Neurodegeneration and Multiple Sclerosis

  • Axel PetzoldEmail author


Neurodegeneration causes inexorable loss of neurons and function in both diseases and aging. Neurodegeneration damage produces a range of progressive disabilities from cognitive decline, behavioral, and mood disorders to problems with movement, coordination, and sensory dysfunction. Neurodegeneration is a major and growing public health issue which in its broadest sense embraces classical neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease, as well as multiple sclerosis (MS), diabetes, acute brain injury among many other conditions. This chapter discusses the clinical and pathophysiological features of neurodegeneration in MS.


Demyelinating disease Multiple sclerosis Neurodegeneration Transsynaptic axonal degeneration Protein biomarker Cerebrospinal fluid Retina Optical coherence tomography 



The MS Center VUmc is partially funded by a program grant of the Dutch MS Research Foundation.


  1. 1.
    Carswell R. Pathological anatomy: illustrations on elementary forms of disease. London: Longman; 1838.Google Scholar
  2. 2.
    Charcot M. Lecons sur les maladies chroniques du systéme nerveux: I – Des scléroses de la moelle épinière. Gaz des Hop. 1868;14:405–6, 554–5, 557–8, 566.Google Scholar
  3. 3.
    Curveilhier J, editor. Anatomie pathologique du crops humain. Paris: Bailliere; 1841.Google Scholar
  4. 4.
    Rindfleisch E. Histologisches Detail zur grauen Degeneration von Gehirn und Rückenmark Zugleich ein Beitrag zu der Lehre von der Entstehung und Verwandlung der Zelle. Arch Pathol Anat Physiol Klin Med. 1863;26:474–83.Google Scholar
  5. 5.
    McDonald WI, Miller DH, Barnes D. The pathological evolution of multiple sclerosis. Neuropathol Appl Neurobiol. 1992;18:319–34.PubMedGoogle Scholar
  6. 6.
    Raine CS. The neuropathology of multiple sclerosis. In: Raine CS, McFarland HF, Tourtellotte WW, editors. Multiple sclerosis, vol. 1. London: Chapman & Hall Medical; 1997. p. 151–70.Google Scholar
  7. 7.
    Kornek B, Lassmann H. Axonal pathology in multiple sclerosis. A historical note. Brain Pathol. 1999;9:651–6.PubMedGoogle Scholar
  8. 8.
    Charcot M. Histologie de la sclérose en plaques (II). Gaz des Hop. 1868;14:557–8.Google Scholar
  9. 9.
    Dawson J. The histology of disseminated sclerosis. Trans R Soc Edinb. 1916;50:517–740.Google Scholar
  10. 10.
    McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001;50:121–7.PubMedGoogle Scholar
  11. 11.
    Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol. 2005;58:840–6.PubMedGoogle Scholar
  12. 12.
    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69:292–302.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Poser CM, Donald WP, Scheinberg L, McDonald WI, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983;13:227–31.PubMedGoogle Scholar
  14. 14.
    Swanton JK, Rovira A, Tintore M, Altmann DR, Barkhof F, Filippi M, Huerga E, et al. MRI criteria for multiple sclerosis in patients presenting with clinically isolated syndromes: a multicentre retrospective study. Lancet Neurol. 2007;6:677–86.PubMedGoogle Scholar
  15. 15.
    Thompson AJ, Polman CH, Miller DH, McDonald WI, Brochet B, Filippi M, Montalban M, De Sa J. Primary progressive multiple sclerosis. Brain. 1997;120:1085–96.PubMedGoogle Scholar
  16. 16.
    Thompson AJ, Montalban X, Barkhof F, Brochet B, Filippi M, Miller DH, et al. Diagnostic criteria for primary progressive multiple sclerosis: a position paper. Ann Neurol. 2000;47:831–5.PubMedGoogle Scholar
  17. 17.
    McDonnell GV, Hawkins SA. Application of the Poser criteria in primary progressive multiple sclerosis. Ann Neurol. 1997;42:982–3.PubMedGoogle Scholar
  18. 18.
    Lassmann H, van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol. 2012;8:647–56.PubMedGoogle Scholar
  19. 19.
    Hoyt WF, Schlicke B, Eckelhoff RJ. Fundoscopic appearance of a nerve-fibre-bundle defect. Br J Ophthalmol. 1972;56:577–83.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Frisen L, Hoyt WF. Insidious atrophy of retinal nerve fibers in multiple sclerosis. Funduscopic identification in patients with and without visual complaints. Arch Ophthalmol. 1974;92:91–7.PubMedGoogle Scholar
  21. 21.
    Trapp BD, Peterson JP, et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338:278–85.PubMedGoogle Scholar
  22. 22.
    Bjartmar C, Trapp BD. Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol. 2001;14:271–8.PubMedGoogle Scholar
  23. 23.
    McDonald WI. Relapse, remission, and progression in multiple sclerosis. N Engl J Med. 2000;343:1486–7.PubMedGoogle Scholar
  24. 24.
    Trapp BD, Ransohoff RM, Fisher E, Rudick RA. Neurodegeneration in multiple sclerosis, relationship to neurological disability. Neuroscientist. 1999;5:48–57.Google Scholar
  25. 25.
    Waxman SG. Demyelinating diseases – new pathological insights, new therapeutic targets. N Engl J Med. 1998;338:323–5.PubMedGoogle Scholar
  26. 26.
    Wujek JR, Bjartmar C, Richer E, Ransohoff RM, Yu M, Tuohy VK, Trapp BD. Axon loss in the spinal cord determines permanent neurological disability in an animal model of multiple sclerosis. J Neuropathol Exp Neurol. 2002;61:23–32.PubMedGoogle Scholar
  27. 27.
    Greenfield JG, King LS. Observations on the histopathology of the cerebral lesions in disseminated sclerosis. Brain. 1936;59:445–58.Google Scholar
  28. 28.
    Putnam TJ. Studies in multiple sclerosis VII Similarities between some forms of “encephalomyelitis” and multiple sclerosis. Arch Neurol Psychiatry. 1935. Read before the American College of Physicians, Philadelphia, April 29, 1935, pp. 1289–1308.Google Scholar
  29. 29.
    Ferguson B, Matyszak MK, Esiri MM, Perry VH. Axonal damage in acute multiple sclerosis lesions. Brain. 1997;120:393–9.PubMedGoogle Scholar
  30. 30.
    Arnold DL, de Stefano N, Matthews PM, Trapp BD. N-acetylaspartate: usefulness as an indicator of viable neuronal tissue. Ann Neurol. 2001;50:823–5.PubMedGoogle Scholar
  31. 31.
    Charcot M. Histologie de la sclérose en plaques (I). Gaz des Hop. 1868;14:554–5.Google Scholar
  32. 32.
    Davies SE, Newcombe J, Williams SR, McDonald WI, Clark JB. High resolution proton NMR spectroscopy of multiple sclerosis lesions. J Neurochem. 1995;64:742–8.PubMedGoogle Scholar
  33. 33.
    Matthews PM, Pioro E, Narayanan S, et al. Assessment of lesion pathology in multiple sclerosis using quantitative MRI morphometry and magnetic resonance spectroscopy. Brain. 1996;119:715–22.PubMedGoogle Scholar
  34. 34.
    McDonald WI. The pathological and clinical dynamics of multiple sclerosis. J Neuropathol Exp Neurol. 1994;53:338–43.PubMedGoogle Scholar
  35. 35.
    McFarland HF, Frank JA, Albert PS, Smith ME, Martin R, Harris JO, et al. Using gadolinium-enhanced magnetic resonance imaging lesions to monitor disease activity in multiple sclerosis. Ann Neurol. 1992;32:758–66.PubMedGoogle Scholar
  36. 36.
    Narayanan S, Fu L, Pioro E, De Stefano N, Collins DL, Francis GS, et al. Imaging of axonal damage in multiple sclerosis: spatial distribution of magnetic resonance imaging lesions. Ann Neurol. 1997;41:385–91.PubMedGoogle Scholar
  37. 37.
    Stadelmann C. Multiple sclerosis as a neurodegenerative disease: pathology, mechanisms and therapeutic implications. Curr Opin Neurol. 2011;24:224–9.PubMedGoogle Scholar
  38. 38.
    Su KG, Banker G, Bourdette D, Forte M. Axonal degeneration in multiple sclerosis: the mitochondrial hypothesis. Curr Neurol Neurosci Rep. 2009;9:411–7.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Trapp BD, Stys PK. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol. 2009;8:280–91.PubMedGoogle Scholar
  40. 40.
    Black JA, Newcombe J, Trapp BD, Waxman SG. Sodium channel expression within chronic multiple sclerosis plaques. J Neuropathol Exp Neurol. 2007;66:828–37.PubMedGoogle Scholar
  41. 41.
    Cambron M, D’Haeseleer M, Laureys G, Clinckers R, Debruyne J, De Keyser J. White-matter astrocytes, axonal energy metabolism, and axonal degeneration in multiple sclerosis. J Cereb Blood Flow Metab. 2012;32:413–24.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Herrero-Herranz E, Pardo LA, Gold R, Linker RA. Pattern of axonal injury in murine myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis: implications for multiple sclerosis. Neurobiol Dis. 2008;30:162–73.PubMedGoogle Scholar
  43. 43.
    Lazzarino G, Amorini AM, Eikelenboom MJ, Killestein J, Belli A, Di Pietro V, et al. Cerebrospinal fluid ATP metabolites in multiple sclerosis. Mult Scler. 2010;16:549–54.PubMedGoogle Scholar
  44. 44.
    Mahad DJ, Ziabreva I, Campbell G, Lax N, White K, Hanson PS, Lassmann H, Turnbull DM. Mitochondrial changes within axons in multiple sclerosis. Brain. 2009;132:1161–74.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Witte ME, Bø L, Rodenburg RJ, Belien JA, Musters R, Hazes T, Wintjes LT, Smeitink JA, Geurts JJ, De Vries HE, van der Valk P, van Horssen J. Enhanced number and activity of mitochondria in multiple sclerosis lesions. J Pathol. 2009;219:193–204.PubMedGoogle Scholar
  46. 46.
    Kreutzer M, Seehusen F, Kreutzer R, Pringproa K, Kummerfeld M, Claus P, et al. Axonopathy is associated with complex axonal transport defects in a model of multiple sclerosis. Brain Pathol. 2011;22:454–71.PubMedGoogle Scholar
  47. 47.
    Petzold A, Gveric D, Groves M, Schmierer K, Grant D, Chapman M, Keir G, Cuzner L, Thompson EJ. Phosphorylation and compactness of neurofilaments in multiple sclerosis: indicators of axonal pathology. Exp Neurol. 2008;213:326–35.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Schirmer L, Merkler D, König FB, Brück W, Stadelmann C. Neuroaxonal regeneration is more pronounced in early multiple sclerosis than in traumatic brain injury lesions. Brain Pathol. 2013;23:2–12.PubMedGoogle Scholar
  49. 49.
    Kerschensteiner M, Schwab ME, Lichtman JW, Misgeld T. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med. 2005;11:572–7.PubMedGoogle Scholar
  50. 50.
    Waller A. Experiments on the section of glossopharyngeal and hypoglossal nerves of the frog and observations of the alternatives produced thereby in the structure of their primitive fibres. Philos Trans R Soc Lond. 1850;140:423–9.Google Scholar
  51. 51.
    George R, Griffin JW. Delayed macrophage responses and myelin clearance during Wallerian degeneration in the central nervous system: the dorsal radiculotomy model. Exp Neurol. 1994;129:225–36.PubMedGoogle Scholar
  52. 52.
    Spencer PS, Schaumburg HH. Ultrastructural studies of the dying-back process IV Differential vulnerability of PNS and CNS fibers in experimental central-peripheral distal axonopathies. J Neuropathol Exp Neurol. 1977;36:300–20.PubMedGoogle Scholar
  53. 53.
    Politis MJ, Pellegrino RG, Spencer PS. Ultrastructural studies of the dying-back process. V. Axonal neurofilaments accumulate at sites of 2,5-hexanedione application: evidence for nerve fibre dysfunction in experimental hexacarbon neuropathy. J Neurocytol. 1980;9:505–16.PubMedGoogle Scholar
  54. 54.
    Schaumburg HH, Spencer PS. Degeneration in central and peripheral nervous systems produced by pure n-hexane: an experimental study. Brain. 1976;99:183–92.PubMedGoogle Scholar
  55. 55.
    Nikić I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM, Brück W, Bishop D, Misgeld T, Kerschensteiner M. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med. 2011;17:495–9.PubMedGoogle Scholar
  56. 56.
    Jindahra P, Petrie A, Plant GT. Retrograde trans-synaptic retinal ganglion cell loss identified by optical coherence tomography. Brain. 2009;132:628–34.PubMedGoogle Scholar
  57. 57.
    Jindahra P, Petrie A, Plant GT. The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans. Brain. 2012;135:534–41.PubMedGoogle Scholar
  58. 58.
    Jindahra P, Hedges TR, Mendoza-Santiesteban CE, Plant GT. Optical coherence tomography of the retina: applications in neurology. Curr Opin Neurol. 2010;23:16–23.PubMedGoogle Scholar
  59. 59.
    Evangelou N, Konz D, Esiri MM, Smith S, Palace J, Matthews PM. Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. Brain. 2001;124:1813–20.PubMedGoogle Scholar
  60. 60.
    World Health Organization. International classification of impairments, disabilities and handicaps. Geneva. 1980. Available at: Accessed 10 Jan 2014.
  61. 61.
    Heesen C, Böhm J, Reich C, Kasper J, Goebel M, Gold SM. Patient perception of bodily functions in multiple sclerosis: gait and visual function are the most valuable. Mult Scler. 2008;14:988–91.PubMedGoogle Scholar
  62. 62.
    Poser CM. The unfortunate triumph of mechanodiagnosis in multiple sclerosis: a clinician’s lament. Clin Neurol Neurosurg. 1992;94(Suppl):S139–42.PubMedGoogle Scholar
  63. 63.
    Kurtzke JF. Rating neurological impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33:1444–52.PubMedGoogle Scholar
  64. 64.
    Kurtzke JF. A new scale for evaluating disability in multiple sclerosis. Neurology. 1955;5:580–3.PubMedGoogle Scholar
  65. 65.
    Kurtzke JF. Further notes on disability evaluation in multiple sclerosis. Neurology. 1965;15:654–61.PubMedGoogle Scholar
  66. 66.
    Kurtzke JF. Natural history and clinical outcome measures for multiple sclerosis studies. Why at the present time does EDSS scale remain a preferred outcome measure to evaluate disease evolution? Neurol Sci. 2000;21:339–41.PubMedGoogle Scholar
  67. 67.
    Kurtzke JF. On the evaluation of disability in multiple sclerosis. Neurology. 1961;11:686–94.PubMedGoogle Scholar
  68. 68.
    Kurtzke JF. The disability Status Scale for multiple sclerosis: aplogia pro DSS sua. Neurology. 1989;39:291–302.PubMedGoogle Scholar
  69. 69.
    Kalkers NF, Bergers E, Castelijns JA, et al. Optimizing the association between disability and biological markers in MS. Neurology. 2001;57:1253–8.PubMedGoogle Scholar
  70. 70.
    Gromwall DMA. Paced auditory serial addition task: a measure of recovery from concussion. Percept Mot Skills. 1977;44:367–73.Google Scholar
  71. 71.
    Nelson HE, editor. National adult reading test: manual. Windsor: NFER-Nelson; 1982.Google Scholar
  72. 72.
    Warrington EK, editor. Recognition memory tests. Windsor: NFER Nelson; 1984.Google Scholar
  73. 73.
    Willison JR, Thomas DJ, du Boulay GH, et al. Effect of high haematocrit on alertness. Lancet. 1980;19:846–8.Google Scholar
  74. 74.
    Sahakian BJ, Owen MA. Computerized assessment in neuropsychiatry using CANTAB: discussion paper. J R Soc Med. 1992;85:399–402.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989;46:1121–3.PubMedGoogle Scholar
  76. 76.
    Thompson AJ. Multiple sclerosis: rehabilitation measures. Semin Neurol. 1998;18:397–403.PubMedGoogle Scholar
  77. 77.
    Cutter GR, Baier ML, Rudick RA, Cookfair DL, Fischer JS, Petkau J, et al. Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain. 1999;122:871–82.PubMedGoogle Scholar
  78. 78.
    Hoogervorst EL, Kalkers NF, Uitdehaag BM, Polman CH. A study validating changes in the multiple sclerosis functional composite. Arch Neurol. 2002;59:113–6.PubMedGoogle Scholar
  79. 79.
    Barkhof F. The clinico–radiological paradox in multiple sclerosis. Curr Opin Neurol. 2002;15:239–45.PubMedGoogle Scholar
  80. 80.
    Balcer LJ, Baier ML, Cohen JA, Kooijmans MF, Sandrock AW, Nano-Schiavi ML, Pfohl DC, et al. Contrast letter acuity as a visual component for the Multiple Sclerosis Functional Composite. Neurology. 2003;61:1367–73.PubMedGoogle Scholar
  81. 81.
    Roxburgh RHSR, Seaman SR, Masterman T, Hensiek AE, Sawcer SJ, Vukusic S, et al. Multiple sclerosis severity score. Using disability and disease duration to rate disease severity. Neurology. 2005;64:1144–51.PubMedGoogle Scholar
  82. 82.
    Hawton A, Green C, Telford C, Zajicek J, Wright D. Using the Multiple Sclerosis Impact Scale to estimate health state utility values: mapping from the MSIS-29, version 2, to the EQ-5D and the SF-6D. Value Health. 2012;15:1084–91.PubMedGoogle Scholar
  83. 83.
    Polman CH, Koetsier JC, Wolters EC. Multiple sclerosis: incorporation of results of laboratory techniques in the diagnosis. Clin Neurol Neurosurg. 1985;87:187–92.PubMedGoogle Scholar
  84. 84.
    Beer S, Rösler KM, Hess CW. Diagnostic value of paraclinical tests in multiple sclerosis: relative sensitivities and specificities for reclassification according to the Poser committee criteria. J Neurol Neurosurg Psychiatry. 1995;59:152–9.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Filippini G, Comi GC, Cosi V, Bevilacqua L, Ferrarini M, Martinelli V, et al. Sensitivities and predictive values of paraclinical tests for diagnosing multiple sclerosis. J Neurol. 1994;241:132–7.PubMedGoogle Scholar
  86. 86.
    Kappos L, Moeri D, Radue EW, Schoetzau A, Schweikert K, Barkhof F, et al. Predictive value of gadolinium–enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta–analysis. Lancet. 1999;353:964–9.PubMedGoogle Scholar
  87. 87.
    Bonati U, Fisniku LK, Altmann DR, Yiannakas MC, Furby J, Thompson AJ, et al. Cervical cord and brain grey matter atrophy independently associate with long-term MS disability. J Neurol Neurosurg Psychiatry. 2011;82:471–2.PubMedGoogle Scholar
  88. 88.
    Fisniku LK, Brex PA, Altmann DR, Miszkiel KA, Benton CE, Lanyon R, et al. Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain. 2008;131:808–17.PubMedGoogle Scholar
  89. 89.
    Fisniku LK, Chard DT, Jackson JS, Anderson VM, Altmann DR, Miszkiel KA, et al. Gray matter atrophy is related to long-term disability in multiple sclerosis. Ann Neurol. 2008;64:247–54.PubMedGoogle Scholar
  90. 90.
    Barkhof F, Calabresi PA, Miller DH, Reingold SC. Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol. 2009;5:256–66.PubMedGoogle Scholar
  91. 91.
    Ropele S, de Graaf W, Khalil M, Wattjes MP, Langkammer C, Rocca MA, et al. MRI assessment of iron deposition in multiple sclerosis. J Magn Reson Imaging. 2011;34:13–21.PubMedGoogle Scholar
  92. 92.
    Rovaris M, Gass A, Bammer R, Hickman SJ, Ciccarelli O, Miller DH, Filippi M. Diffusion MRI in multiple sclerosis. Neurology. 2005;65:1526–32.PubMedGoogle Scholar
  93. 93.
    De Stefano N, Filippi M. MR spectroscopy in multiple sclerosis. J Neuroimaging. 2007;17 Suppl 1:31S–5.PubMedGoogle Scholar
  94. 94.
    Wattjes MP, Barkhof F. High field MRI in the diagnosis of multiple sclerosis: high field-high yield? Neuroradiology. 2009;51:279–92.PubMedGoogle Scholar
  95. 95.
    Amato MP, Ponziani G. A prospective study on the prognosis of multiple sclerosis. Neurol Sci. 2000;21:S831–8.PubMedGoogle Scholar
  96. 96.
    Avasarala JR, Cross AH, Trotter JL. Oligoclonal band number as a marker for prognosis in multiple sclerosis. Arch Neurol. 2001;58:2044–5.PubMedGoogle Scholar
  97. 97.
    Joseph FG, Hirst CL, Pickersgill TP, Ben-Shlomo Y, Robertson NP, Scolding NJ. CSF oligoclonal band status in- forms prognosis in multiple sclerosis: a case control study of 100 patients. J Neurol Neurosurg Psychiatry. 2009;80:292–6.PubMedGoogle Scholar
  98. 98.
    Lechner-Scott J, Spencer B, de Malmanche T, Attia J, Fitzgerald M, Trojano M, et al. The frequency of CSF oligoclonal banding in multiple sclerosis increases with latitude. Mult Scler. 2012;18:974–82.PubMedGoogle Scholar
  99. 99.
    Moulin D, Paty DW, Ebers GC. The predictive value of cerebrospinal fluid electrophoresis in ‛possible’ multiple sclerosis. Brain. 1983;106(Pt 4):809–16.PubMedGoogle Scholar
  100. 100.
    Zeman AZ, Kidd D, McLean BN, Kelly MA, Francis DA, Miller DH, et al. A study of oligoclonal band negative multiple sclerosis. J Neurol Neurosurg Psychiatry. 1996;60:27–30.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Imrell K, Landtblom A-M, Hillert J, Masterman T. Multiple sclerosis with and without CSF bands: clinically indistinguishable but immunogenetically distinct. Neurology. 2006;67:1062–4.PubMedGoogle Scholar
  102. 102.
    Koch M, Heersema D, Mostert J, Teelken A, De Keyser J. Cerebrospinal fluid oligoclonal bands and progression of disability in multiple sclerosis. Eur J Neurol. 2007;14:797–800.PubMedGoogle Scholar
  103. 103.
    Fuhr P, Borggrefe-Chappuis A, Schindler C, Kappos L. Visual and motor evoked potentials in the course of multiple sclerosis. Brain. 2001;124:2162–8.PubMedGoogle Scholar
  104. 104.
    Klistorner A, Garrick R, Barnett MH, Graham SL, Arvind H, Sriram P, Yiannikas C. Axonal loss in non-optic neuritis eyes of patients with multiple sclerosis linked to delayed visual evoked potential. Neurology. 2013;80:242–5.PubMedGoogle Scholar
  105. 105.
    Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci. 2005;233:183–98.PubMedGoogle Scholar
  106. 106.
    Stangel M, Fredrikson S, Meinl E, Petzold A, Stüve O, Tumani H. The utility of cerebrospinal fluid analysis in patients with multiple sclerosis. Nat Rev Neurol. 2013;9:267–76.PubMedGoogle Scholar
  107. 107.
    Ziemann U, Wahl M, Hattingen E, Tumani H. Development of biomarkers for multiple sclerosis as a neurodegenerative disorder. Prog Neurobiol. 2011;95:670–85.PubMedGoogle Scholar
  108. 108.
    Cordeiro MF, Guo L, Luong V, Harding G, Wang W, Jones HE, et al. Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration. Proc Natl Acad Sci U S A. 2004;101:13352–6.PubMedCentralPubMedGoogle Scholar
  109. 109.
    Narayana PA, Doyle TJ, Lai D, Wolinsky JS. Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol. 1998;43:56–71.PubMedGoogle Scholar
  110. 110.
    Wattjes MP, Harzheim M, Lutterbey GG, Bogdanow M, Schmidt S, Schild HH, Träber F. Prognostic value of high-field proton magnetic resonance spectroscopy in patients presenting with clinically isolated syndromes suggestive of multiple sclerosis. Neuroradiology. 2008;50:123–9.PubMedGoogle Scholar
  111. 111.
    Lukas C, Sombekke MH, Bellenberg B, Hahn HK, Popescu V, Bendfeldt K, et al. Relevance of spinal cord abnormalities to clinical disability in multiple sclerosis: MR imaging findings in a large cohort of patients. Radiology. 2013;269:542–52.PubMedGoogle Scholar
  112. 112.
    Kupersmith MJ, Anderson S, Durbin MK, Kardon RH. Scanning laser polarimetry, but not optical coherence tomography predicts permanent visual field loss in acute nonarteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 2013;54:5514–9.PubMedCentralPubMedGoogle Scholar
  113. 113.
    Petzold A, de Boer JF, Schippling S, Vermersch P, Kardon R, Green A, Calabresi PA, Polman C. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 2010;9:921–32.PubMedGoogle Scholar
  114. 114.
    Petzold A. Biomarkers of disease progression. In: Wilkins A, editor. Progressive multiple sclerosis. London: Springer; 2013. p. 115–46.Google Scholar
  115. 115.
    Awad A, Hemmer B, Hartung H-P, Kieseier B, Bennett JL, Stuve O. Analyses of cerebrospinal fluid in the diagnosis and monitoring of multiple sclerosis. J Neuroimmunol. 2010;219:1–7.PubMedGoogle Scholar
  116. 116.
    Berger T, Reindl M. Multiple sclerosis: disease biomarkers as indicated by pathophysiology. J Neurol Sci. 2007;259:21–6.PubMedGoogle Scholar
  117. 117.
    Bielekova B, Martin R. Development of biomarkers in multiple sclerosis. Brain. 2004;127:1463–78.PubMedGoogle Scholar
  118. 118.
    Dujmovic I. Cerebrospinal fluid and blood biomarkers of neuroaxonal damage in multiple sclerosis. Mult Scler Int. 2011;2011:767–83.Google Scholar
  119. 119.
    Kuhle J, Petzold A. What makes a prognostic biomarker in CNS diseases: strategies for targeted biomarker discovery? Part 2: chronic progressive and relapsing diseases. Expert Opin Med Diagn. 2011;5:393–410.PubMedGoogle Scholar
  120. 120.
    Brettschneider J, Petzold A, Junker A, Tumani H. Axonal damage markers in cerebrospinal fluid of patients with clinically isolated syndrome improve predicting conversion to definite MS. Mult Scler. 2006;12:143–8.PubMedGoogle Scholar
  121. 121.
    Gunnarsson M, Malmeström C, Axelsson M, Sundström P, Dahle C, Vrethem M, Olsson T, Piehl F, Norgren N, Rosengren L, Svenningsson A, Lycke J. Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab. Ann Neurol. 2011;69:83–9.PubMedGoogle Scholar
  122. 122.
    Kuhle J, Leppert D, Petzold A, Regeniter A, Schindler C, Mehling M, et al. Neurofilament heavy chain in CSF correlates with relapses and disability in multiple sclerosis. Neurology. 2011;76:1206–13.PubMedGoogle Scholar
  123. 123.
    Lycke J, Andersen O, Rosengren L. Neurofilament in cerebrospinal fluid: a potential marker of activity in multiple sclerosis. Eur J Neurol. 1996;3:100.Google Scholar
  124. 124.
    Lycke JN, Karlsson JE, Andersen O, Rosengren LE. Neurofilament protein in cerebrospinal fluid: a potential marker of activity in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1998;64:402–4.PubMedCentralPubMedGoogle Scholar
  125. 125.
    Malmeström C, Haghighi S, Rosengren L, Andersen O, Lycke J. Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology. 2003;61:1720–5.PubMedGoogle Scholar
  126. 126.
    Petzold A, Rejdak K, Plant GT. Axonal degeneration and inflammation in acute optic neuritis. J Neurol Neurosurg Psychiatry. 2004;75:1178–80.PubMedCentralPubMedGoogle Scholar
  127. 127.
    Petzold A, Mondria T, Kuhle J, Rocca MA, Cornelissen J, Te Boekhorst P, et al. Evidence for acute neurotoxicity after chemotherapy. Ann Neurol. 2010;68:806–15.PubMedGoogle Scholar
  128. 128.
    Petzold A, Eikelenboom MJ, Keir G, Grant D, Lazeron RH, Polman CH, et al. Axonal damage accumulates in the progressive phase of multiple sclerosis: three year follow up study. J Neurol Neurosurg Psychiatry. 2005;76:206–11.PubMedCentralPubMedGoogle Scholar
  129. 129.
    Teunissen CE, Iacobaeus E, Khademi M, Brundin L, Norgren N, Koel-Simmelink MJA, et al. Combination of CSF N-acetylaspartate and neurofilaments in multiple sclerosis. Neurology. 2009;72:1322–9.PubMedGoogle Scholar
  130. 130.
    Abdo WF, van de Warrenburg BP, Munneke M, van Geel WJ, Bloem BR, Kremer HP, Verbeek MM. CSF analysis differentiates multiple-system atrophy from idiopathic late-onset cerebellar ataxia. Neurology. 2006;67:474–9.PubMedGoogle Scholar
  131. 131.
    Jackson SJ, Baker D, Cuzner ML, Diemel LT. Cannabinoid-mediated neuroprotection following interferon- gamma treatment in a three-dimensional mouse brain aggregate cell culture. Eur J Neurosci. 2004;20:2267–75.PubMedGoogle Scholar
  132. 132.
    Jackson SJ, Diemel LT, Pryce G, Baker D. Cannabinoids and neuroprotection in CNS inflammatory disease. J Neurol Sci. 2005;233:21–5.PubMedGoogle Scholar
  133. 133.
    Jackson SJ, Pryce G, Diemel LT, Cuzner ML, Baker D. Cannabinoid-receptor 1 null mice are susceptible to neurofilament damage and caspase 3 activation. Neuroscience. 2005;134:261–8.PubMedGoogle Scholar
  134. 134.
    Kuhle J, Regeniter A, Leppert D, Mehling M, Kappos L, Lindberg RLP, Petzold A. A highly sensitive electrochemiluminescence immunoassay for the neurofilament heavy chain protein. J Neuroimmonol. 2010;220:114–9.Google Scholar
  135. 135.
    Lu C-H, Kalmar B, Malaspina A, Greensmith L, Petzold A. A method to solubilise protein aggregates for immunoassay quantification which overcomes the neurofilament “hook” effect. J Neurosci Methods. 2011;195:143–50.PubMedGoogle Scholar
  136. 136.
    Petzold A, Keir G, Green AJE, Giovannoni G, Thompson EJ. A specific ELISA for measuring neurofilament heavy chain phosphoforms. J Immunol Methods. 2003;278:179–90.PubMedGoogle Scholar
  137. 137.
    Petzold A, Baker D, Pryce G, Keir G, Thompson EJ, Giovannoni G. Quantification of neurodegeneration by measurement of brain-specific proteins. J Neuroimmunol. 2003;138:45–8.PubMedGoogle Scholar
  138. 138.
    Pryce G, Ahmed Z, Hankey DJ, et al. Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain. 2003;127:2191–202.Google Scholar
  139. 139.
    Shaw G, Yang C, Ellis R, Anderson K, et al. Hyperphosphorylated neurofilament NF-H is a serum biomarker for axonal injury. Biochem Biophys Res Commun. 2005;336:1268–77.PubMedGoogle Scholar
  140. 140.
    Albrecht P, Fröhlich R, Hartung H-P, Kieseier BC, Methner A. Optical coherence tomography measures axonal loss in multiple sclerosis independently of optic neuritis. J Neurol. 2007;254:595–6.Google Scholar
  141. 141.
    Bock M, Brandt AU, Dörr J, Kraft H, Weinges-Evers N, Gaede G, et al. Patterns of retinal nerve fiber layer loss in multiple sclerosis patients with or without optic neuritis and glaucoma patients. Clin Neurol Neurosurg. 2010;112:647–52.PubMedGoogle Scholar
  142. 142.
    Fisher JB, Jacobs DA, Markowitz CE, Galetta SL, Volpe NJ, Nano-Schiavi ML, et al. Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology. 2006;113:324–32.PubMedGoogle Scholar
  143. 143.
    Frohman EM, Dwyer MG, Frohman T, Cox JL, Salter A, Greenberg BM, et al. Relationship of optic nerve and brain conventional and non-conventional MRI measures and retinal nerve fiber layer thickness, as assessed by OCT and GDx: a pilot study. J Neurol Sci. 2009;282:96–105.PubMedGoogle Scholar
  144. 144.
    Gundogan FC, Demirkaya S, Sobaci G. Is optical coherence tomography really a new biomarker candidate in multiple sclerosis? A structural and functional evaluation. Invest Ophthalmol Vis Sci. 2007;48:5773–81.PubMedGoogle Scholar
  145. 145.
    Jeanjean L, Castelnovo G, Carlander B, Villain M, Mura F, Dupeyron G, Labauge P. Retinal atrophy using optical coherence tomography (OCT) in 15 patients with multiple sclerosis and comparison with healthy subjects. Rev Neurol (Paris). 2008;164:927–34.Google Scholar
  146. 146.
    Klistorner A, Arvind H, Nguyen T, Garrick R, Paine M, Graham S, et al. Axonal loss and myelin in early ON loss in postacute optic neuritis. Ann Neurol. 2008;64:325–31.PubMedGoogle Scholar
  147. 147.
    Pulicken M, Gordon-Lipkin E, Balcer LJ, Frohman E, Cutter G, Calabresi PA. Optical coherence tomography and disease subtype in multiple sclerosis. Neurology. 2007;69:2085–92.PubMedGoogle Scholar
  148. 148.
    Quelly A, Cheng H, Laron M, Schiffman S, Tang RA. Comparison of optical coherence tomography and scanning laser polarimetry measurements in patients with multiple sclerosis. Optom Vis Sci. 2010;87:576–84.PubMedCentralPubMedGoogle Scholar
  149. 149.
    Ratchford JN, Quigg ME, Conger A, Frohman T, Frohman E, Balcer LJ, et al. Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies. Neurology. 2009;73:302–8.PubMedCentralPubMedGoogle Scholar
  150. 150.
    Siger M, Dziegielewski K, Jasek L, Bieniek M, Nicpan A, Nawrocki J, Selmaj K. Optical coherence tomography in multiple sclerosis: thickness of the retinal nerve fiber layer as a potential measure of axonal loss and brain atrophy. J Neurol. 2008;255:1555–60.PubMedGoogle Scholar
  151. 151.
    Trip SA, Schlottmann PG, Jones SJ, Altmann DR, Garway-Heath DF, Thompson AJ, Plant GT, Miller DH. Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann Neurol. 2005;58:383–91.PubMedGoogle Scholar
  152. 152.
    Zaveri MS, Conger A, Salter A, Frohman TC, Galetta SL, Markowitz CE, et al. Retinal imaging by laser polarimetry and optical coherence tomography evidence of axonal degeneration in multiple sclerosis. Arch Neurol. 2008;65:924–8.PubMedGoogle Scholar
  153. 153.
    Petzold A, Plant GT. Diagnosis and classification of autoimmune optic neuropathy. Autoimmun Rev. 2014;13(4–5):539–45.Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Department of NeurologyVU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations