Skip to main content

Engineering Issues in Physiological Computing

  • Chapter
  • First Online:
Advances in Physiological Computing

Part of the book series: Human–Computer Interaction Series ((HCIS))

Abstract

Prototypes of physiological computing systems have appeared in countless fields, but few have made the leap from research to widespread use. This is due to several practical problems that can be roughly divided into four major categories: hardware, signal processing, psychophysiological inference, and feedback loop design. This chapter explores these issues from an engineering point of view, discussing major weaknesses and suggesting directions for potential solutions. Specifically, some of the topics covered are: unobtrusiveness and robustness of the hardware, real-time signal processing capability, different approaches to design and validation of a psychophysiological classifier, and the desired complexity of the feedback rules. The chapter also briefly discusses the challenge of finding an appropriate practical application for physiological computing, then ends with a summary of recommendations for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Berka C, Levendowski DJ, Cvetinovic MM, Petrovic MM, Davis G, Lumicao MN et al (2004) Real-time analysis of EEG indexes of alertness, cognition, and memory acquired with a wireless EEG headset. Int J Hum-Comput Int 17:151–170

    Article  Google Scholar 

  • Bernardin K, Ogawara K, Ikeuchi K, Dillmann R (2005) A sensor fusion approach for recognizing continuous human grasping sequences using hidden Markov models. IEEE Trans Rob 21:425–430

    Article  Google Scholar 

  • Berntson GG, Quigley KS, Jang JF, Boysen ST (1990) An approach to artifact identification: application to heart period data. Psychophysiology 27:586–598

    Article  Google Scholar 

  • Booth M (2009). The AI Systems of Left 4 Dead. Artificial Intelligence and Interactive Digital Entertainment Conference at Stanford

    Google Scholar 

  • Boucsein W (2011). Electrodermal Activity (2nd ed.)

    Google Scholar 

  • Brunner P, Bianchi L, Guger C, Cincotti F, Schalk G (2011) Current trends in hardware and software for brain-computer interfaces (BCIs). J Neural Eng 8(2):025001

    Article  Google Scholar 

  • Cacioppo JT, Tassinary LG (1990) Inferring psychological significance from physiological signals. Am Psychol 45:16–28

    Article  Google Scholar 

  • Chanel G, Kierkels JJM, Soleymani M, Pun T (2009) Short-term emotion assessment in a recall paradigm. Int J Hum Comput Stud 67:607–627

    Article  Google Scholar 

  • Chi YM, Jung T, Cauwenberghs G (2010) Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev Biomed Eng 3:106–119

    Article  Google Scholar 

  • Chi YM, Wang Y-T, Wang Y, Maier C, Jung T-P, Cauwenberghs G (2012) Dry and noncontact EEG sensors for mobile brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 20:228–235

    Article  Google Scholar 

  • Croft RJ, Barry RJ (2000) Removal of ocular artifact from the EEG: a review. Neurophysiol Clin 30:5–19

    Article  Google Scholar 

  • Duvinage M, Castermans T, Dutoit T, Petieau M, Hoellinger T, De Saedeleer C, Seetharaman K, et al. (2012). A P300-based quantitative comparison between the emotiv Epoc headset and a medical EEG device. In: Proceedings of the 9th Iasted conference on biomedical engineering

    Google Scholar 

  • Ebner-Priemer UW, Kubiak T (2007) Psychological and psychophysiological ambulatory monitoring. Eur J Psychol Assess 23:214–226

    Article  Google Scholar 

  • Estepp J, Monnin J, Christensen J, Wilson G (2010). Evaluation of a dry electrode system for electroencephalography: applications for psychophysiological cognitive workload assessment. In: Proceedings of the 2010 human factors and ergonomics society annual meeting, pp 210–214

    Google Scholar 

  • Fairclough SH (2009) Fundamentals of physiological computing. Interact Comput 21:133–145

    Article  Google Scholar 

  • Gilleade, K., Dix, A., & Allanson, J. (2005). Affective videogames and modes of affective gaming: assist me, challenge me, emote me. In: Proceedings of DiGRA

    Google Scholar 

  • Grossman P, Wilhelm FH, Brutsche M (2010) Accuracy of ventilatory measurement employing ambulatory inductive plethysmography during tasks of everyday life. Biol Psychol 84:121–128

    Article  Google Scholar 

  • Gruebler A, Berenz V, Suzuki K (2012) Emotionally assisted human-robot interaction using a wearable device for reading facial expressions. Adv Robot 26:37–41

    Article  Google Scholar 

  • Gwin JT, Gramann K, Makeig S, Ferris DP (2010) Removal of movement artifact from high-density EEG recorded during walking and running. J Neurophysiol 103:3526–3534

    Article  Google Scholar 

  • Healey JA, Picard RW (2005). Detecting stress during real-world driving tasks using physiological sensors. IEEE Transactions on Intelligent Transportation Systems, 6, 156–166

    Google Scholar 

  • Healey JA, Picard RW, Dabek F (1998). A new affect-perceiving interface and its application to personalized music selection. In: Proceedings of the 1998 workshop on perceptual user interfaces. San Francisco, USA

    Google Scholar 

  • Ji Q, Lan P, Looney C (2006) A probabilistic framework for modeling and real-time monitoring human fatigue. Sys Man Cybern Part A Syst Hum 36:862–875

    Article  Google Scholar 

  • Ju W, Leifer L (2008) The design of implicit interactions: Making interactive systems less obnoxious. Des Issues 24:72–84

    Article  Google Scholar 

  • Koenig A, Novak D, Omlin X, Pulfer M, Perreault E, Zimmerli L, Mihelj M et al (2011) Real-time closed-loop control of cognitive load in neurological patients during robot-assisted gait training. IEEE Trans Neural Syst Rehabil Eng 19:453–464

    Article  Google Scholar 

  • Kreibig SD (2010) Autonomic nervous system activity in emotion: a review. Biol Psychol 84:394–421

    Article  Google Scholar 

  • Lee B-G, Chung W-Y (2012) Driver alertness monitoring using fusion of facial features and bio-signals. IEEE Sens J 12:2416–2422

    Article  Google Scholar 

  • Lin Y (2011) A natural contact sensor paradigm for nonintrusive and real-time sensing of biosignals in human-machine interactions. IEEE Sens J 11:522–529

    Article  Google Scholar 

  • Liu C, Conn K, Sarkar N, Stone W (2008) Online affect detection and robot behavior adaptation for intervention of children with autism. IEEE Trans Rob 24:883–896

    Article  Google Scholar 

  • Mandryk RL, Atkins MS (2007) A fuzzy physiological approach for continuously modeling emotion during interaction with play technologies. Int J Hum Comput Stud 65:329–347

    Article  Google Scholar 

  • Novak D, Mihelj M, Munih M (2012) A survey of methods for data fusion and system adaptation using autonomic nervous system responses in physiological computing. Interact Comput 24:154–172

    Article  Google Scholar 

  • Novak D, Mihelj M, Ziherl J, Olenšek A, Munih M (2011) Psychophysiological measurements in a biocooperative feedback loop for upper extremity rehabilitation. IEEE Trans Neural Syst Rehabil Eng 19:400–410

    Article  Google Scholar 

  • Picard RW, Vyzas E, Healey J (2001) Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Trans Pattern Anal Mach Intell 23:1175–1191

    Article  Google Scholar 

  • Picot A, Charbonnier S, Caplier A (2012) On-line detection of drowsiness using brain and visual information. IEEE Trans Syst Man Cybern Part A Syst Hum 42(3):764–775

    Article  Google Scholar 

  • Ritter W (2011) Benefits of subliminal feedback loops in human-computer interaction. Adv Hum-Comput Interact 2011:346492

    Article  Google Scholar 

  • Scarpa Scerbo A, Freedman LW, Raine A, Dawson ME, Venables PH (1992) A major effect of recording site on measurement of electrodermal activity. Psychophysiology 29:241–246

    Article  Google Scholar 

  • Serbedzija N, Fairclough SH (2012). Reflective pervasive systems. ACM Transactions on Autonomous and Adaptive Systems 7(1), article 12

    Google Scholar 

  • Tapus A, Tapus C, Matarić M (2008) User—robot personality matching and assistive robot behavior adaptation for post-stroke rehabilitation therapy. Intel Serv Robot 1:169–183

    Google Scholar 

  • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17:354–381

    Article  Google Scholar 

  • Vaughan TM, Wolpaw JR, Donchin E (1996) EEG-based communication: Prospects and problems. IEEE Trans Rehabil Eng 4:425–430

    Article  Google Scholar 

  • Ware MP, McCullagh PJ, McRoberts A, Lightbody G, Nugent C, McAllister G, Mulvenna MD et al. (2010). Contrasting levels of accuracy in command interaction sequences for a domestic brain-computer interface using SSVEP. 5th Cairo international biomedical engineering conference, pp 150–153

    Google Scholar 

  • Wartzek T, Eilebrecht B, Lem J, Lindner H-J, Leonhardt S, Walter M (2011) ECG on the road: robust and unobtrusive estimation of heart rate. IEEE Trans Biomed Eng 58:3112–3120

    Article  Google Scholar 

  • Wilhelm FH, Grossman P (2010) Emotions beyond the laboratory: theoretical fundaments, study design, and analytic strategies for advanced ambulatory assessment. Biol Psychol 84:552–569

    Article  Google Scholar 

  • Wilhelm FH, Pfaltz MC, Grossman P (2006) Continuous electronic data capture of physiology, behavior and experience in real life: towards ecological momentary assessment of emotion. Interact Comput 18:171–186

    Article  Google Scholar 

  • Wilpon JG, Rabiner LR, Lee C-H, Goldman ER (1990) Automatic recognition of keywords in unconstrained speech using hidden Markov models. IEEE Trans Acoust Speech Signal Process 38:1870–1878

    Article  Google Scholar 

  • Wilson GF, Russell C (2007) Performance enhancement in an uninhabited air vehicle task using psychophysiologically determined adaptive aiding. Hum Factors 49:1005–1018

    Article  Google Scholar 

  • Wöllmer M, Blaschke C, Schindl T, Schuller B, Färber B, Mayer S, Trefflich B (2011) Online driver distraction detection using long short-term memory. IEEE Trans Intell Transp Syst 12:574–582

    Article  Google Scholar 

  • Yang G, Lin Y, Bhattacharya P (2008) Multimodality inferring of human cognitive states based on integration of neuro-fuzzy network and information fusion techniques. EURASIP J Adv Signal Process 2008:371621

    Article  Google Scholar 

  • Zeng Z, Pantic M, Roisman GI, Huang TS (2009) A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Trans Pattern Anal Mach Intell 38(1):39–58

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domen Novak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Novak, D. (2014). Engineering Issues in Physiological Computing. In: Fairclough, S., Gilleade, K. (eds) Advances in Physiological Computing. Human–Computer Interaction Series. Springer, London. https://doi.org/10.1007/978-1-4471-6392-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6392-3_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6391-6

  • Online ISBN: 978-1-4471-6392-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics