Skip to main content

Meaningful Interaction with Physiological Computing

  • Chapter
  • First Online:
Advances in Physiological Computing

Part of the book series: Human–Computer Interaction Series ((HCIS))

  • 2189 Accesses

Abstract

Physiological data can be used as input to a computerised system. There are many types of interaction that can be facilitated by this form of input ranging from intentional control to implicit software adaptation. This type of interaction directly with the brain and body represent a new paradigm in human–computer interaction and this chapter will discuss how meaning is associated with data interpretation and changes at the interface. The chapter will categorise the different systems physiological input allows and discuss how interaction with the system can be made meaningful for the user.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison B, Graimann B, Graser A (2007a) Why use a BCI if you are healthy? In: ACE workshop—Brainplay’07: brain–computer interfaces and games, Salzburg

    Google Scholar 

  • Allison BZ, Wolpaw EW, Wolpaw JR (2007b) Brain–computer interface systems: progress and prospects. Expert Rev Med Devices 4:463–474

    Article  Google Scholar 

  • Allison BZ, Dunne S, Leeb R, Millan J, Nijholt A (2012) Towards practical brain–computer interfaces: bridging the gap from research to real-world applications. Springer, New York

    Google Scholar 

  • Cacioppo JT, Tassinary LG (1990) Inferring psychological significance from physiological signals. Am Psychol 45:16–28

    Article  Google Scholar 

  • Craig AD (2003) Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol 13(4):500–505

    Article  MathSciNet  Google Scholar 

  • Fairclough SH (2008) BCI and physiological computing: similarities, differences and intuitive control. In: Workshop on BCI and computer games: CHI’08, Florence

    Google Scholar 

  • Fairclough SH (2009) Fundamentals of physiological computing. Interact Comput 21:133–145

    Article  Google Scholar 

  • Fairclough SH (2011) Physiological computing: interfacing with the human nervous system. In: Ouwerkerk M (ed) Sensing emotions in context. Springer, New York

    Google Scholar 

  • Fairclough SH, Gilleade K (2012) Construction of the biocybernetic loop: a case study. In: Proceedings of the 14th ACM international conference on multimodal interaction, ACM, Santa Monica

    Google Scholar 

  • Gallagher S (2005) How the body shapes the mind. Oxford University Press, Oxford

    Google Scholar 

  • Gilleade K, Allanson J (2003) A toolkit to explore affective interface adaptation in videogames. In: Stephanidis C, Jacko J (eds) HCI International 2003, vol 2. Lawernce Erlbaum Associates, Crete, pp 370–374

    Google Scholar 

  • Gilleade KM, Dix A (2004) Using frustration in the design of adaptive videogames. In: Proceedings of the 2004 ACM SIGCHI international conference on advances in computer entertainment technology

    Google Scholar 

  • Gilleade K, Dix A, Allanson J (2005) Affective videogames and modes of affective gaming: assist me, challenge me, emote me. In: DiGRA 2005, Vancouver

    Google Scholar 

  • Gilleade K, Fairclough SH (2010) Physiology as XP—Bodyblogging to Victory. In: BioS-Play workshop at fun and games 2010, Leuven, Belgium

    Google Scholar 

  • Gilleade K (2010) The body blogger—physiology in a public space. Presentation at quantified self London. http://vimeo.com/16649098. Accessed 03 Feb 2012

  • Gilleade K (2011) Lessons from a year of heart rate data. Presentation at quantified self Europe. http://quantifiedself.com/conference/Amsterdam-2011. Accessed 03 Feb 2012

  • Gilleade K, Lee K (2011) Issues inherent in controlling the interpretation of the physiological cloud. In: CHI 2011 workshop on brain and body interfaces: designing for meaningful interaction, Vancouver

    Google Scholar 

  • Haynes NK (1999) How we became post human: virtual bodies in cybernetics, literature and informatics. University of Chicago Press, Chicago

    Google Scholar 

  • Hwang H-J, Kwon K, Chang-Hawang I (2009) Neurofeedback-based motor imagery training for brain-computer interface (BCI). J Neurosci Methods 179:150–156

    Article  Google Scholar 

  • Kaber DB, Wright MC, Prinzel LJ, Clamann MP (2005) Adaptive automation of human–machine system information processing functions. Hum Factors 47:730–741

    Article  Google Scholar 

  • Kapoor A, Burleson W, Picard RW (2007) Automatic prediction of frustration. Int J Hum Comput Stud 65:724–736

    Article  Google Scholar 

  • Klein J, Moon Y, Picard RW (2002) This computer responds to user frustration: theory, design and results. Interact Comput 14:119–140

    Article  Google Scholar 

  • Klein G, Woods DD, Bradshaw JM, Hoffman RR, Feltovich PJ (2004) Ten challenges for making automation a “team player” in joint human–agent activity. IEEE Intell Syst 19(6):91–95

    Article  Google Scholar 

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169–195

    Article  Google Scholar 

  • Krusienski DJ, Sellers EW, McFarland DJ, Vaughan TM, Wolpaw J (2008) Towards enhanced P300 speller performance. J Neurosci Methods 167:15–21

    Article  Google Scholar 

  • Kubler A, Muller K-R (2007) An introduction to brain-computer interfacing. In: Dornhedge G, del R Millan J, Hinterberger T, McFarland DJ, Muller K-R (eds) Towards brain–computer interfacing. MIT Press, Cambridge, pp 1–25

    Google Scholar 

  • Lindström M, Ståhl A, Höök K et al. (2006) Affective diary: designing for bodily expressiveness and self-reflection. In: CHI ’06 extended abstracts on human factors in computing systems. ACM, New York, pp 1037–1042

    Google Scholar 

  • Lee JD, See KA (2004) Trust in automation: designing for appropriate reliance. Hum Factors 46:50–80

    Article  Google Scholar 

  • Lotte F, Larrue F, Mühl C (2013) Flaws in current human training protocols for spontaneous brain–computer interfaces: lessons learned from instructional design. Frontiers in Hum Neurosci. doi:10.3389/fnhum.2013.00568

    Google Scholar 

  • Nijholt A, Plass-Oude Bos D, Reuderink B (2009) Turning shortcomings into challenges: brain–computer interfaces for games. Entertain Comput 1:85–94

    Article  Google Scholar 

  • Peck E, Lalooses F, Chauncey K (2011) Framing meaningful adaption in a social context. In: CHI 2011 workshop on brain and body interfaces: designing for meaningful interaction, Vancouver

    Google Scholar 

  • Philips Direct Life (2011) http://www.directlife.philips.com. Accessed 12 Jan 2011

  • Picard RW (1997) Affective computing. The MIT Press, Cambridge

    Google Scholar 

  • Pope AT, Bogart EH, Bartolome DS (1995) Biocybernetic system evaluates indices of operator engagement in automated task. Biol Psychol 40:187–195

    Article  Google Scholar 

  • Pope AT, Palsson OS (2001) Helping video games “rewire our minds”. In: Playing by the rules. University of Chicago Cultural Policy Center, Chicago

    Google Scholar 

  • Prinzel LJ (2002) Research on hazardous states of awareness and physiological factors in aerospace operations. NASA, Hampton

    Google Scholar 

  • Ramoser H, Muller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8:441–446

    Article  Google Scholar 

  • Rani P, Sarkar N, Lui C (2005) Maintaining optimal challenge in computer games through real-time physiological feedback. In: 11th human–computer interaction international, Las Vegas, 2005

    Google Scholar 

  • San Agustin J, Skovsgaard H, Paulin Hansen J, Witzner Hansen D (2009) Low-cost gaze interaction: ready to deliver the promises. In: Human factors in computing systems (CHI), ACM

    Google Scholar 

  • Ståhl A, Höök K, Svensson M et al (2008) Experiencing the affective diary. Pers Ubiquit Comput 13:365–378. doi:10.1007/s00779-008-0202-7

    Article  Google Scholar 

  • Tan DS, Nijholt A (2010) Brain–computer interfaces. Springer, New York

    Google Scholar 

  • Wiener N (1964) God and golem inc. MIT Press, Cambridge

    Google Scholar 

  • Wilson GF, Russell CA (2007) Performance enhancement in an uninhabited air vehicle task using psychophysiologically determined adaptive aiding. Hum Factors 49:1005–1018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen H. Fairclough .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Fairclough, S.H., Gilleade, K. (2014). Meaningful Interaction with Physiological Computing. In: Fairclough, S., Gilleade, K. (eds) Advances in Physiological Computing. Human–Computer Interaction Series. Springer, London. https://doi.org/10.1007/978-1-4471-6392-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6392-3_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6391-6

  • Online ISBN: 978-1-4471-6392-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics