar 

  • Daly JJ, Wolpaw JR (2008) Brain-computer interfaces in neurological rehabilitation. Lancet Neurol 7(11):1032–1043

    CrossRef  Google Scholar 

  • Delorme A, Kothe C, Vankov A, Bigdely-Shamlo N, Oostenveld R, Zander TO, Makeig S (2010) MATLAB-based tools for BCI research. In: Tan DS, Nijholt A (eds) Brain-computer interfaces, human-computer interaction series, Springer, London, pp 241–259

    Google Scholar 

  • Duda RO, Hart PE et al (1973) Pattern classification and scene analysis. Wiley, New York

    MATH  Google Scholar 

  • Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Fairclough SH (2008) BCI and physiological computing for computer games: differences, similarities and intuitive control. In: Proceedings of CHIGÇÖ08

    Google Scholar 

  • Fairclough SH (2009) Fundamentals of physiological computing. Interact Comput 21(1):133–145

    CrossRef  Google Scholar 

  • Fang F, Liu Y, Shen Z (2003) Lie detection with contingent negative variation. Int J Psychophysiol 50(3):247–255

    CrossRef  Google Scholar 

  • Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523

    CrossRef  Google Scholar 

  • Ferrez PW, Millán JdR (2008) Simultaneous real-time detection of motor imagery and error-related potentials for improved BCI accuracy. In: Proceedings of the 4th international brain-computer interface workshop and training course, pp 197–202

    Google Scholar 

  • Furdea A, Halder S, Krusienski D, Bross D, Nijboer F, Birbaumer N, Kübler A (2009) An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology 46(3):617–625

    CrossRef  Google Scholar 

  • Gangadhar G, Chavarriaga R, Millán JdR (2009) Fast recognition of anticipation-related potentials. IEEE Trans Biomed Eng 56(4):1257–1260

    Google Scholar 

  • Gao X, Xu D, Cheng M, Gao M (2003) A BCI-based environmental controller for the motion-disabled. IEEE Trans Neural Syst Rehabil Eng 11(2):137–140

    CrossRef  Google Scholar 

  • Grimes D, Tan DS, Hudson SE, Pradeep S, Rao RP (2008) Feasibility and pragmatics of classifying working memory load with an electroencephalograph. In: Czerwinski M (ed) Proceedings of the twenty-sixth annual SIGCHI conference on Human factors in computing systems. ACM, New York, pp 835–844

    CrossRef  Google Scholar 

  • Guger C, Edlinger G, Harkam W, Niedermayer I, Pfurtscheller G (2003) How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans Neural Syst Rehabil Eng 11(2):145–147 (a publication of the IEEE Eng Med Biol Soc)

    Google Scholar 

  • Guger C, Daban S, Sellers E, Holzner C, Krausz G, Carabalona R, Gramatica F, Edlinger G (2009) How many people are able to control a P300-based brain-computer interface (BCI)? Neurosci Lett 462(1):94–98

    CrossRef  Google Scholar 

  • Hajcak G, McDonald N, Simons RF (2003) To err is autonomic: error-related brain potentials, ANS activity, and post-error compensatory behavior. Psychophysiology 40(6):895–903

    CrossRef  Google Scholar 

  • Hankins TC, Wilson GF (1998) A comparison of heart rate, eye activity, EEG and subjective measures of pilot mental workload during flight. Aviat Space Environ Med 69(4):360–367

    Google Scholar 

  • Hill NJ, Schölkopf B (2012) An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli. J Neural Eng 9(2):026,011

    Google Scholar 

  • Hinterberger T, Schmidt S, Neumann N, Mellinger J, Blankertz B, Curio G, Birbaumer N (2004) Brain-computer communication and slow cortical potentials. IEEE Trans Biomed Eng 51(6):1011–1018

    CrossRef  Google Scholar 

  • Holroyd CB, Coles MGH (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109(4):679–708

    CrossRef  Google Scholar 

  • Jacob RJ, Leggett JJ, Myers BA, Pausch R (1993) Interaction styles and input/output devices. Behav Inf Technol 12(2):69–79

    CrossRef  Google Scholar 

  • Kohlmorgen J, Dornhege G, Braun M, Blankertz B, Müller KR, Curio G, Hagemann K, Bruns A, Schrauf M, Kincses W (2007) Improving human performance in a real operating environment through real-time mental workload detection. In: Dornhege G, Millán JdR, Hinterberger T, McFarland DJ, Müller KR (eds) Toward brain-computer interfacing, Neural information processing series, MIT Press, Cambridge, pp 409–422

    Google Scholar 

  • Kothe CA, Makeig S (2013) BCILAB: a platform for brain-computer interface development. J Neural Eng 10(5):056,014

    Google Scholar 

  • Krauledat M, Tangermann M, Blankertz B, Müller KR (2008) Towards zero training for brain-computer interfacing. PLoS one 3(8):e2967

    CrossRef  Google Scholar 

  • Kübler A, Birbaumer N (2008) Brain-computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients? Clin Neurophysiol 119(11):2658–2666

    CrossRef  Google Scholar 

  • Kübler A, Nijboer F, Mellinger J, Vaughan TM, Pawelzik H, Schalk G, McFarland DJ, Birbaumer N, Wolpaw JR (2005) Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology 64(10):1775–1777

    CrossRef  Google Scholar 

  • Lal TN, Schröder M, Hill NJ, Preissl H, Hinterberger T, Mellinger J, Bogdan M, Rosenstiel W, Hofmann T, Birbaumer N, Schölkopf B (2005) A brain computer interface with online feedback based on magnetoencephalography. In: ICML ‘05 Proceedings of the 22nd international conference on machine learning, pp 465–472

    Google Scholar 

  • Lazarus RS, Speisman JC, Mordkoff AM (1963) The relationship between autonomic indicators of psychological stress: heart rate and skin conductance. Psychosom Med 25(1):19–30

    Google Scholar 

  • LeBlanc J, Blais B, Barabe B, Cote J (1976) Effects of temperature and wind on facial temperature, heart rate, and sensation. J Appl Physiol 40(2):127–131

    Google Scholar 

  • Lee JH, Ryu J, Jolesz FA, Cho ZH, Yoo SS (2009) Brain-machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm. Neurosci Lett 450(1):1–6

    CrossRef  Google Scholar 

  • Lorenz R, Pascual J, Blankertz B, Vidaurre C (2013) Towards a holistic assessment of the user experience with hybrid BCIs. J Neural Eng (submitted)

    Google Scholar 

  • Mak JN, Wolpaw J (2009) Clinical applications of brain-computer interfaces: current state and future prospects. IEEE Rev Biomed Eng 2:187–199

    CrossRef  Google Scholar 

  • McFarland DJ, Wolpaw JR (2008) Brain-computer interface operation of robotic and prosthetic devices. Computer 41(10):52–56

    CrossRef  Google Scholar 

  • McFarland DJ, Sarnacki WA, Wolpaw JR (2010) Electroencephalographic (EEG) control of three-dimensional movement. J Neural Eng 7(3):036,007

    Google Scholar 

  • Mellinger J, Schalk G, Braun C, Preissl H, Rosenstiel W, Birbaumer N, Kübler A (2007) An MEG-based brain-computer interface (BCI). NeuroImage 36(3):581–593

    CrossRef  Google Scholar 

  • Müller KR, Krauledat M, Dornhege G, Curio G, Blankertz B (2004) Machine learning techniques for brain-computer interfaces. Biomed Eng 49(1):11–22

    Google Scholar 

  • Müller KR, Tangermann M, Dornhege G, Krauledat M, Curio G, Blankertz B (2008) Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring. J Neurosci Methods 167(1):82–90

    CrossRef  Google Scholar 

  • Müller-Putz G, Scherer R, Neuper C, Pfurtscheller G (2006a) Steady-state somatosensory evoked potentials: suitable brain signals for brain-computer interfaces? IEEE Trans Neural Syst Rehabil Eng 14(1):30–37

    CrossRef  Google Scholar 

  • Müller-Putz GR, Scherer R, Pfurtscheller G, Rupp R (2005) EEG-based neuroprosthesis control: a step towards clinical practice. Neurosci Lett 382(1–2):169–174

    CrossRef  Google Scholar 

  • Müller-Putz GR, Scherer R, Pfurtscheller G, Rupp R (2006b) Brain-computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation. Biomed Tech 51(2):57–63

    CrossRef  Google Scholar 

  • Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces, a review. Sensors 12(2):1211–1279

    CrossRef  Google Scholar 

  • Nijboer F, Sellers EW, Mellinger J, Jordan MA, Matuz T, Furdea A, Halder S, Mochty U, Krusienski DJ, Vaughan TM, Wolpaw JR, Birbaumer N, Kübler A (2008) A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol 119(8):1909–1916

    CrossRef  Google Scholar 

  • Papadelis C, Chen Z, Kourtidou-Papadeli C, Bamidis PD, Chouvarda I, Bekiaris E, Maglaveras N (2007) Monitoring sleepiness with on-board electrophysiological recordings for preventing sleep-deprived traffic accidents. Clin Neurophysiol 118(9):1906–1922

    CrossRef  Google Scholar 

  • Patel SH, Azzam PN (2005) Characterization of N200 and P300: selected studies of the event-related potential. Int J Med Sci p 147 2(4):147–154

    Google Scholar 

  • Pfurtscheller G (1977) Graphical display and statistical evaluation of event-related desynchronization (ERD). Electroencephalogr Clin Neurophysiol 43(5):757–760

    CrossRef  Google Scholar 

  • Pfurtscheller G (1992) Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. Electroencephalogr Clin Neurophysiol 83(1):62–69

    CrossRef  Google Scholar 

  • Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol: Off J Int Fed Clin Neurophysiol 110(11):1842–1857

    CrossRef  Google Scholar 

  • Pfurtscheller G, Guger C, Müller G, Krausz G, Neuper C (2000) Brain oscillations control hand orthosis in a tetraplegic. Neurosci Lett 292(3):211–214

    CrossRef  Google Scholar 

  • Pfurtscheller G, Allison BZ, Brunner C, Bauernfeind G, Solis-Escalante T, Scherer R, Zander T, Müller-Putz G, Neuper C, Bierbaumer N (2010) The hybrid BCI. Front Neurosci 4(30):1–11

    Google Scholar 

  • Picard RW (1999) Affective computing for HCI. In: Human computer interaction, vol 1. pp 829–833

    Google Scholar 

  • Protzak J, Ihme K, Zander TO (2013) A passive brain-computer interface for supporting gaze-based human-machine interaction. In: Universal access in human-computer interaction. Design methods, tools, and interaction techniques for e inclusion, Springer, pp 662–671

    Google Scholar 

  • Renard Y, Lotte F, Gibert G, Congedo M, Maby E, Delannoy V, Bertrand O, Lécuyer A (2010) Openvibe: an open-source software platform to design, test, and use brain-computer interfaces in real and virtual environments. Presence: Teleoper Virtual Environ 19(1):35–53

    CrossRef  Google Scholar 

  • Reuderink B, Farquhar J, Poel M, Nijholt A (2011) A subject-independent brain-computer interface based on smoothed, second-order base lining. In: Engineering in medicine and biology society, EMBC, 2011 annual international conference of the IEEE, pp 4600–4604

    Google Scholar 

  • Riccio A, Mattia D, Simione L, Olivetti M, Cincotti F (2012) Eye-gaze independent EEG-based brain-computer interfaces for communication. J Neural Eng 9(4):045,001

    Google Scholar 

  • Rivera K, Cooke NJ, Bauhs JA (1996) The effects of emotional icons on remote communication. In: Conference companion on human factors in computing systems, ACM, pp 99–100

    Google Scholar 

  • Rötting M, Zander T, Trösterer S, Dzaack J (2009) Implicit interaction in multimodal human-machine systems. In: Industrial engineering and ergonomics, Springer, pp 523–536

    Google Scholar 

  • Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR (2004) BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng 51(6):1034–1043

    CrossRef  Google Scholar 

  • Schmidt A (2000) Implicit human computer interaction through context. Pers Technol 4(2–3):191–199

    CrossRef  Google Scholar 

  • Schmidt NM, Blankertz B, Treder MS (2012) Online detection of error-related potentials boosts the performance of mental typewriters. BMC Neurosci 13(1):19

    CrossRef  Google Scholar 

  • Schöllkopf B, Smola AJ (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. The MIT Press, Cambridge

    Google Scholar 

  • Schreuder M, Rost T, Tangermann M (2011) Listen, you are writing! Speeding up online spelling with a dynamic auditory BCI. Front Neurosci 5

    Google Scholar 

  • Sellers EW, Donchin E (2006) A P300-based brain-computer interface: initial tests by ALS patients. Clin Neurophysiol 117(3):538–548

    CrossRef  Google Scholar 

  • Shi Y, Ruiz N, Taib R, Choi E, Chen F (2007) Galvanic skin response (GSR) as an index of cognitive load. In: CHI’07 extended abstracts on human factors in computing systems, ACM, pp 2651–2656

    Google Scholar 

  • Squire P, Parasuraman R (2010) Effects of automation and task load on task switching during human supervision of multiple semi-autonomous robots in a dynamic environment. Ergonomics 53(8):951–961

    CrossRef  Google Scholar 

  • Tavella M, Leeb R, Rupp R, Millán JdR (2010) Towards natural non-invasive hand neuroprostheses for daily living. In: Proceedings IEEE engineering in medicine biology society conference, pp 126–129

    Google Scholar 

  • Treder MS, Blankertz B (2010) (C)overt attention and visual speller design in an ERP-based brain-computer interface. Behav Brain Funct 6(1):28

    CrossRef  Google Scholar 

  • Treder MS, Schmidt NM, Blankertz B (2011) Gaze-independent brain-computer interfaces based on covert attention and feature attention. J Neural Eng 8(6):066,003

    Google Scholar 

  • Van Schie HT, Mars RB, Coles MG, Bekkering H (2004) Modulation of activity in medial frontal and motor cortices during error observation. Nat Neurosci 7(5):549–554

    CrossRef  Google Scholar 

  • Vapnik VN, Chervonenkis AY (1971) On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab Appl 16(2):264–280

    MATH  MathSciNet  CrossRef  Google Scholar 

  • Vidal JJ (1973) Toward direct brain-computer communication. Annu Rev Biophys Bioeng 2(1):157–180

    CrossRef  Google Scholar 

  • Vidal JJ (1977) Real-time detection of brain events in EEG. Proc IEEE 65(5):633–641

    MathSciNet  CrossRef  Google Scholar 

  • Vilimek R, Zander TO (2009) BC (eye): combining eye-gaze input with brain-computer interaction. Universal access in human-computer interaction. Springer, Intelligent and Ubiquitous Interaction Environments, pp 593–602

    Google Scholar 

  • Weiskopf N, Veit R, Erb M, Mathiak K, Grodd W, Goebel R, Birbaumer N (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. NeuroImage 19(3):577–586

    CrossRef  Google Scholar 

  • Whitworth B (2005) Polite computing. Behav Inf Technol 24(5):353–363

    CrossRef  Google Scholar 

  • Wolpaw JR (2004) Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. In: Proceedings of the national academy of sciences 101(51):17,849-17,854

    Google Scholar 

  • Wolpaw JR, McFarland D, Vaughan T (2000) Brain-computer interface research at the Wadsworth Center. IEEE Trans Rehabil Eng 8(2):222–226

    CrossRef  Google Scholar 

  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791

    CrossRef  Google Scholar 

  • Zander TO (2011) Utilizing brain-computer interfaces for human-machine systems. PhD thesis, Universitätsbibliothek TU, Berlin

    Google Scholar 

  • Zander TO, Jatzev S (2012) Context-aware brain-computer interfaces: exploring the information space of user, technical system and environment. J Neural Eng 9(1):016,003

    Google Scholar 

  • Zander TO, Kothe C (2011) Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general. J Neural Eng 8(2):025,005

    Google Scholar 

  • Zander TO, Gaertner M, Kothe C, Vilimek R (2010a) Combining eye gaze input with a brain-computer interface for touchless human-computer interaction. Int J Human Comput Inter 27(1):38–51

    CrossRef  Google Scholar 

  • Zander TO, Kothe C, Jatzev S, Gaertner M (2010b) Enhancing human-computer interaction with input from active and passive brain-computer interfaces. In: Tan DS, Nijholt A (eds) Brain-computer interfaces: applying our minds to human-computer interaction. Human-Computer Interaction Series, Springer, pp 181–199

    CrossRef  Google Scholar 

  • Zander TO, Ihme K, Gärtner M, Rötting M (2011) A public data hub for benchmarking common brain-computer interface algorithms. J Neural Eng 8(2):025,021

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten O. Zander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Zander, T.O., Brönstrup, J., Lorenz, R., Krol, L.R. (2014). Towards BCI-Based Implicit Control in Human–Computer Interaction. In: Fairclough, S., Gilleade, K. (eds) Advances in Physiological Computing. Human–Computer Interaction Series. Springer, London. https://doi.org/10.1007/978-1-4471-6392-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6392-3_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6391-6

  • Online ISBN: 978-1-4471-6392-3

  • eBook Packages: Computer ScienceComputer Science (R0)