Introduction

Chapter

Abstract

The scope of the book, topics and assumptions are described. The focus of the book is on the investigation of the underlying physics of the processes involved, development of the new physical and mathematical models of these processes, and investigation of the interaction between complex physical processes which take place in sprays. This ‘physical’ approach to droplet and spray modelling cannot replace the conventional approach, based on the direct application of computational fluid dynamics (CFD) codes, but can effectively complement it. The structure of the book broadly reflects the sequence of the processes which take place in internal combustion engines, involving the direct injection of liquid fuel. Only subcritical heating and evaporation are considered. Analysis of the interaction between droplets, collisions, coalescence, atomization, oscillations (including instabilities of evaporating droplets), size distribution and a number of other processes are beyond the scope of this book. The focus is on the models suitable or potentially suitable for implementation in CFD codes

Keywords

Combustion Vortex 

References

  1. 1.
    Abramzon, B., & Sirignano, W. A. (1989). Droplet vaporization model for spray combustion calculations. International Journal of Heat and Mass Transfer, 32, 1605–1618.CrossRefGoogle Scholar
  2. 2.
    Ashgriz, V. (Ed.) (2011). Handbook of atomization and sprays. Heidelberg: Springer.Google Scholar
  3. 3.
    Babinsky, E., & Sojka, P. E. (2002). Modelling drop size distribution. Progress Energy Combustion Science, 28, 303–329.CrossRefGoogle Scholar
  4. 4.
    Beg, O. A., Ramachandra Prasad, V., Vasu, B., Bhaskar Reddy, N., Li, Q., & Bhargava, R. (2011). Free convection heat and mass transfer from an isothermal sphere to a micropolar regime with Soret/Dufour effects. International Journal of Heat and Mass Transfer, 54, 9–18.Google Scholar
  5. 5.
    Bellan, J. (2000). Supercritical (and subcritical) fluid behavior and modelling: drops, steams, shear and mixing layers, jets and sprays. Progress Energy Combustion Science, 26, 329–366.CrossRefGoogle Scholar
  6. 6.
    Birouk, M., & Gökalp, I. (2006). Current status of droplet evaporation in turbulent flows. Progress Energy Combustion Science, 32, 408–423.CrossRefGoogle Scholar
  7. 7.
    Bykov, V., Goldfarb, I., Gol’dshtein, V., & Greenberg, J. B. (2002). Thermal explosion in a hot gas mixture with fuel droplets: a two reactants model. Combustion Theory and Modelling, 6, 1–21.CrossRefGoogle Scholar
  8. 8.
    Chiang, C. H., Raju, M. S., & Sirignano, W. A. (1992). Numerical analysis of convecting, vaporizing fuel droplet with variable properties. International Journal of Heat and Mass Transfer, 35, 1307–1324.CrossRefMATHGoogle Scholar
  9. 9.
    Coelho, R. M. L., & Silva Telles, A. (2002). Extended Graetz problem accompanied by Dufour and Soret effects. International Journal of Heat and Mass Transfer, 45, 3101–3110.CrossRefMATHGoogle Scholar
  10. 10.
    Crafton, E. F., & Black, W. Z. (2004). Heat transfer and evaporation rate of small liquid droplets on heated horisontal surfaces. International Journal of Heat and Mass Transfer, 47, 1187–1200.CrossRefGoogle Scholar
  11. 11.
    de Groot, S. R., & Mazur, P. (1962). Non-equilibrium thermodynamics. Amsterdam: North-Holland Publishing Company.Google Scholar
  12. 12.
    Dwyer, H. A., Stapf, P., & Maly, R. (2000). Unsteady vaporization and ignition of a three-dimensional droplet array. Combustion and Flame, 121, 181–194.CrossRefGoogle Scholar
  13. 13.
    Faghri, A., & Zhang, Y. (2006). Transport phenomena in multiphase systems. Burlington: Elsevier.Google Scholar
  14. 14.
    Fuchs, N. A. (1959). Evaporation and droplet growth in gaseous media. London: Pergamon Press.Google Scholar
  15. 15.
    Fujikawa, S., Yano, T., & Watanabe, M. (2011). Vapor-liquid interfaces, bubbles and droplets. Heidelberg: Springer.Google Scholar
  16. 16.
    Fujita, A., Watanabe, H., Kurose, R., & Komori, S. (2013). Two-dimensional direct numerical simulation of spray flames—part 1: effects of equivalence ratio, fuel droplet size and radiation, and validity of flamelet model. Fuel, 104, 515–525.CrossRefGoogle Scholar
  17. 17.
    Givler, S. D., & Abraham, J. (1996). Supercritical droplet vaporization and combustion studies. Progress Energy Combustion Science, 22, 1–28.CrossRefGoogle Scholar
  18. 18.
    Goldfarb, I., Gol’dshtein, V., Kuzmenko, G., & Sazhin, S. S. (1999). Thermal radiation effect on thermal explosion in gas containing fuel droplets. Combustion Theory and Modelling, 3, 769–787.CrossRefMATHGoogle Scholar
  19. 19.
    Gopalakrishnan, V., & Abraham, J. (2004). Effects of multicomponent diffusion on predicted ignition characteristics of an n-heptane diffusion flame. Combustion and Flame, 136, 557–566.CrossRefGoogle Scholar
  20. 20.
    Gu, X., Basu, S., & Kumar, R. (2012). Vaporization and collision modeling of liquid fuel sprays in a co-axial fuel and air pre-mixer. International Journal of Heat and Mass Transfer, 55, 5322–5335.CrossRefGoogle Scholar
  21. 21.
    Harstad, K., & Bellan, J. (2001). Evaluation of commonly used assumptions for isolated and cluster heptane drops in nitrogen at all pressures. Combustion and Flame, 127, 1861–1879.CrossRefGoogle Scholar
  22. 22.
    Heywood, J. B. (1988). Internal combustion engines fundamentals. New York: McGraw-Hill Book Company.Google Scholar
  23. 23.
    Haywood, R. J., Nafziger, R., & Renksizbulut, M. (1989). A detailed examination of gas and liquid transient processes in convection and evaporation. ASME Journal of Heat Transfer, 111, 495–502.CrossRefGoogle Scholar
  24. 24.
    Holyst, R., Litniewski, M., Jakubczyk, D., Kolwas, K., Kolwas, M., Kowalski, K., et al. (2013). Evaporation of freely suspended single droplets: experimental, theoretical and computational simulations. Reports on Progress in Physics, 76, 034601. doi: 10.1088/0034-4885/76/3/034601.CrossRefGoogle Scholar
  25. 25.
    Imaoka, R. T., & Sirignano, W. A. (2005). A generalized analysis for liquid-fuel vaporization and burning. International Journal of Heat and Mass Transfer, 48, 4342–4353.CrossRefMATHGoogle Scholar
  26. 26.
    Imaoka, R. T., & Sirignano, W. A. (2005). Transient vaporization and burning in dense droplet arrays. International Journal of Heat and Mass Transfer, 48, 4354–4366.CrossRefMATHGoogle Scholar
  27. 27.
    Jenny, P., Roekaerts, D., & Beishuizen, N. (2012). Modeling of turbulent dilute spray combustion. Progress Energy Combustion Science, 38, 846–887.CrossRefGoogle Scholar
  28. 28.
    Jones, A. R. (1999). Light scattering for particle characterization. Progress Energy Combustion Science, 25, 1–53.CrossRefGoogle Scholar
  29. 29.
    Kamiuto, K., & Yee, S. S. (2005). Correlated radiative transfer through a packed bed of opaque spheres. International Communication of Heat and Mass Transfer, 32, 133–139.CrossRefGoogle Scholar
  30. 30.
    Kandlikar, S. G., & Steinke, M. E. (2002). Contact angles and interface behavior during rapid evaporation of liquid on a heated surface. International Journal of Heat and Mass Transfer, 45, 3771–3780.CrossRefGoogle Scholar
  31. 31.
    Kitano, T., Nakatani, T., Kurose, R., & Komori, S. (2013). Two-dimensional direct numerical simulation of spray flames—part 2: effects of ambient pressure and lift, and validity of flamelet model. Fuel, 104, 526–535.CrossRefGoogle Scholar
  32. 32.
    Kosinski, P., Balakin, B. V., Middha, P., & Hoffmann, A. C. (2014). Collisions between particles in multiphase flows: focus on contact mechanics and heat conduction. International Jornal of Heat and Mass Transfer, 70, 674–687.CrossRefGoogle Scholar
  33. 33.
    Lakatos, B. G., Süle, Z., & Mihálykó, Cs. (2008). Population balance model of heat transfer in gas-solid particulate systems. International Journal of Heat and Mass Transfer, 51, 1633–1645.CrossRefMATHGoogle Scholar
  34. 34.
    Levich, V. G. (1962). Physiochemical hydrodynamics. Englewood Cliffs NJ: Prentice Hall.Google Scholar
  35. 35.
    Li, S. C. (1997). Spray stagnation flames. Progress Energy Combustion Science, 23, 303–347.CrossRefGoogle Scholar
  36. 36.
    Loth, E. (2000). Numerical approaches for motion of dispersed particles, droplets and bubbles. Progress Energy Combustion Science, 26, 161–223.CrossRefGoogle Scholar
  37. 37.
    Luo, K., Fan, J., & Cen, K. (2013). New spray flamelet equations considering evaporation effects in the mixture fraction space. Fuel, 103, 1154–1157.CrossRefGoogle Scholar
  38. 38.
    Mashayek, F. (2001). Dynamics of evaporating drops. part ii: free oscillations. International Journal of Heat and Mass Transfer, 44, 1527–1541.CrossRefGoogle Scholar
  39. 39.
    Mashayek, F., & Pandya, R. V. R. (2003). Analytical description of particle laden flows. Progress Energy Combustion Science, 29, 329–378.CrossRefGoogle Scholar
  40. 40.
    Mashayek, F., Ashgriz, N., Minkowycz, W. J., & Shotorban, B. (2003). Coalescence collision of liquid drops. International Journal of Heat and Mass Transfer, 46, 77–89.CrossRefMATHGoogle Scholar
  41. 41.
    Meléan, Y., & Sigalotti, L. D. G. (2005). Coalescence of colliding van der Waals liquid drops. International Journal of Heat and Mass Transfer, 48, 4041–4061.Google Scholar
  42. 42.
    Meng, H., & Yang, V. (2014). Vaporization of two liquid oxygen (lox) droplets in tandem in convective hydrogen streams at supercritical pressures. International Journal of Heat and Mass Transfer, 68, 500–508.CrossRefGoogle Scholar
  43. 43.
    Michaelides, E. E. (2006). Particles bubbles and drops. New Jersey: World Scientific.CrossRefGoogle Scholar
  44. 44.
    Mihálykó, C. S., Lakatos, B. G., Matejdesz, A., & Blickle, T. (2004). Population balance model for particle-to-particle heat transfer in gas-solid systems. International Journal of Heat and Mass Transfer, 47, 1325–1334.CrossRefMATHGoogle Scholar
  45. 45.
    Nakoryakov, V. E., Misyura, S. Ya., & Elistratov, S. L. (2012). The behavior of water droplets on the heated surface. International Journal of Heat and Mass Transfer, 55, 6609–6617.Google Scholar
  46. 46.
    Nikolopoulos, N., Theodorakakos, A., & Bergeles, G. (2009). Off-centre binary collision of droplets: a numerical investigation. International Journal of Heat and Mass Transfer, 52, 4160–4174.CrossRefMATHGoogle Scholar
  47. 47.
    Orme, M. (1997). Experiments on droplet collisions, bounce, coalescence and disruption. Progress Energy Combustion Science, 23, 65–79.CrossRefGoogle Scholar
  48. 48.
    Polyanin, A. D., Kutepov, A. M., Vyazmin, A. V., & Kazenin, D. A. (2002). Hydrodynamics, mass and heat transfer in chemical engineering. London and New York: Taylor and Francis.Google Scholar
  49. 49.
    Postelnicu, A. (2004). Influence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. International Journal of Heat and Mass Transfer, 47, 1467–1472.CrossRefMATHGoogle Scholar
  50. 50.
    Putnam, S. A., Briones, A. M., Byrd, L. W., Ervin, J. S., Hanchak, M. S., White, A., et al. (2012). Microdroplet evaporation on superheated surfaces. International Journal of Heat and Mass Transfer, 55, 5793–5807.CrossRefGoogle Scholar
  51. 51.
    Reitz, R. D., & Rutland, C. J. (1995). Development and testing of diesel engine CFD models. Progress Energy Combustion Science, 21, 173–196.CrossRefGoogle Scholar
  52. 52.
    Rysakov, V. M. (2004). Light scattering by soft particles of arbitrary shape and size. Journal of Quantitative Spectroscopy and Radiative Transfer, 87, 261–287.CrossRefGoogle Scholar
  53. 53.
    Sakakibara, B., & Inamuro, T. (2008). Lattice Boltzmann simulation of collision dynamics of two unequal-size droplets. International Journal of Heat and Mass Transfer, 51, 3207–3216.CrossRefMATHGoogle Scholar
  54. 54.
    Sazhin, S. S., Feng, G., Heikal, M. R., Goldfarb, I., Goldshtein, V., & Kuzmenko, G. (2001). Thermal ignition analysis of a monodisperse spray with radiation. Combustion and Flame, 124, 684–701.CrossRefGoogle Scholar
  55. 55.
    Shen, S., Bi, F., & Guo, Y. (2012). Simulation of droplets impact on curved surfaces with lattice Boltzmann method. International Journal of Heat and Mass Transfer, 55, 6938–6943.CrossRefGoogle Scholar
  56. 56.
    Shusser, M., & Weihs, D. (2001). Stability of rapidly evaporating droplets and liquid shells. International Journal of Multiphase Flow, 27, 299–345.CrossRefMATHGoogle Scholar
  57. 57.
    Sirignano, W. A. (1999). Fluid dynamics and transport of droplets and sprays. Cambridge UK: Cambridge University Press.CrossRefGoogle Scholar
  58. 58.
    Soret, Ch. (1879). Sur l’état d’équilibre que prend au poin de vue de sa concentration une dissolution saline primitivement homogene dont deux parties sont portées a des températures différentes. Archives des Sciences Physiques et Naturelles, 2, 48–61.Google Scholar
  59. 59.
    Sovani, S. D., Sojka, P. E., & Lefebvre, A. H. (2001). Effervescent atomization. Progress Energy Combustion Science, 27, 483–521.CrossRefGoogle Scholar
  60. 60.
    Spalding, D. B. (1963). Convective mass transfer; an introduction. London: Edward Arnold Ltd.MATHGoogle Scholar
  61. 61.
    Subramaniam, S. (2013). Lagrangiane-eulerian methods for multiphase flows. Progress Energy Combustion Science, 39, 215–245.CrossRefGoogle Scholar
  62. 62.
    Sun, K., Jia, M., & Wang, T. (2014). Numerical investigation on the head-on collision between unequal-sized droplets with multiple-relaxation-time lattice Boltzmann model. International Journal of Heat and Mass Transfer, 70, 629–640.CrossRefGoogle Scholar
  63. 63.
    Tomić, M. V., & Petrovic, S. V. (2000). Internal combustion engines. Beograd (in Serbian): Mašinski Fakultet Unuiverziteta u Beogradu.Google Scholar
  64. 64.
    Tsai, C.-H., Hou, S.-S., & Lin, T.-H. (2005). Spray flames in a one-dimensional duct of varying cross-sectional area. International Journal of Heat and Mass Transfer, 48, 2250–2259.CrossRefMATHGoogle Scholar
  65. 65.
    Wang, C. H., Pan, K. L., Ueng, G. J., Kung, L. J., & Yang, J. Y. (2013). Burning behaviors of collision-merged water/diesel, methanol/diesel, and water + methanol/diesel droplets. Fuel, 106, 204–211.CrossRefGoogle Scholar
  66. 66.
    Wegener, M., Paul, N., & Kraume, M. (2014). Fluid dynamics and mass transfer at single droplets in liquid/liquid systems. International Journal of Heat and Mass Transfer, 71, 475–495.CrossRefGoogle Scholar
  67. 67.
    Xie, H., & Zhou, Z. (2007). A model for droplet evaporation near leidenfrost point. International Journal of Heat and Mass Transfer, 50, 5328–5333.CrossRefMATHGoogle Scholar
  68. 68.
    Zaichik, L. I., Alipchenkov, V. M., & Avetissian, A. R. (2006). Modelling turbulent collision rates of inertial particles. International Journal of Heat Fluid Flow, 27, 937–944.CrossRefGoogle Scholar
  69. 69.
    Zhu, G.-S., Reitz, R. D., & Aggarwal, S. K. (2001). Gas-phase unsteadiness and its influence on droplet vaporization in sub- and super-critical environments. International Journal of Heat and Mass Transfer, 44, 3081–3093.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.School of Computing, Engineering and MathematicsUniversity of BrightonBrightonUK

Personalised recommendations